JPH06330211A - Heat resistant copper alloy - Google Patents

Heat resistant copper alloy

Info

Publication number
JPH06330211A
JPH06330211A JP12632893A JP12632893A JPH06330211A JP H06330211 A JPH06330211 A JP H06330211A JP 12632893 A JP12632893 A JP 12632893A JP 12632893 A JP12632893 A JP 12632893A JP H06330211 A JPH06330211 A JP H06330211A
Authority
JP
Japan
Prior art keywords
weight
heat
brazing
test
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12632893A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
元久 宮藤
Hiroshi Arai
浩史 荒井
Junichi Osako
淳一 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12632893A priority Critical patent/JPH06330211A/en
Publication of JPH06330211A publication Critical patent/JPH06330211A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a heat resistant Cu alloy excellent in brazability and suitability to wettability of a brazing filler metal and having high heat resistance by incorporating each a specified percentage of Ni, Ti, Co and Zn into Cu. CONSTITUTION:This heat resistant Cu alloy consists of, by weight, 0.1-4.0%, preferably 0.4-0.8% Ni, 0.05-0.4%, preferably 0.1-0.3% Ti, 0.05-1.0%, preferably 0.1-0.3% Co, 0.01-1.0% Zn and the balance Cu with ineviatble impurities. About <=0.2%, in total, of elements such as B, Cr, Zn, Mg and Sn are allowed to be contained as the inevitable impurities. This Cu alloy has high mechanical characteristics and durability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ろう付け性及びろうの
濡れ拡がり性が優れ、また、ろう付け等の熱によって結
晶粒が粗大化することがなく、高い耐熱性を有する耐熱
銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant copper alloy which has excellent brazing properties and wettability and spreadability of the brazing material, and does not coarsen crystal grains due to heat of brazing, etc., and has high heat resistance. .

【0002】[0002]

【従来の技術】従来、風呂釜又は湯沸かし器等の熱交換
器の缶体及びパイプには、りん脱酸銅が一般的に使用さ
れている。これらの缶体及びパイプは溶接又はろう付け
により組み立てられるので、それに使用する材料は、良
好な溶接性及びろう付け性が必要とされ、更に熱交換器
の構成部品であるため、熱伝導性が良好であると共に、
加熱及び冷却を繰り返しても、熱応力の負荷によりろう
付け部及び溶接部で疲労破壊を起こさないことが必要で
ある。りん脱酸銅の場合、熱応力の繰り返し負荷には比
較的弱く、ろう付け部及び溶接部で疲労破壊が発生しや
すいことが知られている。
2. Description of the Related Art Conventionally, phosphorous deoxidized copper has been generally used for can bodies and pipes of heat exchangers such as bath kettles and water heaters. Since these cans and pipes are assembled by welding or brazing, the materials used for them must have good weldability and brazeability, and because they are components of heat exchangers, they must have good thermal conductivity. Good and
Even if heating and cooling are repeated, it is necessary that fatigue failure does not occur in the brazed portion and the welded portion due to the load of thermal stress. It is known that phosphorous deoxidized copper is relatively weak against repeated thermal stress and that fatigue failure easily occurs in the brazed portion and the welded portion.

【0003】図1(a),(b)は、夫々一般的な熱交
換器の模式的正面図及び側面図である。上下方向に離隔
して配置された一対の缶体1a及び1bの間に、両者の
間を連絡する複数のパイプ3が設けられており、これら
のパイプ3には放熱用のフィン2がろう付けされてい
る。このような熱交換器においては、昇温及び降温の繰
り返しにより、ろう付け部A,B,C及びその近傍に割
れが発生することがある。これは、ろう付け時の熱によ
り、ろう付け部A,B,C及びその近傍の結晶粒が粗大
化して疲労に対する抵抗力が低下していると共に、これ
らの部分が構造上大きな応力を受ける場所であり、使用
時における加熱の不均一により生じた温度差により各パ
イプの熱膨張差による熱応力が繰り返し負荷されて、疲
労破壊が発生するためである。従来、熱交換器の材料と
して利用されているりん脱酸銅は材料の特性上、結晶粒
の粗大化が生じやすく、上述のような割れが発生しやす
いという欠点がある。そこで、結晶粒が粗大化しにく
く、耐熱性が優れた熱交換器用銅合金として、例えばC
u−1.9Fe−0.4Co−0.03P−0.05Z
n合金(特開平04−272148号)及びCu−0.
9Ni−0.3Ti−0.2Sn合金(特開昭62−0
06733号)が提案されている。これらの熱交換器用
銅合金は、りん脱酸銅に比して引張強さ及び耐力が優れ
ており、結晶粒径も微細であると共に、疲労特性も優れ
ている。しかも、ろう材の濡れ拡がり性、はんだの密着
性もりん脱酸銅と同等以上であるので、熱交換器の信頼
性向上に対して極めて有用である。
1 (a) and 1 (b) are a schematic front view and a side view of a general heat exchanger, respectively. A plurality of pipes 3 are provided between the pair of can bodies 1a and 1b that are spaced apart from each other in the up-down direction. The pipes 3 connect the two to each other. The fins 2 for heat dissipation are brazed to these pipes 3. Has been done. In such a heat exchanger, cracks may occur in the brazing parts A, B, C and in the vicinity thereof due to repeated heating and cooling. This is because the brazing parts A, B, C and their neighboring crystal grains are coarsened due to the heat during brazing to reduce the resistance to fatigue, and at the same time places where these parts receive large structural stress. This is because the thermal stress due to the difference in thermal expansion between the pipes is repeatedly applied due to the temperature difference caused by the non-uniform heating during use, and fatigue fracture occurs. Conventionally, phosphorus deoxidized copper, which has been used as a material for a heat exchanger, has the drawback that crystal grains are likely to be coarsened and the above-mentioned cracks are likely to occur due to the characteristics of the material. Therefore, as a copper alloy for a heat exchanger, which has excellent heat resistance and whose crystal grains are less likely to coarsen, for example, C
u-1.9Fe-0.4Co-0.03P-0.05Z
n alloy (Japanese Patent Laid-Open No. 04-272148) and Cu-0.
9Ni-0.3Ti-0.2Sn alloy (Japanese Patent Laid-Open No. 62-0
06733) has been proposed. These copper alloys for heat exchangers are superior in tensile strength and proof stress to phosphorus deoxidized copper, have a fine crystal grain size, and are excellent in fatigue properties. Moreover, since the wetting and spreading property of the brazing material and the adhesiveness of the solder are equal to or higher than those of the phosphorous deoxidized copper, it is extremely useful for improving the reliability of the heat exchanger.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近時、
熱交換器にはより正確な温度制御を行うために、急速加
熱及び急速冷却により熱交換媒体を速やかに目的の温度
に到達させることが要求されている。従って、熱交換器
用材料には熱伝導率が高いこと、換言すれば導電率が高
いことが要求されるようになった。特開平04−272
148号及び特開昭62−006733号に開示された
銅合金は、上述の如く、結晶粒が微細であり、強度及び
はんだの密着性等の特性は優れているものの、りん脱酸
銅に比して導電率が低いという欠点がある。
However, in recent years,
In order to perform more accurate temperature control, the heat exchanger is required to quickly reach the target temperature of the heat exchange medium by rapid heating and rapid cooling. Therefore, materials for heat exchangers are required to have high thermal conductivity, in other words, high electrical conductivity. JP 04-272
As described above, the copper alloys disclosed in JP-A No. 148 and JP-A-62-006733 have fine crystal grains and are excellent in characteristics such as strength and solder adhesion, but are not as good as phosphorus deoxidized copper. Then, there is a drawback that the conductivity is low.

【0005】本発明はかかる問題点に鑑みてなされたも
のであって、ろう付けを想定した熱処理後の導電率が優
れていると共に、機械的特性、ろう材の濡れ拡がり性及
びはんだの密着性が優れ、ろう付け及び溶接等の熱によ
る結晶粒の粗大化を抑制できて、熱応力の繰り返しに起
因する疲労破壊に対する耐久性が高い耐熱銅合金を提供
することを目的とする。
The present invention has been made in view of the above problems, and is excellent in electrical conductivity after heat treatment assuming brazing, and also has mechanical properties, brazing / wetting spreadability of solder and solder adhesion. It is an object of the present invention to provide a heat-resistant copper alloy that is excellent in heat resistance, can suppress the coarsening of crystal grains due to heat such as brazing and welding, and has high durability against fatigue fracture due to repeated thermal stress.

【0006】[0006]

【課題を解決するための手段】本願の第1発明に係る耐
熱銅合金は、0.1乃至4.0重量%のNiと、0.0
5乃至0.4重量%のTiと、0.05乃至1.0重量
%のCoと、0.01乃至1.0重量%のZnとを含有
し、残部がCu及び不可避的不純物からなることを特徴
とする。
A heat-resistant copper alloy according to the first invention of the present application comprises 0.1 to 4.0% by weight of Ni and 0.0
5 to 0.4% by weight of Ti, 0.05 to 1.0% by weight of Co, 0.01 to 1.0% by weight of Zn, and the balance Cu and inevitable impurities Is characterized by.

【0007】本願の第2発明に係る耐熱銅合金は、0.
4乃至0.8重量%のNiと、0.1乃至0.3重量%
のTiと、0.1乃至0.3重量%のCoと、0.01
乃至1.0重量%のZnとを含有し、残部がCu及び不
可避的不純物からなることを特徴とする。
The heat-resistant copper alloy according to the second invention of the present application is
4 to 0.8 wt% Ni and 0.1 to 0.3 wt%
Ti and 0.1 to 0.3 wt% Co, 0.01
To 1.0 wt% Zn, and the balance being Cu and inevitable impurities.

【0008】[0008]

【作用】以下、本発明に係る耐熱銅合金の成分添加理由
及び組成限定理由について説明する。
The function of the heat-resistant copper alloy according to the present invention and the reason for limiting the composition will be described below.

【0009】Ni Niは、後述するTiと共に添加することにより、銅合
金の引張強さ、耐力及び硬さを向上させることができる
元素である。しかし、Ni含有量が0.1重量%未満で
は、Tiを0.05乃至0.4重量%添加しても引張強
さ、耐力及び硬さの向上効果を十分に得ることができな
い。また、Ni含有量が4.0重量%を超えると、含有
量に見合う引張強さ、耐力及び硬さの向上効果を得るこ
とができず無駄であるだけでなく、加工性が悪くなると
共に導電率も低下する。従って、Niの含有量は0.1
乃至4.0重量%とする。なお、Ni含有量を0.4乃
至0.8重量%とすることにより、引張強さ、耐力、硬
さ及び導電率をいずれも極めて良好な状態とすることが
できる。
Ni Ni is an element that can improve the tensile strength, yield strength and hardness of a copper alloy when added together with Ti described later. However, if the Ni content is less than 0.1% by weight, the effect of improving tensile strength, proof stress and hardness cannot be sufficiently obtained even if 0.05 to 0.4% by weight of Ti is added. Further, when the Ni content exceeds 4.0% by weight, the effect of improving the tensile strength, proof stress and hardness commensurate with the content cannot be obtained, which is not only wasteful but also the workability is deteriorated and the conductivity is deteriorated. The rate also decreases. Therefore, the Ni content is 0.1
To 4.0% by weight. By setting the Ni content to 0.4 to 0.8% by weight, the tensile strength, the proof stress, the hardness and the electrical conductivity can all be made extremely good.

【0010】Ti Tiは、Ni及び後述するCoと共に添加することによ
り銅合金の引張強さ、耐力及び硬さを向上させることが
できる元素である。しかし、TiとNiとの間の親和力
は、TiとCoとの間の親和力よりも強いため、Ti含
有量が0.05重量%未満の場合は、Tiと化合せずに
残ったCoがCuマトリックス中に過剰に固溶して、導
電率の低下を招来する。また、Ti含有量が0.4重量
%を超えると、Tiは酸化され易いので多量のTi酸化
物が溶湯中に巻き込まれ、耐熱銅合金の鋳塊の健全性を
著しく低下させる。従って、Tiの含有量は0.05乃
至0.4重量%とする。なお、Ti含有量を0.1乃至
0.3重量%とすることにより、引張強さ、耐力、硬
さ、導電率及び鋳塊の健全性をいずれも極めて良好な状
態とすることができる。
Ti Ti is an element that can improve the tensile strength, yield strength and hardness of a copper alloy when added together with Ni and Co described later. However, since the affinity between Ti and Ni is stronger than the affinity between Ti and Co, when the Ti content is less than 0.05% by weight, the Co remaining without combining with Ti is Cu. Excessive solid solution in the matrix leads to a decrease in conductivity. On the other hand, if the Ti content exceeds 0.4% by weight, Ti is easily oxidized and a large amount of Ti oxide is entrained in the molten metal, which significantly deteriorates the soundness of the ingot of the heat-resistant copper alloy. Therefore, the Ti content is set to 0.05 to 0.4% by weight. By setting the Ti content to 0.1 to 0.3% by weight, the tensile strength, proof stress, hardness, conductivity, and soundness of the ingot can all be made very good.

【0011】Co Coは、Tiと共に添加することにより銅合金の引張強
さ、耐力及び硬さを向上させることができる元素であ
る。また、Coは、結晶粒の粗大化を抑制するのに必要
な元素でもある。即ち、Coには、約800乃至900
℃の温度でのろう付け工程においても、結晶粒の成長を
抑制して組織を微細に維持し、耐熱疲労性を向上させる
作用がある。しかし、Coの含有量が0.05重量%未
満では、このような効果を得ることができず、1.0重
量%を超えて含有されるとCuマトリックス中に過剰に
固溶したCoにより銅合金の導電率が低下する。従っ
て、Coの含有量は0.05乃至1.0重量%とする。
なお、Co含有量を0.1乃至0.3重量%とすること
により、引張強さ、耐力、硬さ、耐熱性及び導電率をい
ずれも極めて良好な状態とすることができる。
Co Co is an element that can improve the tensile strength, yield strength and hardness of a copper alloy when added together with Ti. Further, Co is also an element necessary for suppressing the coarsening of crystal grains. That is, Co contains about 800 to 900
Even in the brazing process at a temperature of ℃, it has the effect of suppressing the growth of crystal grains, maintaining a fine structure, and improving the thermal fatigue resistance. However, if the Co content is less than 0.05% by weight, such an effect cannot be obtained, and if the Co content is more than 1.0% by weight, the excessive amount of solid solution Co in the Cu matrix causes copper to dissolve. The conductivity of the alloy is reduced. Therefore, the Co content is 0.05 to 1.0% by weight.
By setting the Co content to 0.1 to 0.3% by weight, the tensile strength, the proof stress, the hardness, the heat resistance and the electrical conductivity can all be made extremely good.

【0012】Zn Znは、ろう付け後にSnめっき又ははんだめっき等の
補修理が施される場合、めっき層の密着性を向上させる
と共に、はんだの濡れ性を向上させる効果がある。Zn
含有量が0.01重量%未満の場合は、これらの効果を
十分に得ることはできない。一方、Zn含有量が1.0
重量%を超える場合は、ろう付け性及び導電率が低下す
る。従って,Znの含有量は0.01乃至1.0重量%
とする。
Zn Zn has the effect of improving the adhesion of the plating layer and improving the wettability of the solder when supplementary repair such as Sn plating or solder plating is performed after brazing. Zn
If the content is less than 0.01% by weight, these effects cannot be sufficiently obtained. On the other hand, Zn content is 1.0
When it exceeds the weight%, the brazing property and the electric conductivity decrease. Therefore, the Zn content is 0.01 to 1.0% by weight.
And

【0013】なお、耐熱銅合金中には不可避的不純物と
して、B,Cr,Zr,Mg及びSn等の元素がスクラ
ップ材から混入することが考えられる。これらの元素の
総含有量が0.2重量%以下の場合は、本発明の耐熱銅
合金の物性に大きな影響を及ぼす虞はないので、この程
度の不可避的不純物の含有は許容される。
It is considered that elements such as B, Cr, Zr, Mg and Sn are mixed as unavoidable impurities from the scrap material into the heat resistant copper alloy. When the total content of these elements is 0.2% by weight or less, there is no possibility of exerting a great influence on the physical properties of the heat resistant copper alloy of the present invention, and thus the inclusion of such inevitable impurities is allowed.

【0014】[0014]

【実施例】次に、本発明の実施例に係る耐熱銅合金を製
造し、その特性を試験した結果について、本願の特許請
求の範囲から外れる比較例と比較して説明する。
EXAMPLES Next, the results of manufacturing the heat-resistant copper alloys according to the examples of the present invention and testing the characteristics thereof will be described in comparison with comparative examples that depart from the claims of the present application.

【0015】先ず、クリプトル炉を使用して、下記表1
に組成を示す実施例1乃至9の合金原料及び下記表2に
組成を示す比較例1乃至11の合金原料をフラックス被
覆下において大気中で溶解した。次に、黒鉛製ブックモ
ールドを使用して、これらの溶湯を鋳造し、厚さが50
mm、幅が80mm、長さが200mmの鋳塊を得た。
そして、これらの鋳塊の表裏両面を5mmずつ面削し
た。その後、これらの鋳塊を880℃の温度で15mm
の厚さになるまで熱間圧延した後、これらの圧延材を水
中に投入して急冷した。次いで、これらの圧延材の酸化
スケールを除去した後、冷間加工を施して厚さが0.5
mmの板材に加工し、これらの板材を試験材とした。な
お、Tiの含有量が1.0重量%を超える比較例6は、
鋳造時に酸化物の巻き込みによる内部欠陥が多発したた
め、以後の工程は行わなかった。
First, using a Cryptor furnace, the following Table 1 is used.
The alloy raw materials of Examples 1 to 9 having the composition shown in Table 1 and the alloy raw materials of Comparative Examples 1 to 11 having the compositions shown in Table 2 below were melted in the atmosphere under the flux coating. Next, a graphite book mold is used to cast these melts to a thickness of 50
An ingot having a size of mm, a width of 80 mm, and a length of 200 mm was obtained.
Then, both front and back surfaces of these ingots were chamfered by 5 mm each. Then, these ingots were heated to a temperature of 880 ° C for 15 mm.
After hot-rolling to a thickness of 1, these rolled materials were put into water and rapidly cooled. Then, after removing the oxide scale of these rolled materials, cold working is performed to obtain a thickness of 0.5.
It processed into the board material of mm, and used these board materials as a test material. In addition, Comparative Example 6 in which the content of Ti exceeds 1.0% by weight,
Since many internal defects occurred due to the inclusion of oxide during casting, the subsequent steps were not performed.

【0016】熱交換器用部材は、曲げ加工及びフランジ
成形加工(深絞り加工)等の加工を施す必要上、従来、
一般的にりん脱酸銅(C1020 合金)の軟質材(O材又は
1/2H材)が使用されている。そこで、りん脱酸銅を
軟質処理し、これを比較例9として用意した。また、特
開平04−272148号及び特開昭62−00673
3号に開示された合金として、夫々Cu−1.9Fe−
0.4Co−0.03P−0.05Zn合金(比較例1
0)及びCu−0.9Ni−0.3Ti−0.2Sn合
金(比較例11)を用意した。
Since the heat exchanger member needs to be subjected to processing such as bending and flange forming (deep drawing),
Generally, a soft material (O material or 1 / 2H material) of phosphorus deoxidized copper (C1020 alloy) is used. Therefore, phosphorus-deoxidized copper was soft-treated and prepared as Comparative Example 9. Further, JP-A-04-272148 and JP-A-62-00673.
The alloys disclosed in No. 3 are Cu-1.9Fe-, respectively.
0.4Co-0.03P-0.05Zn alloy (Comparative Example 1
0) and Cu-0.9Ni-0.3Ti-0.2Sn alloy (Comparative Example 11) were prepared.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】次に、実際のろう付け条件を想定して、実
施例1乃至9及び比較例1乃至11の各試験材に対して
830℃の温度で70分間の熱処理を行い、熱処理後の
各特性を調べた。但し、各特性は以下に示す試験方法に
より測定した。
Next, assuming actual brazing conditions, each of the test materials of Examples 1 to 9 and Comparative Examples 1 to 11 was heat-treated at a temperature of 830 ° C. for 70 minutes, and each heat-treated material was heat-treated. The characteristics were investigated. However, each property was measured by the following test methods.

【0020】引張り試験 各試験材から圧延方向に平行に切り出したJIS5号の
規格の試験片を使用して、引張強さ、耐力及び伸びを測
定した。
Tensile Test The tensile strength, proof stress and elongation were measured using test pieces of JIS No. 5 standard cut out from each test material in parallel with the rolling direction.

【0021】硬さ試験 ビッカース硬度計を使用して、荷重2kgの条件で測定
した。
Hardness test The hardness was measured using a Vickers hardness tester under a load of 2 kg.

【0022】疲労試験 薄板疲労試験機を使用し、実施例及び比較例の各試験材
から切り出した幅が10mmの夫々の試験片に対して、
周期が60Hz、応力振幅が15kgf/mm2 の条件
で、両振り繰り返し応力を負荷した。そして、この繰り
返し応力により試験片が破断するまでの回数を測定し
た。
Fatigue test Using a thin plate fatigue tester, for each test piece with a width of 10 mm cut out from each test material of Examples and Comparative Examples,
Repeated swinging stress was applied under the condition that the cycle was 60 Hz and the stress amplitude was 15 kgf / mm 2 . Then, the number of times until the test piece was broken by the repeated stress was measured.

【0023】ろう付け性(濡れ拡がり性)試験 図2に、ろう付け性の測定に用いた装置を示す。この装
置においては、管状炉5に気密管4が水平に設置され、
気密管4の両端は栓部材7,8により閉塞され、気密管
4内を気密に保つようになっている。一方、栓部材7に
は、気密管4内で試験台11を長手方向に移動させるた
めの支持棒12が挿通されており、この支持棒12を介
して炉外から試験台11を操作できるようになってい
る。また、気密管4における栓部材7側の端部上壁には
2 ガスの導入部9が設けられており、他方の栓部材8
にはN2 ガスの排出部10が設けられている。そして、
気密管4の中央部には、気密管4の外周に水を噴射する
ことにより気密管内の試験部材を冷却するための水冷帯
6が設けられている。実施例及び比較例から切り出した
試験部材13は試験台11上に載置される。
Brazing (wetting and spreading) test FIG. 2 shows an apparatus used for measuring brazing. In this device, the airtight tube 4 is installed horizontally in the tubular furnace 5,
Both ends of the airtight tube 4 are closed by plug members 7 and 8 so that the inside of the airtight tube 4 is kept airtight. On the other hand, a support rod 12 for moving the test table 11 in the longitudinal direction in the airtight tube 4 is inserted into the stopper member 7, and the test table 11 can be operated from outside the furnace via the support rod 12. It has become. Further, an N 2 gas introducing portion 9 is provided on the upper wall of the end of the airtight tube 4 on the plug member 7 side, and the other plug member 8 is provided.
Is provided with a discharge portion 10 for N 2 gas. And
At the center of the airtight tube 4, a water cooling zone 6 is provided for cooling the test member in the airtight tube by injecting water on the outer periphery of the airtight tube 4. The test member 13 cut out from the example and the comparative example is placed on the test table 11.

【0024】図3(a),(b)は夫々試験部材13を
示す正面図及び側面図である。実施例1乃至9及び比較
例1乃至11により、側面視でU字形をなし、長さが3
00mmの試験片20が形成される。この試験片20上
に、円柱状をなすろう材21が載置されて、試験部材1
3を構成する。ろう材21は直径が2.5mm、長さが
30mmであり、組成はBCuP−2(Cuに7乃至
7.5重量%のPを含有したもの)である。
3 (a) and 3 (b) are a front view and a side view showing the test member 13, respectively. According to Examples 1 to 9 and Comparative Examples 1 to 11, a U-shape is formed in a side view and the length is 3
A 00 mm test piece 20 is formed. A brazing material 21 having a columnar shape is placed on the test piece 20, and the test member 1
Make up 3. The brazing material 21 has a diameter of 2.5 mm and a length of 30 mm, and has a composition of BCuP-2 (Cu containing 7 to 7.5% by weight of P).

【0025】試験部材13が載置された試験台11を気
密管4に挿入し、気密管4の端部に栓部材7を嵌入した
後、N2 ガスを気密管4内に導入した。次に、試験部材
13を管状炉5のヒータ位置に移動して、830℃の温
度で10分間加熱する熱処理を施してろう材21を溶融
させた。次いで、試験部材13を水冷帯6に移動させて
冷却し、ろう材21を凝固させた。そして、ろう材21
の初期長さと、凝固後の長さ(濡れ拡がり長さ)との比
からろう付け性を評価した。
The test table 11 on which the test member 13 was placed was inserted into the airtight tube 4, the plug member 7 was fitted into the end of the airtight tube 4, and then N 2 gas was introduced into the airtight tube 4. Next, the test member 13 was moved to the heater position of the tubular furnace 5, and heat treatment of heating at a temperature of 830 ° C. for 10 minutes was performed to melt the brazing filler metal 21. Next, the test member 13 was moved to the water cooling zone 6 and cooled to solidify the brazing material 21. And brazing material 21
The brazing property was evaluated from the ratio of the initial length of the above and the length after the solidification (wetting and spreading length).

【0026】結晶粒径 結晶粒径は、光学(金属)顕微鏡でスケールを用いて測
定した。
Crystal grain size The crystal grain size was measured with an optical (metal) microscope using a scale.

【0027】はんだの密着性 先ず、実施例1乃至9及び比較例1乃至11の各試験材
から厚さが0.8mm、幅が25mm、長さが50mm
の試験片を切り出し、これらの試験片を浴温度が230
℃のはんだ浴に5秒間浸漬した。なお、はんだ浴に用い
たはんだの組成は、Snが60重量%、Pbが40重量
%である。また、フラックスは弱活性フラックス(アル
ファー#611;アルファーメタル社製)を使用した。
次いで、温度が175℃の大気中で100時間加熱した
後、2mmの曲げ半径で180°の角度で往復曲げを実
施して、はんだ剥離の有無を調べた。
Adhesion of Solder First, from each of the test materials of Examples 1 to 9 and Comparative Examples 1 to 11, the thickness was 0.8 mm, the width was 25 mm, and the length was 50 mm.
The test pieces were cut out and the bath temperature was 230
It was immersed in a solder bath at ℃ for 5 seconds. The composition of the solder used in the solder bath is 60 wt% Sn and 40 wt% Pb. As the flux, a weakly active flux (Alpha # 611; manufactured by Alpha Metal) was used.
Next, after heating for 100 hours in the atmosphere at a temperature of 175 ° C., reciprocal bending was performed at a bending radius of 2 mm and an angle of 180 °, and the presence or absence of solder peeling was examined.

【0028】導電率 実施例1乃至9及び比較例1乃至11の各試験材から切
り出した幅が10mm、長さが300mmの試験片を使
用して、これらの試験片の電気抵抗をダブルブリッジに
より測定し、平均断面積法により算出した。
Conductivity Using test pieces having a width of 10 mm and a length of 300 mm cut out from the test materials of Examples 1 to 9 and Comparative Examples 1 to 11, the electric resistance of these test pieces was measured by a double bridge. It was measured and calculated by the average cross-sectional area method.

【0029】これらの各特性の測定結果を下記表3乃至
6に示す。但し、ろう材の濡れ拡がり性の欄は、濡れ拡
がり長さが初期長さの3倍以上の場合を○、濡れ拡がり
長さが初期長さの1.5倍を超え且つ3倍未満の場合を
△、濡れ拡がり長さが初期長さの1.5倍以下の場合を
×で示した。
The measurement results of each of these characteristics are shown in Tables 3 to 6 below. However, in the column of wettability and spreadability of brazing filler metal, ○ indicates that the wettability and spread length is 3 times or more of the initial length, and that the wettability and spread length exceeds 1.5 times and is less than 3 times the initial length. Is indicated by Δ, and the case where the wet spread length is 1.5 times or less of the initial length is indicated by x.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】これらの表3乃至6から明らかなように、
本発明に係る実施例1乃至9は、いずれも830℃の温
度で10分間加熱しても優れた材料特性を示した。即
ち、これらの材料特性は従来の熱交換器用に使用されて
いるりん脱酸銅(比較例9)に比して、引張強さが1.
4倍以上、耐力が8倍以上、硬さが2倍以上と優れた特
性を示し、更に結晶粒径が20乃至30μmと微細であ
ると共に、疲労特性も著しく優れている。しかも、これ
らの実施例1乃至9はろう付け性にも優れており、濡れ
拡がり性及びはんだの密着性は比較例9と同等又はそれ
以上である。また、特開平04−272148号及び特
開昭62−006733号に夫々開示された合金である
比較例10及び11に比して、引張強さ、耐力、硬さ、
結晶粒径、疲労特性、ろう材の濡れ拡がり性及びはんだ
の密着性が同等か又はそれ以上と優れている。特に、本
願の請求項2に規定する組成の実施例3乃至6は、いず
れも導電率が比較例10に比して16乃至18%IAC
S高く、また、比較例11に比して7乃至9%IACS
高い。従って、これらの合金は、熱交換器用材料として
高い信頼性を得ることができる。
As is clear from these Tables 3 to 6,
All of Examples 1 to 9 according to the present invention showed excellent material properties even when heated at a temperature of 830 ° C. for 10 minutes. That is, these material properties have a tensile strength of 1. compared to the phosphorus deoxidized copper (Comparative Example 9) used for the conventional heat exchanger.
4 times or more, proof stress 8 times or more, hardness is 2 times or more, showing excellent characteristics. Further, the crystal grain size is as fine as 20 to 30 μm, and fatigue characteristics are remarkably excellent. Moreover, these Examples 1 to 9 are also excellent in brazing property, and the wet spreadability and the adhesiveness of solder are equal to or higher than those of Comparative Example 9. Further, as compared with Comparative Examples 10 and 11 which are alloys disclosed in JP-A-04-272148 and JP-A-62-006733, respectively, tensile strength, proof stress, hardness,
Excellent in crystal grain size, fatigue characteristics, wettability and spreadability of brazing filler metal, and solder adhesion. Particularly, in Examples 3 to 6 having compositions defined in claim 2 of the present application, the conductivity is 16 to 18% IAC as compared with Comparative Example 10.
S is high, and is 7 to 9% IACS as compared with Comparative Example 11.
high. Therefore, these alloys can obtain high reliability as a material for a heat exchanger.

【0035】一方、Ni含有量が0.07重量%と少な
い比較例1は引張強さ、耐力、硬さ、疲労特性及び導電
率が実施例1乃至9に比して劣っており、逆にNi含有
量が4.5重量%と多い比較例5も導電率が劣ってい
る。また、Ti含有量が0.01重量%と少ない比較例
2は導電率が実施例1乃至9に比して劣っている。更に
また、Co含有量が0.01重量%と少ない比較例3は
実施例1乃至9に比して結晶粒が粗大化して疲労特性が
劣っており、逆にCo含有量が2.1重量%と多い比較
例7は導電率が劣っている。更にまた、Zn含有量が
0.006重量%と少ない比較例4ははんだの密着性が
実施例1乃至9に比して劣っており、逆にZn含有量が
2.0重量%と多い比較例8はろう材の濡れ拡がり性及
び導電率が劣っている。更にまた、従来のりん脱酸銅で
ある比較例9は、耐力、疲労特性及びはんだ密着性等の
特性が実施例1乃至9に比して著しく劣っている。特開
平04−272148号及び特開昭62−006733
号に開示された合金である比較例10及び11は前述の
如く、実施例1乃至9に比して導電率が劣っている。
On the other hand, Comparative Example 1, which has a low Ni content of 0.07% by weight, is inferior to Examples 1 to 9 in tensile strength, proof stress, hardness, fatigue characteristics and electrical conductivity. Comparative Example 5 having a large Ni content of 4.5% by weight also has poor conductivity. Further, the conductivity of Comparative Example 2, which has a low Ti content of 0.01% by weight, is inferior to that of Examples 1 to 9. Furthermore, Comparative Example 3, which has a small Co content of 0.01% by weight, has coarser crystal grains and is inferior in fatigue properties as compared with Examples 1 to 9, and conversely the Co content is 2.1% by weight. %, The conductivity of Comparative Example 7 is inferior. Furthermore, in Comparative Example 4 in which the Zn content is as low as 0.006% by weight, the adhesiveness of the solder is inferior to that in Examples 1 to 9, and conversely, the Zn content is as high as 2.0% by weight. In Example 8, the brazing material has poor wettability and conductivity. Furthermore, Comparative Example 9, which is a conventional phosphorous deoxidized copper, is significantly inferior to Examples 1 to 9 in properties such as proof stress, fatigue properties and solder adhesion. JP-A-04-272148 and JP-A-62-006733.
Comparative Examples 10 and 11 which are the alloys disclosed in No. 1 have inferior electric conductivity as compared with Examples 1 to 9 as described above.

【0036】[0036]

【発明の効果】以上説明したように本発明に係る耐熱銅
合金は、所定量のNi,Ti,Co及びZnを含有して
いるため、従来の熱交換器用銅合金であるりん脱酸銅と
同等かそれ以上のろう材の濡れ拡がり性を有すると共
に、ろう付け後の引張強さ、耐力、硬さ、結晶粒度及び
疲労特性等が著しく優れており、且つ、導電率が優れて
いて、熱伝導性が良好である。従って、本発明は、熱交
換器の信頼性向上に極めて有用である。
As described above, since the heat-resistant copper alloy according to the present invention contains a predetermined amount of Ni, Ti, Co and Zn, it is different from phosphorus deoxidized copper which is a conventional copper alloy for heat exchangers. While having the same or greater wettability and spreadability of the brazing material, the tensile strength after brazing, the proof stress, the hardness, the grain size and the fatigue characteristics are remarkably excellent, and the conductivity is excellent, and the heat Good conductivity. Therefore, the present invention is extremely useful for improving the reliability of the heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、夫々一般的な熱交換器を示
す正面図及び側面図である。
1A and 1B are a front view and a side view showing a general heat exchanger, respectively.

【図2】ろう材の濡れ拡がり試験に使用したろう付け炉
を示す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing a brazing furnace used for a wetting and spreading test of a brazing material.

【図3】(a),(b)は、夫々濡れ拡がり試験に用い
た試験部材を示す正面図及び側面図である。
3 (a) and 3 (b) are respectively a front view and a side view showing a test member used for a wet spread test.

【符号の説明】[Explanation of symbols]

1a,1b;缶体 2;フィン 3;パイプ 4;気密管 5;管状炉 6;水冷帯 7,8;栓部材 9;ガス導入部 10;ガス排出部 11;試験台 12;支持棒 13;試験部材 20;試験片 21;ろう材 A,B,C;ろう付け部 1a, 1b; can body 2; fin 3; pipe 4; airtight tube 5; tubular furnace 6; water cooling zone 7, 8; stopper member 9; gas introduction part 10; gas discharge part 11; test stand 12; support rod 13; Test member 20; Test piece 21; Brazing material A, B, C; Brazing part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.1乃至4.0重量%のNiと、0.
05乃至0.4重量%のTiと、0.05乃至1.0重
量%のCoと、0.01乃至1.0重量%のZnとを含
有し、残部がCu及び不可避的不純物からなることを特
徴とする耐熱銅合金。
1. A Ni content of 0.1 to 4.0% by weight;
05 to 0.4% by weight of Ti, 0.05 to 1.0% by weight of Co, 0.01 to 1.0% by weight of Zn, and the balance Cu and unavoidable impurities A heat resistant copper alloy.
【請求項2】 0.4乃至0.8重量%のNiと、0.
1乃至0.3重量%のTiと、0.1乃至0.3重量%
のCoと、0.01乃至1.0重量%のZnとを含有
し、残部がCu及び不可避的不純物からなることを特徴
とする耐熱銅合金。
2. Ni of 0.4 to 0.8% by weight;
1 to 0.3 wt% Ti and 0.1 to 0.3 wt%
Of Co and 0.01 to 1.0% by weight of Zn, with the balance being Cu and inevitable impurities, a heat-resistant copper alloy.
JP12632893A 1993-05-27 1993-05-27 Heat resistant copper alloy Pending JPH06330211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12632893A JPH06330211A (en) 1993-05-27 1993-05-27 Heat resistant copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12632893A JPH06330211A (en) 1993-05-27 1993-05-27 Heat resistant copper alloy

Publications (1)

Publication Number Publication Date
JPH06330211A true JPH06330211A (en) 1994-11-29

Family

ID=14932473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12632893A Pending JPH06330211A (en) 1993-05-27 1993-05-27 Heat resistant copper alloy

Country Status (1)

Country Link
JP (1) JPH06330211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539140A (en) * 2002-09-13 2005-12-22 オリン コーポレイション Age-hardening copper-based alloy and manufacturing method
CN116555625A (en) * 2023-05-08 2023-08-08 大连理工大学 Multi-scale multiphase coherent precipitation strengthening Cu-Ni-Al-Co-Cr-Ti high-temperature-resistant copper alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539140A (en) * 2002-09-13 2005-12-22 オリン コーポレイション Age-hardening copper-based alloy and manufacturing method
CN116555625A (en) * 2023-05-08 2023-08-08 大连理工大学 Multi-scale multiphase coherent precipitation strengthening Cu-Ni-Al-Co-Cr-Ti high-temperature-resistant copper alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101455874B1 (en) Process for manufacturing aluminum alloy fin material for heat exchanger, and process for manufacturing heat exchanger through brazing of the fin material
JP3794971B2 (en) Copper alloy tube for heat exchanger
WO2015173984A1 (en) Aluminum alloy fin material for heat exchanger having exceptional brazeability and sagging resistance, and method for manufacturing same
EP3018223B1 (en) Brazing sheet for heat exchanger, and method for manufacturing said sheet
EP1250468B8 (en) Process of producing aluminum fin alloy
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
EP3847289B1 (en) Aluminum alloy for heat exchanger fins
JP6472378B2 (en) Ultra-flexible and melt-resistant fin material with very high strength
EP1576332B1 (en) Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
JP4030006B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP6758281B2 (en) Aluminum alloy brazing sheet fin material for heat exchanger and its manufacturing method
KR20220026401A (en) Aluminum alloy for flux-free brazing and brazing method using the same
JP3345845B2 (en) Aluminum alloy brazing sheet strip for ERW processing
JPH0765131B2 (en) Heat-resistant copper alloy for heat exchangers with excellent hard brazing properties
JPS5823452B2 (en) Softening resistant copper alloy
US20040182482A1 (en) DC cast Al alloy
JPH10130754A (en) Heat resistant copper base alloy
JPH06330211A (en) Heat resistant copper alloy
JPH0770685A (en) High strength al alloy fin material and production thereof
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JPH0446695A (en) Brazing filler metal for brazing to aluminum member
US4578320A (en) Copper-nickel alloys for brazed articles
US20080251162A1 (en) Copper alloy and method for its manufacture
JPH069747B2 (en) Alloy foil for liquid phase diffusion bonding of Cr-containing materials that can be bonded in an oxidizing atmosphere
JP3713976B2 (en) Aluminum alloy brazing material and aluminum alloy brazing sheet