JPH06331160A - Assembly for electronic cooling element - Google Patents

Assembly for electronic cooling element

Info

Publication number
JPH06331160A
JPH06331160A JP5153063A JP15306393A JPH06331160A JP H06331160 A JPH06331160 A JP H06331160A JP 5153063 A JP5153063 A JP 5153063A JP 15306393 A JP15306393 A JP 15306393A JP H06331160 A JPH06331160 A JP H06331160A
Authority
JP
Japan
Prior art keywords
tube
electronic cooling
heat
semiconductors
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5153063A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yanagimachi
潔 柳町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5153063A priority Critical patent/JPH06331160A/en
Publication of JPH06331160A publication Critical patent/JPH06331160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE:To perform a mass production of electronic cooling element assembly continuously at a low cost by alternately fixing different type semiconductors for forming the elements at an equal interval at two stripes of ribbons of electric conductors, and alternately cutting the ribbons at the gap of the semiconductors. CONSTITUTION:Two stripes of ribbons 1, 2 are heated and coated with solder at opposed surfaces. Two types of semiconductors 4, 5 of electronic cooling elements 3 coated with solder are alternately advanced in a shape in which they are interposed between the ribbons 1 and 2 by a conveyor 11 from below at a gap 10 in a predetermined direction, fusion-bonded with solder previously coating the ribbons 1, 2 and the semiconductors 4, 5 while passing between heating rolls 12, and the semiconductors 4, 5 are cooled to be fixed between the ribbons 1 and 2 through cooling rolls 13. Then, high-speed cutters 14, 15 horizontally move in synchronization with passage of the semiconductors 4, 5 through the gap 10 to alternately cut and partly delete the ribbons 1, 2. Thus, an electronic cooling element assembly 17 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はペルチエ効果を応用し
た冷却を実用的に行なうための設備に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a facility for practically applying the Peltier effect for cooling.

【0002】[0002]

【従来の杖術】従来のこの種の電子冷却素子の集合体は
直流の電圧を印加するとペルチエ効果を生ずる2種類の
異種の半導体を数組または数十組または数百組を同数に
区切られてほぼ方形に配置された電気導体の板に電気的
に直列接続に固定しその外側に電気絶縁等の板を配置し
てさらにこの外側に熱伝導体の板を取り付けていた。
2. Description of the Related Art A conventional assembly of electronic cooling elements of this type is divided into several sets or tens or hundreds of two different kinds of semiconductors which produce a Peltier effect when a DC voltage is applied. It was fixed electrically in series connection to a plate of an electric conductor arranged in a substantially rectangular shape, a plate for electrical insulation was arranged outside the plate, and a plate of a heat conductor was attached to the outside.

【0003】[0003]

【発明が解決しようとする課題】ところが前記の従来の
電子冷却素子の集合体では複数組の2種類の異種の半導
体が所定のほぼ方形のスペースに収められるために多数
が連続的に一直線状に配置されることはなく所定の方形
の辺の長さの中で数回または数十回に渉ってターンする
形状となっていて,工業的に連続的大量生産をするのに
不便であった。
However, in the above-mentioned conventional assembly of electronic cooling elements, since a plurality of sets of two kinds of different kinds of semiconductors are accommodated in a predetermined substantially rectangular space, a large number of them are continuously arranged in a straight line. It was not arranged and had a shape of turning several times or tens of times within the length of a predetermined rectangular side, which was inconvenient for industrial continuous mass production. .

【0004】さらに冷却素子の集合体の外形は方形で平
面的であるため,その主目的たる熱伝導体の接触部分の
形状も平面とならざるを得ず,流れをともなう液体との
熱交換に便利な円筒状のパイプや,気体との対流熱伝達
に便利な密度の高いフィン状の熱伝導体と接続するのが
容易ではなく,無理に熱伝導体を形成しようとすると熱
伝導体が大きくなり,目的の流体までの熱通過抵抗も大
きくなって,そのため電子冷却素子の集合体の両端面の
温度差が大きくなり電気入力に対するペルチエ効果の効
率が低く抑えられ勝ちであった。
Furthermore, since the outer shape of the assembly of cooling elements is rectangular and planar, the shape of the contact portion of the heat conductor, which is the main purpose of the assembly, is inevitably flat, and the heat exchange with the liquid accompanying the flow is unavoidable. It is not easy to connect with a convenient cylindrical pipe or a fin-shaped heat conductor with high density, which is convenient for convective heat transfer with gas, and if you try to forcibly form a heat conductor, the heat conductor will be large. As a result, the heat transfer resistance to the target fluid also becomes large, so the temperature difference between the two end faces of the assembly of electronic cooling elements becomes large, and the efficiency of the Peltier effect for electrical input was kept low, making it easy to win.

【0005】また1組の半導体に印加するに適切な直流
電圧は現存する半導体では0.1ボルト前後ときわめて
低いため100ないしは200ボルトといった商用電源
電圧で使用するには数千組の半導体を直列接続しなくて
はならず,従来の製造方法では容易なことではなかっ
た。
In addition, the DC voltage suitable for applying to one set of semiconductors is extremely low at about 0.1 V in the existing semiconductors, and therefore several thousand sets of semiconductors are connected in series in order to be used at a commercial power supply voltage of 100 to 200 V. They had to be connected, which was not easy with conventional manufacturing methods.

【0006】従って,電子冷却は圧縮式冷凍機などに比
べて作動部分がなくきわめて単純な装置によってフロン
冷媒や石化燃料を使用することもなく冷却効果を生じる
ことが可能であるにもかかわらず製造コストが高く,形
状的に実用性に欠ける等の理由からほとんど商業的実用
に供することができなかった。
Therefore, the electronic cooling is manufactured by an extremely simple device having no working part as compared with the compression type refrigerator and the like, although the cooling effect can be produced without using the CFC refrigerant or the petrochemical fuel. Because of its high cost and lack of practicality in terms of shape, it could hardly be put to practical use commercially.

【0007】[0007]

【課題を解決するための手段】本発明はこの点を改良す
るためになされた。特許請求の第1項で述べたようにエ
ンドレス状に長くその面が平行に向かいあう2条の銅製
など電気導体のリボンの間に直流電圧を印加するとペル
チエ効果を生ずる2種類の異種の同一寸法の半導体を交
互に用意し互いに間隙を保つようにして連続的に接合固
定し,その後に前記間隙の部分で電気導体のリボンを切
断して総ての半導体が電気的に直列に接続されるように
することによって従来のものに比べて連続的にきわめて
効率的に製造出来るようにした。
The present invention has been made to improve this point. As described in the first aspect of the patent, when two kinds of ribbons of electric conductors, such as two copper strips whose ends are long and face parallel to each other, are applied with a DC voltage, a Peltier effect is produced. The semiconductors are prepared alternately, and they are continuously bonded and fixed so as to maintain a gap between them, and then the ribbon of the electric conductor is cut at the gap so that all the semiconductors are electrically connected in series. By doing so, it has become possible to manufacture continuously and extremely efficiently as compared with the conventional one.

【0008】また特許請求の第2項で述べたように同心
円状の2本の熱伝導体の管の外管の内面と内管の外面に
電気絶縁体の膜を設け,この2本の管の間隙に前記連鎖
状に接続した電子冷却素子の集合体を1本ないしは複数
本を管の軸に平行にまたは螺旋状に収納配置し,外管の
直径を収縮させるか,内管の直径を拡張させるかの方法
で内外の管とこれによって挟まれる電子冷却素子の集合
体を従来の平面による場合より容易に緊結密着させ,電
子冷却素子の集合体を固定すると同時に液体に対して便
利な管状の熱伝導体を形成する様にした。
Further, as described in claim 2, a film of an electric insulator is provided on the inner surface of the outer tube and the outer surface of the inner tube of the two concentric heat conductor tubes. One or a plurality of electronic cooling element assemblies connected in a chain form are arranged in the gap between the two in parallel or spirally with the axis of the tube to shrink the outer tube diameter or reduce the inner tube diameter. The inner and outer tubes and the assembly of the electronic cooling elements sandwiched by the tubes can be tightly and closely attached to each other more easily than in the case of the conventional flat surface by fixing the assembly of the electronic cooling elements and at the same time a convenient tubular shape for liquid. The heat conductor is formed.

【0009】さらに前記外管の外周にフィンを設ければ
気体に対してもに密度が高くしかも熱通過抵抗が少な
く,かつ伝熱面積の大きい,軽量な熱伝導体を容易に形
成する事ができる。
Further, if fins are provided on the outer circumference of the outer tube, it is possible to easily form a lightweight heat conductor having a high density for gas, a low heat passage resistance, and a large heat transfer area. it can.

【0010】さらに特許請求の第3項に述べたように前
記内管の替わりにヒートパイプの一端を充てるかまたは
内管の内側に密着挿入すれば直接的に流体を使用せず熱
を移動させることが出来るので流体の漏れを嫌う部所に
も応用ができる。
Further, as described in claim 3, if one end of a heat pipe is filled in place of the inner pipe or the inner pipe is closely inserted, heat is transferred directly without using fluid. Since it can be applied, it can be applied to areas where fluid leakage is not desired.

【0011】さらに特許請求の第4項に述べたように2
枚の平行に置かれた熱伝導体の向かいあった面に電気絶
縁体の膜を設けて,その間に1本または複数本の前記電
子冷却素子の集合体を並べて圧着固定すれば,熱伝導に
きわめて便利な竿状の長い熱伝導体や大型の熱伝導体を
自由に容易に形成することができる。
Further, as described in the fourth claim, 2
If a film of an electrical insulator is provided on the surfaces of the heat conductors placed in parallel and facing each other, and one or a plurality of the electronic cooling elements are arranged side by side and fixed by pressure, the heat conduction can be improved. A very convenient long rod-shaped heat conductor and a large-sized heat conductor can be freely and easily formed.

【0012】さらに特許請求の第5項に述べたように前
記フィンを設けた外管の熱伝導体の伝熱部分に建物の室
内空気を送風機や風導を用いて循環流通せしめるように
し,また内管には水などの熱媒をポンプや配管を用いて
冷却塔などの冷熱源やボイラなどの温熱源に接続して循
環流通せしめるようにし,前記外管の内面と前記内管の
外面に電気絶縁体の膜を設けてこの間隙に挟んで前記電
子冷却素子の集合体を1本または複数本,軸に平行にま
たは螺旋状に配置し,内管の直径を拡張するなどの方法
で緊結固定し,直流電圧を印加してペルチエ効果を生ぜ
しめれば,建物の冷房・暖房をフロン冷媒や石化燃料を
使用せずに行なうことが出来る。
Further, as described in claim 5, the indoor air of the building is circulated through the heat transfer portion of the heat conductor of the outer tube provided with the fins by using a blower or air guide, and For the inner pipe, a heat medium such as water is connected to a cold heat source such as a cooling tower or a hot heat source such as a boiler by using a pump or piping so as to circulate and circulate, and the inner surface of the outer pipe and the outer surface of the inner pipe are connected. A film of an electrical insulator is provided, and one or more aggregates of the electronic cooling elements are arranged in this gap and arranged in parallel or spirally with respect to the axis, and the inner tube diameter is expanded by a method such as expansion. If they are fixed and a DC voltage is applied to produce the Peltier effect, the building can be cooled and heated without using CFC refrigerant or petrochemical fuel.

【0013】上に述べたようにエンドレス状に容易に電
子冷却素子の集合体を製造することが出来るので,数千
組の半導体を電気的に直列に容易に接続出来,また螺旋
状に2重管の間隙に収納するなどの方法で短い寸法のと
ころに容易に収納出来るため商用電源電圧のままで直流
に変換するだけで便利に使用出来る。
As described above, since an assembly of electronic cooling elements can be easily manufactured in an endless manner, thousands of semiconductors can be easily electrically connected in series, and a double coil can be formed in a spiral shape. Since it can be easily stored in a short size by storing it in a gap between tubes, it can be conveniently used by simply converting it to DC with the commercial power supply voltage unchanged.

【0014】また電子冷却素子が薄い電気絶縁体の膜1
枚の熱抵抗を経るのみでほとんど直接に熱を伝えたい流
体に接する伝熱体に近接しているので熱通過抵抗が極め
て小さくなり,従って電子冷却素子の両端部分の温度差
を小さく保つことができるので電気入力に対するペルチ
エ効果の効率が大きくなり実用可能の性能を得ることが
できる。
Also, the electronic cooling element is a thin film of an electric insulator 1
The heat transfer resistance is extremely small because it is close to the heat transfer body that is in direct contact with the fluid to which heat is to be transferred almost only through the thermal resistance of one sheet, and therefore the temperature difference between both ends of the electronic cooling element can be kept small. As a result, the efficiency of the Peltier effect with respect to the electric input is increased, and the performance that can be practically used can be obtained.

【0015】[0015]

【作用】本発明では電子冷却素子の集合体を2条のエン
ドレス状の銅製などの電気導体のリボンの平行に向かい
あう面の間に直流電圧を印加するとペルチエ効果を生ず
る2種類の異種の半導体を間隙を保つように交互に連続
的に配置,接合,固定し,その後に前記間隙の部分で電
気導体のリボンを交互に切断して総ての半導体が電気的
に直列に接続されるような構造としたので,たとえば数
千メートルと長い電気導体のリボンをまいた2巻のボビ
ンから前記リボンを連続的に供給し2条のリボンをほぼ
そのむかいあう面が平行になるようにして,この間に2
種類の異種の一定寸法の半導体を交互に一定間隔を保つ
ように挟みこむと同時に自動的な半田接合を行いその後
の工程でリボンを半導体の間隙部分で交互に自動的に切
断する等の方法で,高速度で自動的に連続的に大量に製
造することができる。
According to the present invention, two kinds of semiconductors of different kinds that produce a Peltier effect when a DC voltage is applied between the surfaces of the ribbons of electric conductors such as two endless copper-made electric conductors for the assembly of electronic cooling elements are provided. A structure in which all semiconductors are electrically connected in series by alternately arranging, joining, and fixing so as to maintain a gap, and then cutting ribbons of electric conductors alternately at the gap. Therefore, for example, the ribbon is continuously fed from a bobbin of two rolls on which a ribbon of an electric conductor having a length of several thousand meters is spread, and two ribbons are arranged so that their facing surfaces are parallel to each other. Two
By sandwiching different kinds of semiconductors of a certain size alternately so as to keep a constant interval, at the same time automatic solder joining is performed, and in the subsequent process the ribbon is automatically cut alternately at the gap between the semiconductors. , High-speed automatic continuous production in large quantities is possible.

【0016】このようにして連鎖的にかつエンドレス状
に成形された電子冷却素子の集合体を,直径の異なる同
心の2本の熱伝導体の円筒状の管の外管の内面と内管の
外面とに薄くて丈夫な電気絶縁体の膜を取り付け,この
2本の管の間隙に1本または複数本を管の軸に平行にま
たは内管に巻き付けるように螺旋状に挟み込むようにし
たから,その後に内管を内側から拡管機で拡管するなど
の簡単な方法で,電子冷却素子の集合体を外管と内管の
間に緊密に固定することができる。このように電子冷却
素子の集合体と冷却または加熱を行なう伝熱面の裏側と
の管には薄い電気絶縁体の膜を挟んだだけの状態で極め
て熱通過抵抗が小さい状態で緊結され,熱伝達が極めて
良好な状態となる。
The assembly of the electronic cooling elements thus formed in a chain and endless manner is formed by connecting two concentric heat conductors having different diameters with each other to the inner surface of the outer tube and the inner tube of the outer tube. Because a thin and strong electric insulator film is attached to the outer surface, and one or more tubes are inserted in the gap between the two tubes in parallel with the axis of the tube or spirally wound around the inner tube. After that, the assembly of electronic cooling elements can be tightly fixed between the outer tube and the inner tube by a simple method such as expanding the inner tube from the inside with a tube expander. In this way, the tube between the assembly of electronic cooling elements and the back side of the heat transfer surface for cooling or heating is tightly bonded with a very small heat passage resistance with only a thin electric insulator film interposed. The transmission is in very good condition.

【0017】また,電子冷却素子の集合体の周囲は内外
とも円筒状の伝熱管にて囲まれているので,内外の圧力
にも強く熱媒の流体の流路として特に液体との熱伝達に
適している。
Further, since the periphery of the assembly of the electronic cooling elements is surrounded by the cylindrical heat transfer tube both inside and outside, it is resistant to pressure inside and outside, and serves as a flow path for the fluid of the heat medium, especially for heat transfer with the liquid. Are suitable.

【0018】さらに外管の外周にフィンを設ければ外部
は気体との熱伝達にも適する形状となり,内部の電子冷
却素子の集合体に直接関係なくフィンの大きさ,ピッチ
などを決められるので最適の熱伝導体となる。内管の替
わりにこれと同一直径の円筒型のヒートパイプの一端を
用いるか,内管の内面に同じく円筒型のヒートパイプの
一端を緊密に挿入すれば,液体を介する事無く直接外部
に冷却または加熱の熱エネルギーを移動することができ
る。
Further, if fins are provided on the outer circumference of the outer tube, the outside has a shape suitable for heat transfer with gas, and the size and pitch of the fins can be determined irrespective of the assembly of the electronic cooling elements inside. It becomes an optimal heat conductor. If one end of a cylindrical heat pipe with the same diameter as this is used instead of the inner pipe, or if one end of the same cylindrical heat pipe is tightly inserted into the inner surface of the inner pipe, it will be directly cooled to the outside without passing through liquid. Alternatively, heat energy for heating can be transferred.

【0019】両面とも気体が熱伝達の対象である場合に
は在来のものと同様の平面的なものが適しているが,前
記電子冷却素子の集合体を1本または複数本を並べて用
いれば,かなり直線的に長いものから正方形の大型のも
のまで容易に成形できる。
When gas is the object of heat transfer on both sides, a planar one similar to the conventional one is suitable. However, if one or a plurality of the electronic cooling elements are arranged side by side, , Easy to mold from long straight to large square.

【0020】外周にフィンを設けた外管の内面と内管の
外面に電気絶縁体の薄い膜を取り付けこの間隙に1本ま
たは複数本の前記電子冷却素子の集合体を管の軸に平行
または螺旋状に挟み内管の直径を拡張するなどの方法で
固定した電子冷却ユニットの外側フィンの部分にはこれ
を据え付ける建物の室内の空気を送風機や風導を接続し
て循環流通するようにし,かつ内管の内部には水などの
熱媒を屋外の冷却塔やボイラーなどの温熱源にポンプや
配管を接続して循環流通するようにし,前記送風機,ポ
ンプを運転して室内に対しては空気,熱源に対しては水
を循環し前記電子冷却素子の集合体に正方向の直流電圧
を印加すればペルチエ効果によって熱は外管側から内管
側へ移動し結果として空気は冷却され,水は加熱される
こととなり,室内の熱は電子冷却ユニットの作用で空気
から水に積極的に伝えられ冷却塔から大気中に捨て去ら
れ,室内は冷房される,逆に負方向の直流電圧に切り替
えればペルチエ効果も逆作用になり,熱は内管側から外
管側へ移動し結果として空気は加熱され,水は冷却され
ることとなり,水のもつ熱エネルギーは電子冷却ユニッ
トの作用で空気に積極的に伝えられ,水温は低下し,室
内は暖房される。水温の低下は配管で接続されているボ
イラなどの温熱源を運転して補う。
A thin film of an electrical insulator is attached to the inner surface of the outer tube having fins on the outer periphery and the outer surface of the inner tube, and one or more assembly of the electronic cooling elements are arranged in this gap in parallel with the axis of the tube. The air inside the building where this is installed is circulated by connecting a blower or air guide to the outer fin of the electronic cooling unit, which is fixed by methods such as spirally sandwiching and expanding the diameter of the inner pipe. In addition, a heat medium such as water is circulated in the inner pipe by connecting a pump or piping to a heat source such as an outdoor cooling tower or a boiler, and circulating the heat medium. If water is circulated to the air and heat sources and a positive DC voltage is applied to the assembly of the electronic cooling elements, heat is transferred from the outer tube side to the inner tube side by the Peltier effect, and as a result, the air is cooled, The water will be heated, The heat is positively transferred from the air to the water by the action of the electronic cooling unit and is discarded into the atmosphere from the cooling tower, and the room is cooled. Conversely, switching to a negative DC voltage also reverses the Peltier effect. , The heat moves from the inner pipe side to the outer pipe side, and as a result, the air is heated and the water is cooled. The thermal energy of water is positively transferred to the air by the action of the electronic cooling unit, and the water temperature is It falls and the room is heated. The decrease in water temperature is compensated by operating a heat source such as a boiler connected by piping.

【0021】前述のように電子冷却素子の集合体から循
環する空気と冷却水または熱源水に熱伝導的に極めて良
好な状態で接するようにしたから,電子冷却素子の冷却
側と加熱側の温度が空気温度ないしは水温と近くなり結
果として従来のものより電子冷却素子の両端部の温度差
が小さくなりペルチエ効果の電気入力に対する効率が向
上することになり,その結果電子冷却素子による冷房・
暖房は実用に供することが出来る様になる。
As described above, since the air circulated from the assembly of the electronic cooling elements is brought into contact with the cooling water or the heat source water in an extremely good condition in terms of heat conduction, the temperature of the cooling side and the heating side of the electronic cooling element is increased. Becomes closer to the air temperature or the water temperature, resulting in a smaller temperature difference between both ends of the electronic cooling element than in the conventional one, and the efficiency of the Peltier effect for electric input is improved.
The heating can be put to practical use.

【0022】電子冷却素子を形成する1組の半導体に印
加する直流の電圧は実用的にせいぜい0.1ボルト程度
であるので100ボルトの商用電源で使用するには10
00組を,200ボルトで使用するには2000組の半
導体の素子を電気的に直列に接続する必要が有るが,前
記製造方法で製造した電子冷却素子の集合体は直線的に
容易に多数組の半導体素子を直列接続した状態で製造さ
れるので1つの集合体で容易に商用電源電圧に対応出来
る。また前記螺旋状に配置する場合はその角度を加減す
ることによって長さも自由に対応が可能となる。
The DC voltage applied to one set of semiconductors forming the electronic cooling element is about 0.1 volt practically, so that it is necessary to use it with a commercial power source of 100 volt.
To use 00 sets at 200 volts, it is necessary to electrically connect 2000 sets of semiconductor devices in series. However, the assembly of the electronic cooling devices manufactured by the manufacturing method can be linearly and easily Since these semiconductor elements are manufactured in a state of being connected in series, a single assembly can easily handle a commercial power supply voltage. Further, in the case of arranging in the spiral shape, the length can be freely adjusted by adjusting the angle.

【0023】[0023]

【実施例】以下本発明の実施例について説明する。図1
中1ならびに2は電子冷却素子3の2種類の異なった半
導体4ならびに5を交互に電気的に接続する銅製の電気
導体の幅2ミリ,厚さ0.1ミリのリボンで,図1に示
すように製造初期の過程では2条のリボン1ならびに2
はエンドレス状に数千メートルが2巻のボビン6ならび
に7に巻かれていてそこから連続的に繰りだされて製造
に充てられる。2条の前記リボン1ならびに2はまず最
初に半田ロール8ならびに9により熱せられて互いに向
きあう面は半田でコーティングされる。幅2ミリ,厚さ
2ミリ,長さ2.5ミリの正確な同一寸法に仕上げられ
て同じく端面に半田でコーティングされた2種類の異種
の半導体4ならびに5が交互に一定の方向と間隙10を
保って下方からコンベヤー11によって,リボン1なら
びに2の流れ速度と同期して2条のリボン1ならびに2
の間に挟まれる形で進み,加熱接合ロール12の間を通
過する際に加熱され,リボン1ならびに2と半導体4な
らびに5に予めコーティングされた半田によって加熱接
合用ロール11の間隔を保って正確に溶着され,次に冷
却ロール13を通過して半導体4ならびに5は2条のリ
ボン1ならびに2の間に冷却固着される。次工程の高速
カッター14ならびに15は半導体4および5の間の間
隙10の通過と同期して水平方向に移動してリボン1な
らびにリボン2を交互に切断,部分的に切削,削除す
る。16は高速カッター14の応力で製品の形状に異常
が生じるのを防止するガイド,17は完成した製品,す
なわち本発明による電子冷却素子の集合体,18は製品
17をエンドレス状に巻き取る自動巻取り機,19は完
成品を巻き取ったボビンを示す。
EXAMPLES Examples of the present invention will be described below. Figure 1
1 and 2 are ribbons having a width of 2 mm and a thickness of 0.1 mm of copper electric conductors for electrically connecting two different semiconductors 4 and 5 of the electronic cooling element 3 alternately, as shown in FIG. In the early stage of manufacturing, two ribbons 1 and 2
Is wound endlessly on two bobbins 6 and 7 of several thousand meters, from which it is continuously unwound for production. The two ribbons 1 and 2 are first heated by solder rolls 8 and 9 and the surfaces facing each other are coated with solder. Two kinds of semiconductors 4 and 5 of different types, which are finished to the exact same dimensions of width 2 mm, thickness 2 mm and length 2.5 mm, and whose end faces are also coated with solder, are alternately arranged in a constant direction and a gap 10. And the conveyor 11 from below to synchronize with the flow velocity of the ribbons 1 and 2 and the two ribbons 1 and 2
It is advanced in the form of being sandwiched between the heating and bonding rolls 12 and is heated when passing between the heating and bonding rolls 12. Then, after passing through the cooling roll 13, the semiconductors 4 and 5 are cooled and fixed between the two ribbons 1 and 2. The high speed cutters 14 and 15 in the next step move in the horizontal direction in synchronization with the passage of the gap 10 between the semiconductors 4 and 5 to alternately cut, partially cut and remove the ribbon 1 and the ribbon 2. 16 is a guide for preventing abnormalities in the shape of the product due to the stress of the high speed cutter 14, 17 is a completed product, that is, an assembly of electronic cooling elements according to the present invention, 18 is an automatic winding for winding the product 17 in an endless manner. A take-up machine 19 indicates a bobbin wound up with the finished product.

【0024】図2は完成した電子冷却素子集合体17の
連鎖的なエンドレス状の製品の1部分を詳細に示したも
の。
FIG. 2 shows in detail a part of a chained endless product of the completed electronic cooling element assembly 17.

【0025】図3は直径30ミリ厚さ1.5ミリの銅製
の外管20の内面と,直径20ミリ厚さ1ミリ同じく銅
製の内管の外面にそれぞれ厚さ0.15ミリの電気絶縁
体の膜22を施しその外管20と,内管21の間に出来
る平均3.2ミリの間隙部分23に仕上がり厚さ2.7
ミリの前記電子冷却素子の集合体17を内管21の外周
にそって螺旋状に巻いて収納し,内管21の内側から直
径が1ミリ強拡張するような拡管機を通して,前記電子
冷却素子集合体17を外管20の内面と外管21の外面
の間に緊結固定した2重管式電子冷却素子集合体24の
実施例を示す。本実施例では前記電子冷却素子集合体1
7を2本並列に用いているが,無論1本でもよい。ただ
し複数本を並列に接続収納すれば断線に対する危険率を
減らすことができる。図中25は直流電源接続用のリー
ド線を示す。
FIG. 3 shows that the inner surface of a copper outer tube 20 having a diameter of 30 mm and a thickness of 1.5 mm and the outer surface of a copper inner tube having a diameter of 20 mm and a thickness of 1 mm each have an electric insulation of 0.15 mm. A body membrane 22 is applied, and an average thickness of 3.2 mm formed between the outer tube 20 and the inner tube 21 has a finished thickness of 2.7.
The assembly 17 of the electronic cooling elements having a millimeter diameter is spirally wound along the outer circumference of the inner tube 21 to be housed, and the electronic cooling element is passed through a tube expander having a diameter of 1 mm expanded from the inside of the inner tube 21. An embodiment of a double-tube type electronic cooling element assembly 24 in which the assembly 17 is tightly fixed between the inner surface of the outer tube 20 and the outer surface of the outer tube 21 is shown. In this embodiment, the thermoelectric cooling element assembly 1 is used.
Two 7 are used in parallel, but of course one may be used. However, if multiple lines are connected and stored in parallel, the risk of disconnection can be reduced. In the figure, 25 indicates a lead wire for connecting a DC power supply.

【0026】図4は前記実施例と同様であるが電子冷却
素子集合体17を24本,管の軸に平行に収納し,電気
的に各集合体17を並列に接続し低電圧で使用出来,か
つ断線に対する信頼性の高い2重管式電子冷却素子集合
体26の実施例を示す。
FIG. 4 is similar to the above embodiment, except that 24 thermoelectric cooling element assemblies 17 are housed in parallel with the axis of the tube and can be electrically connected in parallel to be used at a low voltage. An example of the double-tube electronic cooling element assembly 26 having high reliability against disconnection will be described.

【0027】図3ならびに図4の実施例では内管21の
内部に水などの熱媒を流過させ,外管はある程度流速の
ある水槽等に浸漬するか,気流中に曝して散水を施し蒸
発の潜熱を利用して冷却を行なうなどの熱伝達の方法に
適している。
In the embodiment shown in FIGS. 3 and 4, a heat medium such as water is passed through the inside of the inner tube 21, and the outer tube is immersed in a water tank or the like having a certain flow velocity, or exposed to an air stream to apply water. It is suitable for heat transfer methods such as cooling using latent heat of vaporization.

【0028】図5は前記実施例の外管の外周にさらに1
本の直径45ミリの導管27で覆い外管20の外側の熱
伝達も内管21の内側と同様に水などの熱媒を流過させ
て使用するのに適した形状の3重管式電子冷却素子集合
体28の実施例を示す。
FIG. 5 further shows the outer circumference of the outer tube of the above embodiment.
A triple-tube type electron of a shape covered with a conduit 27 having a diameter of 45 mm and having a shape suitable for heat transfer outside the outer tube 20 as well as inside the inner tube 21 for passing through a heat medium such as water. An example of the cooling element assembly 28 is shown.

【0029】図6は図3に示す実施例の外管20の外周
に厚さ0.3ミリ,外形寸法50ミリ角のアルミ製のフ
ィン29を3ミリピッチに配置,圧入したもので,外管
20側に関しては空気をはじめとする気体との熱伝達を
目的とした単式フィン付き2重管式電子冷却素子集合体
30の実施例を示す。
FIG. 6 shows an outer tube 20 of the embodiment shown in FIG. 3 in which aluminum fins 29 having a thickness of 0.3 mm and an outer dimension of 50 mm are arranged at a 3 mm pitch and press-fitted. Regarding the 20 side, an example of a double-tube electronic cooling element assembly 30 with a single fin for the purpose of heat transfer with gas including air will be shown.

【0030】図7は図3に示す実施例の2重管式電子冷
却素子集合体24の複数本を纏めて,60ミリピッチに
外管の外径に合致した孔を開口した厚さ0.3ミリ,幅
50ミリのアルミ製フィン31を3ミリピッチで挿着し
たもので,図6に示す実施例に比べて規模の大きい熱伝
達に適した集合式フィン何き2重管式電子冷却素子集合
体32の実施例を示す。複数本の内管21は相互にU型
ベンド33により1つの系統の冷却水流路34に纏めら
れている。
FIG. 7 shows a plurality of the double-tube type electronic cooling element assemblies 24 of the embodiment shown in FIG. 3 which are combined to form a hole having a thickness of 0.3 mm in which a hole corresponding to the outer diameter of the outer tube is opened at a pitch of 60 mm. An aluminum fin 31 having a width of 50 mm and a width of 50 mm is inserted and attached at a pitch of 3 mm, and is an assembly type finless double tube type electronic cooling element assembly suitable for heat transfer of a larger scale than the embodiment shown in FIG. An example of body 32 is shown. The plurality of inner pipes 21 are combined by a U-shaped bend 33 in a cooling water passage 34 of one system.

【0031】図8は図7に示す集合式フィン付き2重管
式電子冷却素子集合体32に隣接するかまたはフィンを
連続して,気体の流路に関して直列方向に一般のフィン
チューブ熱交換器35を併設し前記フィンチューブ熱交
換器35のチューブ36の流路入口37と同じく流路出
口38とを前記集合式フィン付き2重管式電子冷却素子
集合体32の内管21をU型ベンド33によって纏めた
流路34の入口39と同じく出口40に分岐管継手41
ならびに3方切替弁42を設けて連結して1つの循環式
または一過式冷却水系統43の入口44ならびに出口4
5に纏め,この冷却水系統43の冷却水温度,流量がフ
ィンチューブ熱交換器35のみを使用して目的の冷却を
必要とする気体の冷却に充分な場合には3方切替弁42
をフィンチューブ熱交換器35側に作動させて冷却水を
フィンチューブ熱交換器35に流通させて目的の気体を
冷却し,前記冷却水系統43の冷却水温度,流量がフィ
ンチューブ熱交換器35のみを使用して目的の気体の冷
却に不充分な場合には3方切替弁42を集合式フィン付
き電子冷却素子集合体32の内管21をU型ベンド33
によって纏められた冷却水系統34の側に切り替え作動
させて,冷却水を前記集合式フィン付き電子冷却素子集
合体32の内管21内に流通させて,かつ電子冷却素子
に直流電圧を正方向に印加してフィン31によって気体
を冷却し,冷冷却による発生熱を冷却水に放熱する様に
して,必要に応じて電子冷却素子を使用する事とし,冷
却水の冷却能力が充分な場合はこれを有効に利用出来る
様にしたフィンチューブ熱交換器併設形集合式フィン付
き2重管式電子冷却素子集合体46の実施例を示す。
FIG. 8 is a general fin-tube heat exchanger which is adjacent to the double-tube type electronic cooling element assembly 32 with collective fins shown in FIG. 35, and the flow passage inlet 37 and the flow passage outlet 38 of the tube 36 of the fin-tube heat exchanger 35 are connected to the inner pipe 21 of the double-tube type electronic cooling element assembly 32 with the collective fin and the U-shaped bend. A branch pipe joint 41 is provided at the outlet 40 as well as the inlet 39 of the flow path 34 gathered by
In addition, an inlet 44 and an outlet 4 of one circulation type or one-pass type cooling water system 43 are provided by connecting the three-way switching valve 42.
When the cooling water temperature and flow rate of the cooling water system 43 are sufficient to cool the gas requiring the desired cooling using only the fin tube heat exchanger 35, the three-way switching valve 42
To the fin tube heat exchanger 35 side to allow the cooling water to flow through the fin tube heat exchanger 35 to cool the target gas, and the cooling water temperature and the flow rate of the cooling water system 43 are set to the fin tube heat exchanger 35. If it is not sufficient to cool the target gas by using only the three-way switching valve 42, the inner tube 21 of the collective finned electronic cooling element assembly 32 is connected to the U-shaped bend 33.
Switching operation is performed to the side of the cooling water system 34 summarized by the above, the cooling water is circulated in the inner pipe 21 of the collective finned electronic cooling element assembly 32, and a direct current voltage is applied to the electronic cooling element in the positive direction. When the cooling capacity of the cooling water is sufficient, the electronic cooling element is used as necessary by cooling the gas by the fins 31 to radiate the heat generated by the cooling and cooling to the cooling water. An embodiment of a double-tube electronic cooling element assembly 46 with a fin-type tube heat exchanger and a collective-type fin, which can effectively utilize this, will be shown.

【0032】図9は図7に示す集合式フィン付き2重管
式電子冷却素子集合体32を1台または複数台あるいは
図8に示すフィンチューブ熱交換器併設形集合式フィン
付き2重管式電子冷却素子集合体46を1台または複数
台あるいはこれらを混在させて1つの冷却水系統配管4
7を使用して冷却水循環ポンプ48と冷却塔49に,ま
た暖房の必要のある場合はボイラ50に連絡し,配管4
7の中の水を循環させるようにし,これを設置する建物
51の室内52の空気をダクト53を使用して前記集合
式フィン付き2重管式電子冷却素子集合体32やフィン
チューブ熱交換器併設形集合式フィン付き2重管式電子
冷却素子集合体46のフィン31に送風機54を利用し
て循環流通するようにし,必要に応じて冷房または暖房
を行なう事が出来るようにした冷暖房装置55の実施例
を示している。
FIG. 9 shows one or a plurality of double-tube type electronic cooling element assemblies 32 with collective fins shown in FIG. 7 or a fin-tube heat exchanger combined type double-tube system with fins shown in FIG. One or a plurality of electronic cooling element aggregates 46 or a mixture of these, and one cooling water system pipe 4
7 to connect to the cooling water circulation pump 48 and the cooling tower 49, and to the boiler 50 when heating is required.
7 in which water in the inside is circulated, and air in a room 52 of a building 51 in which the water is circulated is formed by using a duct 53, the double-tube electronic cooling element assembly 32 with fins and fin-tube heat exchanger. A cooling and heating device 55 which is configured to circulate and circulate through the fins 31 of the double-tube type electronic cooling element assembly 46 with a side-by-side assembly type fin by using a blower 54 so that cooling or heating can be performed as necessary. The example of is shown.

【0033】[0033]

【発明の効果】本発明は図1の実施例に示すごとく電子
冷却素子集合体17を構成し製造したから連続的にエン
ドレス状の製品を高速度で安く工業的に生産出来る様に
なり,従来コストが高いために実用に供されなかった電
子冷却を実用化することが出来るようになった。
According to the present invention, since the electronic cooling element assembly 17 is constructed and manufactured as shown in the embodiment of FIG. 1, continuous endless products can be industrially produced at a high speed at a low cost. Due to the high cost, it has become possible to put into practical use electronic cooling that has not been put to practical use.

【0034】さらに本発明では前記説明のように連続的
にエンドレス状の電子冷却素子集合体17を構成したか
ら図3め実施例に示すように同心の2重管の間隙に挟ん
で容易にコンパクト・軽量かつ伝熱性能の高い熱伝導体
をもつ2重管式電子冷却素子集合体24や図4の実施例
に示す断線に対して信頼性の高い2重管式電子冷却素子
集合体26を提供することが出来る様になり,これによ
ってコストの安い設備が設置可能になるばかりでなく,
冷却または加熱しようとする流体と電子冷却素子の両端
の温度差を小さくしこれによって電子冷却の冷却効率を
向上して,運転コストの面からも大きく実用性を向上す
る結果となった。
Further, according to the present invention, since the endless thermoelectric cooling element assembly 17 is continuously constructed as described above, it is easily compacted by being sandwiched between the concentric double tubes as shown in FIG. A double tube type electronic cooling element assembly 24 having a light conductor having high heat transfer performance and a double tube type electronic cooling element assembly 26 having high reliability against disconnection shown in the embodiment of FIG. 4 are provided. We will be able to provide the equipment, which will not only allow the installation of low-cost equipment, but also
The temperature difference between the fluid to be cooled or heated and the both ends of the electronic cooling element is reduced, which improves the cooling efficiency of the electronic cooling and greatly improves the practicality in terms of operating cost.

【0035】さらに本発明では図5に示す3重管式電子
冷却素子集合体によって電子冷却による液体から液体へ
の冷却・加熱の熱移動を容易にコンパクトに高い作動効
率を以て実用的に実施することが出来るようになった。
Further, in the present invention, the heat transfer of cooling / heating from liquid to liquid by electronic cooling can be carried out easily and compactly and with high operating efficiency by the triple tube type electronic cooling element assembly shown in FIG. Is now possible.

【0036】さらに本発明では図6,図7,図8,の実
施例に示すように2重管式電子冷却素子集合体24にフ
ィンを付して単式フィン付き2重管式電子冷却素子集合
体30,集合式フィン付き2重管式電子冷却素子集合体
32,フィンチューブ式熱交換器併設形集合式フィン付
き2重管式電子冷却素子集合体46を提供することがで
きるので電子冷却による気体から液体へ,または液体か
ら気体への熱移動を容易にコンパクトに高い作動効率を
以て実用的に実施する事が出来るようになった。
Further, in the present invention, as shown in the embodiments of FIGS. 6, 7 and 8, the double tube type electronic cooling element assembly 24 is provided with fins to form a single fin type double tube type electronic cooling element assembly. By providing the body 30, the double-tube electronic cooling element assembly 32 with a collective fin, and the fin-tube double-tube electronic cooling element assembly 46 with a fin-tube heat exchanger, it is possible to provide by electronic cooling. Heat transfer from gas to liquid or from liquid to gas can now be performed easily, compactly, and with high operating efficiency.

【0037】さらに本発明では図9の実施例に示すよう
に冷却塔,ボイラ,ポンプ,送風機配管,ダクトなどを
併設して前記集合式フィン付き2重管式電子冷却素子集
合体32やフィンチューブ熱交換器併設形集合式フィン
付き2重管式電子冷却素子集合体46によって前記冷暖
房設備55を構成したから電子冷却による冷房・暖房を
実用的なコストで,高い作動効率で実施出来るようにな
った。
Further, in the present invention, as shown in the embodiment of FIG. 9, a cooling pipe, a boiler, a pump, a blower pipe, a duct, etc. are provided side by side to form the double tube type electronic cooling element assembly 32 with fins and the fin tube. Since the cooling / heating equipment 55 is constituted by the double-tube type electronic cooling element assembly 46 with a collective fin with a heat exchanger, cooling / heating by electronic cooling can be carried out at a practical cost and with high operating efficiency. It was

【0038】このように本発明によって従来産業的目的
では実用出来なかった電子冷凍をコストの面からも,熱
工学的な面からも,運転コストの面からも改善し実用出
来る様にし,工業的冷却装置や建築設備としての冷暖房
設備に関し昨今,地球環境を守るために問題になってい
るフロンの解決策として大きく貢献することができる。
As described above, according to the present invention, the electronic refrigeration, which could not be practically used for the conventional industrial purpose, can be practically improved in terms of cost, thermal engineering, and operation cost. With regard to cooling and heating equipment as cooling equipment and building equipment, it can greatly contribute to the solution of CFCs that have become a problem in recent years to protect the global environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によって電子冷却素子集合体を製造す
る,製造工程を示す説明図である。
FIG. 1 is an explanatory view showing a manufacturing process for manufacturing an electronic cooling element assembly according to the present invention.

【図2】本発明によって製造された電子冷却素子集合体
の外観図である。
FIG. 2 is an external view of an electronic cooling element assembly manufactured according to the present invention.

【図3】本発明による2重管式電子冷却素子集合体の外
観図である。
FIG. 3 is an external view of a double-tube electronic cooling element assembly according to the present invention.

【図4】本発明による断線に対する信頼性の高い2重管
式電子冷却素子集合体の外観図である。
FIG. 4 is an external view of a double-tube thermoelectric cooler assembly having high reliability against disconnection according to the present invention.

【図5】本発明による3重管式電子冷却素子集合体の外
観図である。
FIG. 5 is an external view of a triple tube type electronic cooling element assembly according to the present invention.

【図6】本発明による単式フィン付き2重管式電子冷却
素子集合体の外観図である。
FIG. 6 is an external view of a double-tube electronic cooling element assembly with a single fin according to the present invention.

【図7】本発明による集合式フィン付き2重管式電子冷
却素子集合体の外観図である。
FIG. 7 is an external view of a double-tube electronic cooling element assembly with a fin assembly according to the present invention.

【図8】本発明によるフィンチューブ熱交換器併設形集
合式フィン付き2重管式電子冷却素子集合体の外観図で
ある。
FIG. 8 is an external view of a double-tube electronic cooling element assembly with a fin-tube heat exchanger and a collective fin according to the present invention.

【図9】本発明による集合式フィン付き2重管式電子冷
却素子集合体ならびにフィンチューブ熱交換器併設形集
合式フィン付き2重管式電子冷却素子集合体を用いた冷
暖房装置の系統図である。
FIG. 9 is a system diagram of a cooling and heating apparatus using the double-tube electronic cooling element assembly with collective fins and the double-tube electronic cooling element assembly with combined fin-tube heat exchanger according to the present invention. is there.

【符号の説明】[Explanation of symbols]

1.電気導体のリボン 2.電気導体のリボン 3.電子冷却素子 4.電子冷却素子を構成する2種類の異種の半導体のう
ちの1 5.電子冷却素子を構成する2種類の異種の半導体のう
ちの他の1 6.リボン繰りだしボビン 7.リボン繰りだしボビン 8.半田ロール 9.半田ロール 10.半導体同志の間隙 11.コンベヤー 12.加熱接合ロール 13.冷却ロール 14.高速カッター 15.高速カッター 16.ガイド 17.電子冷却素子集合体の完成品 18.自動巻取機 19.完成品ボビン 20.2重管式電子冷却素子集合体の外管 21.2重管式電子冷却素子集合体の内管 22.電気絶縁体の膜 23.2重管の間隙部分 24.2重管式電子冷却素子集合体 25.直流電源接続用のリード線 26.断線に対して信頼性の高い2重管式電子冷却素子
集合体 27.導管 28.3重管式電子冷却素子集合体 29.アルミ製のフィン 30.単式フィン付き2重管式電子冷却素子集合体 31.アルミ製のフィン 32.集合式フィン付き2重管式電子冷却素子集合体 33.U形ベンド 34.内管をU形ベンドによって纏めた流路 35.フィンチューブ熱交換器 36.フィンチューブ熱交換器のチューブ 37.フィンチューブ熱交換器のチューブ流路入口 38.フィンチューブ熱交換器のチューブ流路出口 39.内管をU形ベンドによって纏めた流路の入口 40.内管をU形ベンドによって纏めた流路の出口 41.分岐管継手 42.3方切替弁 43.循環式または一過式冷却水系統 44.循環式または一過式冷却水系統の入口 45.循環式または一過式冷却水系統の出口 46.フィンチューブ熱交換器併設形集合フィン式2重
管式電子冷却素子集合体 47.冷却水系統配管 48.冷却水循環ポンプ 49.冷却塔 50.ボイラ 51.建物 52.室内 53.ダクト 54.送風機 55.電子冷却素子集合体を使った冷暖房装置
1. Electric conductor ribbon 2. Electrical conductor ribbon 3. Electronic cooling element 4. 4. One of the two types of semiconductors of different kinds that constitute the electronic cooling element. Others of two kinds of different kinds of semiconductors constituting the electronic cooling element 16. Ribbon feeding bobbin 7. Ribbon feeding bobbin 8. Solder roll 9. Solder roll 10. Gap between semiconductors 11. Conveyor 12. Heat bonding roll 13. Cooling roll 14. High speed cutter 15. High speed cutter 16. Guide 17. Completed electronic cooling element assembly 18. Automatic winder 19. Finished product bobbin 20.2 Outer tube of double tube type electronic cooling element assembly 21.2 Inner tube of double tube type electronic cooling element assembly 22. Film of electrical insulator 23.2 Gap portion of double tube 24.2 Double tube type electronic cooling element assembly 25. Lead wire for connecting DC power supply 26. Double tube type electronic cooling element assembly with high reliability against disconnection 27. Conduit 28.3 Double tube type electronic cooling element assembly 29. Aluminum fin 30. Double tube type electronic cooling element assembly with a single fin 31. Aluminum fin 32. Double tube type electronic cooling element assembly with collective fin 33. U-shaped bend 34. Flow path in which inner pipe is gathered by U-shaped bend 35. Fin tube heat exchanger 36. Fin tube heat exchanger tube 37. Tube flow path inlet of fin tube heat exchanger 38. Fin tube heat exchanger tube flow path outlet 39. Inlet of the flow path in which the inner pipe is grouped by a U-shaped bend 40. 41. Outlet of the flow path in which the inner pipe is put together by a U-shaped bend 41. Branch pipe joint 42.3 3-way switching valve 43. Circulating or transient cooling water system 44. Circulating or transient cooling water system inlet 45. Circulation or transient cooling water system outlet 46. Combined fin type double tube type electronic cooling element assembly with fin tube heat exchanger 47. Cooling water system piping 48. Cooling water circulation pump 49. Cooling tower 50. Boiler 51. Building 52. Indoor 53. Duct 54. Blower 55. Air-conditioning system using electronic cooling element assembly

Claims (5)

【特許請求の範囲】[Claims] 【請求項 1】エンドレス状に長く双方の面が平行に向
かいあう電気導体の2条のリボンの間に直流電圧を印加
するとペルチエ効果を生じる2種類の異種の半導体を交
互に間隙を保って配置,接合した後,前記間隙部分にお
いて,前記2条のリボンを交互に切断して,総ての半導
体が電気的に直列に接合される様にした電子冷却素子の
製造方法によって製造されたことを特色とするエンドレ
ス状の電子冷却素子の集合体。
1. Two kinds of semiconductors of different kinds which produce a Peltier effect when a DC voltage is applied between two ribbons of electric conductors which endlessly face each other and face each other in parallel are alternately arranged with a gap, After joining, the two ribbons are alternately cut in the gap portion, and all the semiconductors are electrically joined in series. An assembly of endless thermoelectric cooling elements.
【請求項 2】直径の異なる同心円状の2本の外側の熱
伝導体の管の内面と内側の熱伝導体の管の外面に電気絶
縁体の膜を設け,前記2本の管の間隙に挟んで外側の管
を収縮させるか,内側の管を拡管するなどの方法で1本
または複数本を管の軸にほぼ平行に,または螺旋状に配
置し固定した第1項の電子冷却素子の集合体。
2. An electrically insulating film is provided on the inner surface of two outer heat-conducting tubes of different concentric circles having different diameters and the outer surface of the inner heat-conducting tube, and a gap between the two tubes is provided. Of the electronic cooling element of the first paragraph, one or more tubes are arranged substantially parallel to the axis of the tube or fixed by arranging the tube outside and contracting the tube outside or expanding the tube inside. Aggregation.
【請求項 3】円筒状のヒートパイプの1端とこれより
直径の大きい同心円状に置かれた熱伝導体の管の内面と
前記ヒートパイプの外面に電気絶縁体の膜を設け,この
間隙に挟んで前記外側の管を収縮させる等の方法で1本
または複数本を管の軸に平行に,または螺旋状に配置し
固定した第1項の電子冷却素子の集合体。
3. An electrically insulating film is provided on one end of a cylindrical heat pipe and on the inner surface of a heat conductor tube placed concentrically with a diameter larger than that and on the outer surface of the heat pipe, and in this gap. The assembly of the electronic cooling elements according to the first aspect, wherein one or more tubes are arranged and fixed in parallel or spirally to the axis of the tube by a method of sandwiching and contracting the outer tube.
【請求項 4】2枚の平行に置かれた熱伝導体の向かい
あった面に電気絶縁体の膜を設け,前記2枚の間隙に挟
んで1本または複数本を並べて圧着固定した第1項の電
子冷却素子の集合体。
4. A first electrically insulating film is provided on opposite surfaces of two heat conductors placed in parallel, and one or a plurality of films are arranged and sandwiched between the two sheets by pressure bonding. An assembly of electronic cooling elements of the item.
【請求項 5】直径の異なる同心円状の2本の外側のフ
ィンを取り付けてこのフィンに接して建物内部の空気を
循環流通せしめるようにした熱伝導体の管の内面と中心
部に水等の熱媒を冷却熱源または加熱熱源あるいは双方
の間に循環流通せしめるようにした熱伝導体の内側の管
の外面に電気絶縁体の膜を設け,この間隙に挟んで外側
の管を収縮させるか,内側の管を拡管する等の方法で1
本または複数本を管の軸にほぼ平行に,または螺旋状に
配置し固定した第1項の電子冷却素子の集合体。
5. A heat conductor tube having two concentric outer fins having different diameters attached to the fins so as to circulate and circulate the air inside the building. A film of electrical insulator is provided on the outer surface of the inner tube of the heat conductor that allows the heat medium to circulate and flow between the cooling heat source and the heating heat source, or both, and the outer tube is contracted by sandwiching it in this gap, 1 by expanding the inner pipe
An assembly of electronic cooling elements according to the first item, wherein a plurality or a plurality of tubes are arranged and fixed substantially parallel to the axis of the tube or in a spiral shape.
JP5153063A 1993-05-19 1993-05-19 Assembly for electronic cooling element Pending JPH06331160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5153063A JPH06331160A (en) 1993-05-19 1993-05-19 Assembly for electronic cooling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5153063A JPH06331160A (en) 1993-05-19 1993-05-19 Assembly for electronic cooling element

Publications (1)

Publication Number Publication Date
JPH06331160A true JPH06331160A (en) 1994-11-29

Family

ID=15554177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5153063A Pending JPH06331160A (en) 1993-05-19 1993-05-19 Assembly for electronic cooling element

Country Status (1)

Country Link
JP (1) JPH06331160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255813A (en) * 2006-03-24 2007-10-04 Takasago Thermal Eng Co Ltd System for preventing deterioration of package air conditioner performance using solar battery
CN113816067A (en) * 2021-08-18 2021-12-21 蚌埠学院 Automatic device of continuous conveying meat piece of machining

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255813A (en) * 2006-03-24 2007-10-04 Takasago Thermal Eng Co Ltd System for preventing deterioration of package air conditioner performance using solar battery
CN113816067A (en) * 2021-08-18 2021-12-21 蚌埠学院 Automatic device of continuous conveying meat piece of machining
CN113816067B (en) * 2021-08-18 2022-12-20 蚌埠学院 Device for automatically machining and continuously conveying meat blocks

Similar Documents

Publication Publication Date Title
US3196620A (en) Thermoelectric cooling system
US5860472A (en) Fluid transmissive apparatus for heat transfer
US5561985A (en) Heat pump apparatus including earth tap heat exchanger
US6742576B2 (en) Heat exchanger barrier ribbon with polymeric tubes
US4499329A (en) Thermoelectric installation
US4523637A (en) System for the refrigeration of liquids and/or gases
US5884691A (en) Fluid transmissive moderated flow resistance heat transfer unit
US7546867B2 (en) Spirally wound, layered tube heat exchanger
JP2003156294A (en) Duplex tube heat exchanger, its manufacturing method and secondary refrigerant type air conditioner using duplex tube heat exchanger
US4306426A (en) Thermoelectric heat exchanger assembly for transferring heat between a gas and a second fluid
CN1186206A (en) Improved water heater
CN1322300C (en) Heat exchanger
US20060108107A1 (en) Wound layered tube heat exchanger
JPH07202275A (en) Aggregate of electronic cooling element
CN105091638A (en) Integrated coiled type heat exchanger
US20110209857A1 (en) Wound Layered Tube Heat Exchanger
GB2146111A (en) Heat exchanger duct with heat exchange wiring
JPH06331160A (en) Assembly for electronic cooling element
JP3256634B2 (en) Heat exchanger
JP2006189249A (en) Double pipe heat exchanger
US4253225A (en) Method of manufacturing a heat exchanger element
CN213238538U (en) Microchannel heat exchanger and contain its battery box
US3789494A (en) Method of spirally winding strip to produce pinned units
US5184675A (en) Thermal energy transfer apparatus and method of making same
JPH03194370A (en) Heat exchanger for air conditioner