JPH06330366A - Electrode for electrolysis - Google Patents

Electrode for electrolysis

Info

Publication number
JPH06330366A
JPH06330366A JP5118348A JP11834893A JPH06330366A JP H06330366 A JPH06330366 A JP H06330366A JP 5118348 A JP5118348 A JP 5118348A JP 11834893 A JP11834893 A JP 11834893A JP H06330366 A JPH06330366 A JP H06330366A
Authority
JP
Japan
Prior art keywords
electrode
base body
coating
powder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5118348A
Other languages
Japanese (ja)
Inventor
Hideji Nakamatsu
秀司 中松
Takahiro Ashida
高弘 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP5118348A priority Critical patent/JPH06330366A/en
Priority to ITVA940014A priority patent/IT1274183B/en
Priority to DE4417627A priority patent/DE4417627A1/en
Publication of JPH06330366A publication Critical patent/JPH06330366A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To prevent the corrosion of an electrode base body and the peeling of catalytic coating film therefrom and to facilitate the recoating thereon by forming a water repellent synthetic resin layer, having the powder of an electrode catalytic material dispersed, on the electrode base body used under a corrosive environment. CONSTITUTION:A layer of a fluororesin as the water repellent synthetic resin made by dispersing the powder mainly containing iridium oxide as the electrode catalytic material is formed on the electrode base body such as titanium used for the electrolysis of salt water. In this case, the mixing ratio of the iridium oxide powder with the fluororesin is preferably (1:0.6)-(1:0.2) by weight ratio and the average particle diameter of the electrode catalytic material is preferably 1-10mum. It is preferable to enlarge surface area or roughen the surface by previously blast treating or etching, etc., of the surface of the base body to increase the adhesivility of the base body to the electrode coating film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素発生を伴う電解工
程、特に高濃度硫酸やフッ素等のハロゲンの存在下な
ど、チタンが腐食する腐食環境下で陽極として使用可能
な電極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic process involving the generation of oxygen, and more particularly to a method for producing an electrode which can be used as an anode in a corrosive environment in which titanium corrodes, such as in the presence of highly concentrated sulfuric acid or halogen such as fluorine. Is.

【0002】[0002]

【従来の技術】食塩水の電気分解に代表される工業的な
電気分解では、チタン等の薄膜形成性金属からなる電極
基体上に白金族の金属酸化物を含有した触媒被覆を形成
した不溶性金属電極が広く用いられている。このような
不溶性金属電極は塩素発生用の陽極として耐食性が大き
く長期にわたり安定して使用することができる。また、
硫酸酸性浴あるいは硫酸塩類の水溶液中での電気分解の
ように酸素が発生する電極反応に使用する陽極にも、最
近、貴金属触媒被覆チタン電極を使用することが行われ
ている。とくに、酸化イリジウムを含有する触媒被覆
は、消耗量が極めて少なく白金族の金属酸化物の中で最
も特性が優れており、チタン基体上にIrO2 とTa2
5 複合酸化物を熱分解法で被覆した電極が現在、開発
の中心となっている。
2. Description of the Related Art In an industrial electrolysis typified by electrolysis of saline solution, an insoluble metal formed by forming a catalyst coating containing a platinum group metal oxide on an electrode substrate made of a thin film-forming metal such as titanium. Electrodes are widely used. Such an insoluble metal electrode has large corrosion resistance and can be stably used for a long period of time as an anode for generating chlorine. Also,
Recently, a titanium electrode coated with a noble metal catalyst has been used for an anode used for an electrode reaction in which oxygen is generated such as electrolysis in a sulfuric acid acidic bath or an aqueous solution of sulfates. In particular, the catalyst coating containing iridium oxide has the least amount of consumption and is the most excellent among the platinum group metal oxides. IrO 2 and Ta 2 are deposited on the titanium substrate.
Electrodes coated with a thermal decomposition method of O 5 composite oxide are currently the center of development.

【0003】しかしこれらの電極は高濃度硫酸中では短
時間で電解不能となり、また溶存酸素の存在しない硫酸
中では浸漬しているのみで触媒被覆が脱落するという問
題がある。これは、電極に形成した触媒被覆とチタン基
体との接合部の損傷に起因するものである。この損傷の
主な原因は触媒被覆に生じたピンホール等の欠陥からの
電解液の浸入による被覆材−チタン接合部でのチタン基
体が腐食して触媒被覆が剥離するものと考えられてい
る。また、ケイフッ化物を含有するクロムめっき浴のよ
うなフッ素イオン含有浴、あるいはヨウ素イオン等の塩
素以外のハロゲンの存在下でもチタンが腐食し、電極が
早期に損傷を受けるという問題点もある。
However, there is a problem that these electrodes cannot be electrolyzed in high-concentration sulfuric acid in a short time, and the catalyst coating falls off only by being immersed in sulfuric acid containing no dissolved oxygen. This is due to damage to the joint between the catalyst coating formed on the electrode and the titanium substrate. It is considered that the main cause of this damage is that the titanium substrate at the coating material-titanium joint portion is corroded and the catalyst coating is peeled off due to the infiltration of the electrolytic solution from the defects such as pinholes generated in the catalyst coating. Further, there is also a problem that titanium is corroded even in the presence of a fluoride ion-containing bath such as a chromium plating bath containing a silicofluoride, or a halogen other than chlorine such as iodide ion, and the electrode is damaged early.

【0004】一方、酸素発生用の陽極として、電極基体
上に触媒被覆を形成する方法に代えて、耐蝕性に富む熱
可塑性樹脂と触媒物質を一体に形成したものも知られて
いる。例えば、粉末二酸化鉛を熱可塑性樹脂で被覆し、
これを熱間圧縮して成型した電極が特公昭39−297
48号公報に記載されている。この電極では電極基体お
よび表面の導電性を十分に確保するためには、二酸化鉛
含有量を多くする必要があるが、二酸化鉛の含有量が増
加すると電極の機械的強度が低下するという問題があ
る。また、導電性粒子で熱可塑性樹脂粒子表面を被覆し
た後に熱間加圧成型した電極が特公平3−6995号公
報等に記載されている。この電極では導電性粒子による
網目構造が形成されるため、電極の電気抵抗が大きく導
電性が不均一になる可能性があるとともに、導電性粒子
が電極中に多数存在するためにこれらが電極強度の低下
をもたらす。さらにこれらの電極は二酸化鉛等を用いて
いるために耐食性には優れているが、二酸化鉛は酸素過
電圧が大きいので酸素発生用電極としては適当でない。
On the other hand, as an anode for oxygen generation, there is also known one in which a thermoplastic resin having a high corrosion resistance and a catalyst substance are integrally formed instead of the method of forming a catalyst coating on an electrode substrate. For example, coating powdered lead dioxide with a thermoplastic resin,
An electrode formed by hot pressing this is Japanese Patent Publication No. 39-297.
No. 48 publication. In this electrode, it is necessary to increase the lead dioxide content in order to sufficiently secure the conductivity of the electrode substrate and the surface, but there is a problem that the mechanical strength of the electrode decreases when the lead dioxide content increases. is there. Further, an electrode formed by coating the surface of a thermoplastic resin particle with conductive particles and then hot-pressing is described in Japanese Patent Publication No. 3-6995. Since a mesh structure is formed by the conductive particles at this electrode, the electric resistance of the electrode may be large and the conductivity may be non-uniform. Bring about a decline. Further, these electrodes are excellent in corrosion resistance because they use lead dioxide or the like, but lead dioxide is not suitable as an electrode for oxygen generation because of large oxygen overvoltage.

【0005】また、導電性粒子としてイリジウム、ルテ
ニウム等の白金族金属でチタン等の薄膜形成性金属の酸
化物粒子表面を被覆した粉末を用いた樹脂成型電極が特
公平3−6231号公報に記載されているが、上記の電
極と同様の電気的、機械的な問題点を有する。さらに、
これらの電極はいずれも熱間加圧成型により作製される
ため、成型時に導電性粒子及び樹脂基体にクラック等の
機械的損傷を与える可能性がある。
Further, a resin-molded electrode using powder in which the surface of oxide particles of a thin film-forming metal such as titanium is coated with platinum group metal such as iridium or ruthenium as conductive particles is described in Japanese Patent Publication No. 3-6231. However, it has the same electrical and mechanical problems as the above electrodes. further,
Since all of these electrodes are manufactured by hot pressure molding, there is a possibility that mechanical damage such as cracks may be given to the conductive particles and the resin substrate during molding.

【0006】[0006]

【発明が解決しようとする課題】本発明は、チタン等の
薄膜形成性金属を電極基体とした電極において、電極基
体が腐食する環境下での電極基体の腐食を防止するとと
もに、触媒被覆の剥離を防止した電極を提供することを
課題とするとともに、劣化した触媒被覆の再被覆が容易
な酸素発生反応用の陽極として使用可能な電極を提供す
ることを課題とするものである。
DISCLOSURE OF THE INVENTION The present invention, in an electrode using a thin film-forming metal such as titanium as an electrode substrate, prevents corrosion of the electrode substrate in an environment in which the electrode substrate is corroded, and peels off the catalyst coating. It is an object of the present invention to provide an electrode that prevents the above-mentioned problems, and an object of the present invention is to provide an electrode that can be used as an anode for an oxygen generation reaction in which the deteriorated catalyst coating can be easily recoated.

【0007】[0007]

【課題を解決するための手段】本発明は、チタン等の薄
膜形成性金属基体上に、電極触媒物質の微粒子を分散し
た撥水性高分子樹脂層を形成した酸素発生用電極製造方
法である。すなわち、本発明は従来のチタン等を基体と
した酸素発生用電極の損傷原因にチタン基体の腐食、不
動態化などによって触媒被覆と基体との接合部で基体が
損傷し、その結果通電の不能箇所の出現、電極基体から
の触媒被覆の剥がれ等が起こっており、その主な原因
が、触媒被覆に生じたピンホール等の欠陥部分からの電
解液の侵入によるものである点に着目し、触媒被覆を電
解液が不透性としチタン等の基体の損傷を防ぐものであ
る。
The present invention is a method for producing an electrode for oxygen generation in which a water-repellent polymer resin layer in which fine particles of an electrode catalyst substance are dispersed is formed on a thin film-forming metal substrate such as titanium. That is, according to the present invention, the conventional oxygen-generating electrode based on titanium or the like is damaged, and the base is damaged at the joint between the catalyst coating and the base due to corrosion or passivation of the titanium base, resulting in the inability to energize. Focusing on the appearance of locations, peeling of the catalyst coating from the electrode substrate, etc., the main reason for this is that the electrolytic solution penetrates from defective portions such as pinholes generated in the catalyst coating, The catalyst coating is made impermeable to the electrolytic solution to prevent damage to the substrate such as titanium.

【0008】本発明の電極に使用する電極基体には、陽
極として使用した場合に、酸化性の使用環境に対する耐
蝕性の点からチタン等の薄膜形成性金属およびその合金
が好ましく、形状としては板状のものが望ましい。この
基体の電極被膜との密着性を強化するため、ブラスト、
エッチング処理等を行い、表面積拡大、表面粗化を行っ
たものを使用することが好ましい。
The electrode substrate used in the electrode of the present invention is preferably a thin film-forming metal such as titanium or its alloy from the viewpoint of corrosion resistance against oxidizing use environment when used as an anode, and has a plate shape. The shape is desirable. In order to enhance the adhesion of this substrate to the electrode coating, blasting,
It is preferable to use one that has been subjected to etching treatment or the like to increase its surface area and roughen the surface.

【0009】一方、電極基体を被覆する電極触媒には、
硫酸等を含む電解液中での酸素発生特性が優れた酸化イ
リジウムの微粒子を用いることが好ましい。酸化イリジ
ウムの微粒子は、塩化イリジウム水溶液の酸素含有雰囲
気での熱分解、粉砕等によって得ることができる。微粒
子の平均粒子径は被膜内の導電性を十分に維持し、また
均一に分散させるために1μm〜10μm程度が望まし
く、1μm以下では被膜中の粒子の接合を十分に取るこ
とができず、また10μm以上になると粉末を塗布液中
で均一に分散させることができない。
On the other hand, the electrode catalyst that covers the electrode substrate is
It is preferable to use fine particles of iridium oxide, which have excellent oxygen generation characteristics in an electrolytic solution containing sulfuric acid and the like. The fine particles of iridium oxide can be obtained by thermal decomposition, pulverization, or the like of an aqueous solution of iridium chloride in an oxygen-containing atmosphere. The average particle size of the fine particles is preferably about 1 μm to 10 μm in order to sufficiently maintain the conductivity in the film and to uniformly disperse the particles, and if the particle size is 1 μm or less, the particles in the film cannot be sufficiently joined, and If it is 10 μm or more, the powder cannot be uniformly dispersed in the coating liquid.

【0010】本発明の触媒被覆に使用する撥水性合成樹
脂層には、撥水性および耐食性が大きなフッ素系樹脂が
好ましく、とくにポリテトラフルオロエチレン樹脂など
が好ましい。これらのフッ素系合成樹脂は、水性分散液
を使用することが好ましく、水性分散液中に電極触媒に
使用する微粒子を混和し塗布液とする。触媒微粒子とフ
ッ素系合成樹脂との混合比は1:0.6〜0.2(重量
比)程度が適当であり、樹脂の割合が多すぎると導電性
が悪くなり、少なすぎると基体の保護性及び粉末の保持
力が低下する。この塗布液を上記基体上に塗布し、50
〜60℃で30〜60分間乾燥を行い、次いで樹脂の軟
化点以上で1〜2時間焼成を行い、被膜を固着する。塗
布から焼成まで、あるいは塗布から乾燥までの工程を繰
り返し被膜を多層化することにより膜の均一性、基体の
保護性は向上するが、層の数が多すぎると導電性が低下
するため、2層程度が好ましい。
The water-repellent synthetic resin layer used for the catalyst coating of the present invention is preferably a fluororesin having high water repellency and corrosion resistance, particularly polytetrafluoroethylene resin. It is preferable to use an aqueous dispersion of these fluorine-based synthetic resins, and the fine particles used for the electrode catalyst are mixed in the aqueous dispersion to form a coating solution. It is suitable that the mixing ratio of the catalyst fine particles and the fluorine-based synthetic resin is approximately 1: 0.6 to 0.2 (weight ratio). If the ratio of the resin is too large, the conductivity becomes poor, and if it is too small, the substrate is protected. And the retention of powder are reduced. This coating solution is coated on the above substrate,
Drying is performed at -60 ° C for 30 to 60 minutes, and then firing is performed at the softening point of the resin or higher for 1 to 2 hours to fix the coating. By repeating the steps from coating to baking or from coating to drying to form a multilayer film, the uniformity of the film and the protective property of the substrate are improved, but if the number of layers is too large, the conductivity decreases. Layers are preferred.

【0011】[0011]

【作用】本発明の電極は、電極基体上に撥水性の大きな
フッ素樹脂中に電極触媒を分散した電極触媒被覆を形成
したので、電解液が電極基体と電極触媒被覆の接合部に
到達しないので、チタン等の電極基体の腐食環境におい
ても陽極として使用可能であるとともに、電極触媒被覆
を金属基体上に熱分解等によって形成した場合にみられ
る電極と触媒被覆間の相互拡散がないため、再被覆の際
の被膜剥離が非常に容易である。
In the electrode of the present invention, since the electrode catalyst coating in which the electrode catalyst is dispersed in the highly water-repellent fluororesin is formed on the electrode substrate, the electrolytic solution does not reach the joint between the electrode substrate and the electrode catalyst coating. It can be used as an anode even in the corrosive environment of the electrode substrate such as titanium, and there is no mutual diffusion between the electrode and the catalyst coating, which is seen when the electrode catalyst coating is formed on the metal substrate by thermal decomposition. It is very easy to peel off the coating during coating.

【0012】[0012]

【実施例】以下に実施例を示し、本発明を説明する。 実施例1 塩化イリジウム5gを純水60mlに溶解した溶液を、
空気中において480℃で15〜18分間加熱処理の後
2時間粉砕し、これを2回繰り返し、最後に480℃で
15分間加熱処理を行った。平均粒径5μmの酸化イリ
ジウム粉末を得た。この粉末をポリテトラフルオロエチ
レン水性分散液(テフロン30J 三井デュポンフロロ
ケミカル製)に酸化イリジウム:ポリテトラフルオロエ
チレンの固形分=1:0.6(重量比)となるよう混合
し、超音波分散させ、塗布液を作製した。
EXAMPLES The present invention will be described below with reference to examples. Example 1 A solution prepared by dissolving 5 g of iridium chloride in 60 ml of pure water was used.
After heat treatment in air at 480 ° C. for 15 to 18 minutes, pulverization was performed for 2 hours, this was repeated twice, and finally heat treatment was performed at 480 ° C. for 15 minutes. An iridium oxide powder having an average particle size of 5 μm was obtained. This powder was mixed with an aqueous polytetrafluoroethylene dispersion (Teflon 30J, manufactured by Mitsui DuPont Fluorochemicals) so that the solid content of iridium oxide: polytetrafluoroethylene was 1: 0.6 (weight ratio), and ultrasonically dispersed. A coating solution was prepared.

【0013】電極基体には35mm×35mm×3mm
のチタン板に直径3mm、長さ150mmのチタン棒を
溶接したものを使用し、前処理としてサンドブラスト処
理の後に沸騰塩酸中で20分間エッチングを行った。こ
の基体上に上記塗布液の固形分が32mgとなるように
塗布し、60℃で30分間の乾燥、次いで350℃で1
時間焼成を行い、触媒層被覆電極を作製した。
35 mm × 35 mm × 3 mm for the electrode substrate
A titanium plate having a diameter of 3 mm and a length of 150 mm welded to the titanium plate was used, and after sandblasting as pretreatment, etching was performed in boiling hydrochloric acid for 20 minutes. The coating solution was coated on the substrate so that the solid content was 32 mg, dried at 60 ° C. for 30 minutes, and then at 350 ° C. for 1 minute.
Firing was performed for a time to prepare a catalyst layer-covered electrode.

【0014】この電極を陽極とし、濃度150g/lの
硫酸中、室温において硫酸第1水銀電極を参照電極と
し、5A/dm2 の電流密度における電極電位を測定し
たところ1.02Vであった。また、得られた電極を、
アルゴンによって脱気を行った40℃の6M硫酸中にお
いて、215時間浸漬試験を行ったところ、電極表面に
は変化はみられなかった。次いで、この電極を150g
/l硫酸中、40℃の電解液中において陽極として10
A/dm2 の電流を通電したところ、430時間の電解
が可能だった。
The electrode potential was 1.02 V when the electrode potential was measured at a current density of 5 A / dm 2 in a sulfuric acid having a concentration of 150 g / l and a sulfuric acid mercuric acid electrode as a reference electrode at room temperature. In addition, the obtained electrode,
When the immersion test was performed for 215 hours in 6M sulfuric acid at 40 ° C. which was degassed with argon, no change was observed on the electrode surface. Then 150g of this electrode
/ L sulfuric acid in an electrolyte solution at 40 ° C as an anode 10
When a current of A / dm 2 was applied, electrolysis was possible for 430 hours.

【0015】比較例1 実施例1と同様の電極基体上に、Ir:Ta=65:3
5(重量比)のIr−Ta混合液を刷毛塗りし、空気中
において520℃で13分間焼成した。混合液の塗布か
ら焼成までの操作を12回繰り返すことによりIrO2
−Ta2 5 複合酸化物被覆チタン電極を作製した。こ
の電極を実施例1と同様の条件で電極電位を測定したと
ころ、1.02Vであった。得られた電極を実施例1と
同様に、脱気をした6M硫酸中、40℃の条件下で21
5時間浸漬試験を行った結果、表面の所々で被覆が脱落
しチタン基体が露出している箇所がみられた。
Comparative Example 1 Ir: Ta = 65: 3 on the same electrode substrate as in Example 1.
A 5 (weight ratio) Ir-Ta mixed solution was applied with a brush and baked in air at 520 ° C for 13 minutes. IrO 2 is obtained by repeating the operation from application of the mixed solution to firing 12 times.
A Ta 2 O 5 composite oxide-coated titanium electrode was prepared. When the electrode potential of this electrode was measured under the same conditions as in Example 1, it was 1.02V. The obtained electrode was treated in the same manner as in Example 1 in degassed 6M sulfuric acid under the condition of 40 ° C.
As a result of the immersion test for 5 hours, it was found that the coating was dropped off and the titanium substrate was exposed at various places on the surface.

【0016】比較例2 実施例1と同様の条件で作製した酸化イリジウム粉末を
酸化イリジウム粉末:フッ素樹脂の比率を1:1.2と
して電極を製造し、陽極として実施例2と同様に電位を
測定したところ、2.20Vであった。
Comparative Example 2 An iridium oxide powder prepared under the same conditions as in Example 1 was used to produce an electrode with an iridium oxide powder: fluororesin ratio of 1: 1.2, and an anode was provided with the same potential as in Example 2. When measured, it was 2.20V.

【0017】実施例2 平均粒子径が10μmの酸化イリジウム粉末を用いると
ともに、フッ素樹脂との比率を1:0.4とし、350
℃で90分間焼成し、実施例2と同様の方法で10A/
dm2 時の電極電位を測定したところ、電位は、1.1
9Vであった。
Example 2 Iridium oxide powder having an average particle size of 10 μm was used, and the ratio with the fluororesin was set to 1: 0.4, and 350
Bake at 90 ° C. for 90 minutes, and in the same manner as in Example 2, 10 A /
When the electrode potential at dm 2 was measured, the potential was 1.1.
It was 9V.

【0018】比較例3 平均粒子径が100μmの酸化イリジウム粉末を用いた
点を除いて実施例2と同様の条件で電極を作製し、実施
例3と同様の方法で陽極としての電位を測定したとこ
ろ、1.55Vであり、極めて高いものであった。
Comparative Example 3 An electrode was prepared under the same conditions as in Example 2 except that iridium oxide powder having an average particle size of 100 μm was used, and the potential as an anode was measured in the same manner as in Example 3. However, it was 1.55V, which was extremely high.

【0019】実施例3 被覆層の焼成時間を90分とした点を除いて、実施例1
と同様の方法で電極を作製し、得られた電極を陽極とし
て150g/l硫酸中、40℃、10A/dm2 の条件
で長期電解試験を行った結果、150日の電解が可能で
あった。
Example 3 Example 1 except that the coating layer was fired for 90 minutes.
An electrode was prepared in the same manner as in 1., and a long-term electrolysis test was performed in 150 g / l sulfuric acid at 40 ° C. and 10 A / dm 2 using the obtained electrode as an anode. As a result, electrolysis was possible for 150 days. .

【0020】実施例4 塩化イリジウム5gを純水60mlに溶解させ、480
℃で30分間加熱処理の後に2時間粉砕し、これを2回
繰り返し、最後に480℃で90分間加熱処理を行い、
作製した酸化イリジウム粉末をポリテトラフルオロエチ
レン水性分散液に、IrO2 :フッ素樹脂の固形分=
1:0.2(重量比)となるよう混合し、塗布液を作製
した。これを実施例1と同様の電極基体上に、塗布液の
固形分が26mgとなるように塗布し、60℃で30分
乾燥後370℃で90分焼成し、混合液の塗布から焼成
までの工程を再び繰り返し電極を作製した。この電極を
陽極とし、150g/lの硫酸中で、40℃の条件で硫
酸第1水銀を参照電極とし、電流密度100A/dm2
で通電した際の電極電位を測定したところ、1.185
Vであった。また、本電極を陽極とし150g/l硫酸
中、40℃、電流密度100A/dm2 の条件で長期電
解試験を行った結果、140日の電解が可能であった。
Example 4 5 g of iridium chloride was dissolved in 60 ml of pure water to dissolve 480
After heat treatment for 30 minutes at ℃, pulverize for 2 hours, repeat this twice, and finally perform heat treatment for 90 minutes at 480 ℃,
The prepared iridium oxide powder was added to an aqueous polytetrafluoroethylene dispersion, and IrO 2 : fluororesin solid content =
The mixture was mixed at a ratio of 1: 0.2 (weight ratio) to prepare a coating liquid. This was coated on the same electrode substrate as in Example 1 so that the solid content of the coating liquid would be 26 mg, dried at 60 ° C. for 30 minutes, and then baked at 370 ° C. for 90 minutes. The process was repeated again to produce an electrode. This electrode was used as an anode, and mercuric sulfate was used as a reference electrode at a temperature of 40 ° C. in 150 g / l of sulfuric acid, and a current density was 100 A / dm 2.
The electrode potential when energized at 1.185 was 1.185.
It was V. Further, as a result of a long-term electrolysis test in which the electrode was used as an anode in 150 g / l sulfuric acid at 40 ° C. and a current density of 100 A / dm 2 , it was possible to electrolyze for 140 days.

【0021】[0021]

【発明の効果】本発明の電極は、電極触媒を分散した撥
水性合成樹脂層で被覆されているため電解液不透性であ
り、電極触媒被覆−電極基体接合部におけるチタン等の
電極基体の損傷はおこらず、電極損傷は酸化イリジウム
の消耗のみであり、電極触媒被覆と電極基体との間の導
電不良や、被覆の剥離等が発生せず、また電極の被覆の
再生時において手は、被覆の剥離および基体の処理がよ
ういであり、電極の再生を容易に行うことが可能であ
る。
The electrode of the present invention is impermeable to the electrolytic solution because it is coated with the water-repellent synthetic resin layer in which the electrode catalyst is dispersed. No damage occurs, the electrode damage is only the consumption of iridium oxide, no defective conductivity between the electrode catalyst coating and the electrode substrate, peeling of the coating, etc. occurs, and when regenerating the electrode coating, the hand is The stripping of the coating and the treatment of the substrate are simple and the regeneration of the electrodes is easy.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極基体上に、電極触媒物質の粉末を分
散した撥水性合成樹脂の層を形成したことを特徴とする
電解用電極。
1. An electrode for electrolysis, wherein a layer of a water-repellent synthetic resin in which powder of an electrode catalyst substance is dispersed is formed on an electrode substrate.
【請求項2】 電極触媒物質が酸化イリジウムを主体と
した粉末であり、撥水性合成樹脂がフッ素樹脂であり、
酸化イリジウム粉末とフッ素樹脂の混合比が、重量比で
1:0.6〜1:0.2であることを特徴とする請求項
1記載の電解用電極。
2. The electrocatalyst substance is a powder mainly composed of iridium oxide, and the water-repellent synthetic resin is a fluororesin,
The electrode for electrolysis according to claim 1, wherein the mixing ratio of the iridium oxide powder and the fluororesin is 1: 0.6 to 1: 0.2 by weight.
【請求項3】 電極触媒物質の平均粒子径が1μm以
上、10μm以下であることを特徴とする請求項1もし
くは2記載の電解用電極。
3. The electrode for electrolysis according to claim 1, wherein the average particle diameter of the electrode catalyst substance is 1 μm or more and 10 μm or less.
JP5118348A 1993-05-20 1993-05-20 Electrode for electrolysis Pending JPH06330366A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5118348A JPH06330366A (en) 1993-05-20 1993-05-20 Electrode for electrolysis
ITVA940014A IT1274183B (en) 1993-05-20 1994-05-18 ELECTRODE FOR ELECTROLYSIS
DE4417627A DE4417627A1 (en) 1993-05-20 1994-05-19 Electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5118348A JPH06330366A (en) 1993-05-20 1993-05-20 Electrode for electrolysis

Publications (1)

Publication Number Publication Date
JPH06330366A true JPH06330366A (en) 1994-11-29

Family

ID=14734477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5118348A Pending JPH06330366A (en) 1993-05-20 1993-05-20 Electrode for electrolysis

Country Status (3)

Country Link
JP (1) JPH06330366A (en)
DE (1) DE4417627A1 (en)
IT (1) IT1274183B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098679A (en) * 2012-11-16 2014-05-29 Riken Keiki Co Ltd Controlled-potential-electrolysis type gas sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1190185A (en) * 1980-08-18 1985-07-09 Michael Katz Electrode with outer coating and protective intermediate conductive polymer coating on a conductive base
EP0067975B1 (en) * 1981-06-01 1987-08-19 Asahi Glass Company Ltd. Method for water electrolysis
CA1180316A (en) * 1981-12-23 1985-01-02 James A. Mcintyre Electrode material; improved electrolytic process
US4547278A (en) * 1984-08-10 1985-10-15 Inco Alloys International, Inc. Cathode for hydrogen evolution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098679A (en) * 2012-11-16 2014-05-29 Riken Keiki Co Ltd Controlled-potential-electrolysis type gas sensor

Also Published As

Publication number Publication date
DE4417627A1 (en) 1994-11-24
ITVA940014A1 (en) 1995-11-18
IT1274183B (en) 1997-07-15
ITVA940014A0 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
FI68670C (en) ELEKTROD MED ELEKTROKATALYTISK YTA OCH FOERFARANDE FOER DESS FRAMSTAELLNING
BRPI0617694A2 (en) method for forming an electrocatalytic surface on an electrode and its electrode
JPS59150091A (en) Electrode for electrolysis having durability and its production
JPS6318672B2 (en)
KR860000604B1 (en) Electrolytic electrodes hohing high durokility
JP4986267B2 (en) Electrode manufacturing method
EP0262369B1 (en) Lead oxide-coated electrode for use in electrolysis and process for producing the same
JPS62274087A (en) Durable electrode for electrolysis and its production
JPS60184691A (en) Durable electrode and its manufacture
JPS60184690A (en) Durable electrode and its manufacture
EP0063540B1 (en) Recoating of electrodes
JP2005513276A (en) Electrode for electrolysis in acidic media
EP0955395B1 (en) Electrolyzing electrode and process for the production thereof
JPH04231491A (en) Electric catalyzer cathode and its manufacture
US5395500A (en) Electrolytic electrode and method of production thereof
US5431798A (en) Electrolytic electrode and method of production thereof
JP3212334B2 (en) Electrode substrate for electrolysis, electrode for electrolysis, and methods for producing them
JPH06330366A (en) Electrode for electrolysis
US3763002A (en) Method of forming protective coatings by electrolysis
JPH11140680A (en) Activated cathode and its production
JPH0417689A (en) Electrode for electrolyzing water and production thereof
JPH01132789A (en) Resin molded electrolytic electrode and its production
JP2007217780A (en) Method for producing electrolytic metal powder
KR102648323B1 (en) Pt-Ru-Ti catalyst electrode for ballast water electrolysis
JPH02294494A (en) Anode for generating oxygen