JPH063286B2 - Steam generator - Google Patents

Steam generator

Info

Publication number
JPH063286B2
JPH063286B2 JP59143251A JP14325184A JPH063286B2 JP H063286 B2 JPH063286 B2 JP H063286B2 JP 59143251 A JP59143251 A JP 59143251A JP 14325184 A JP14325184 A JP 14325184A JP H063286 B2 JPH063286 B2 JP H063286B2
Authority
JP
Japan
Prior art keywords
steam
boiler
temperature
pipe
superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59143251A
Other languages
Japanese (ja)
Other versions
JPS6124906A (en
Inventor
正敏 久留
武志 国本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59143251A priority Critical patent/JPH063286B2/en
Publication of JPS6124906A publication Critical patent/JPS6124906A/en
Publication of JPH063286B2 publication Critical patent/JPH063286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気発生装置(ボイラ)に関し、ボイラ停止
時の保缶要領改善により、ボイラ起動時間の大巾短縮、
ボイラ起動に伴なう過熱器出口管寄せ及び主蒸気管の寿
命消費の低減、燃料量の削減を図ることにある。
Description: TECHNICAL FIELD The present invention relates to a steam generator (boiler), and by improving the can-keeping procedure when the boiler is stopped, the boiler start-up time is greatly shortened.
This is to reduce the lifespan consumption of the superheater outlet pipe and main steam pipe that accompany boiler startup, and to reduce the amount of fuel.

従来の技術 第4図は、火力発電プラント系統の概要を示す。2. Related Art FIG. 4 shows an outline of a thermal power plant system.

第4図において、節炭器1で加熱されたボイラ給水は蒸
気ドラム2にてボイラ循環水と混合し、降水管3を経て
火炉水冷壁4で熱吸収し、飽和水/蒸気の混合体とな
り、蒸気ドラム2に循環する。この蒸気ドラムで分離さ
れた飽和蒸気は、一次過熱器5で過熱された後、過熱低
減器6にて温度制御され、その後二次過熱器7にて規定
温度まで過熱されて、高圧タービン8へ送気される。
In FIG. 4, the boiler feed water heated in the economizer 1 is mixed with the boiler circulating water in the steam drum 2, and is absorbed by the furnace water cooling wall 4 via the downcomer pipe 3 to become a saturated water / steam mixture. , Circulate in the steam drum 2. The saturated steam separated by the steam drum is superheated by the primary superheater 5, then temperature-controlled by the superheat reducer 6, and then superheated to a specified temperature by the secondary superheater 7, and then sent to the high-pressure turbine 8. Being sent.

なお、9は一次過熱器出口管寄せ、10は一次過熱器出
口連絡管、11は二次過熱器入口連絡管、12は二次過
熱器入口管寄せ、13は過熱器出口管寄せ、14は主蒸
気管、15はタービン入口主塞止弁、16及び17は夫
々一次及び二次過熱器出口ブロー制御弁、18及び19
は夫々その付属配管を示す。
In addition, 9 is a primary superheater outlet pipe, 10 is a primary superheater outlet communication pipe, 11 is a secondary superheater inlet communication pipe, 12 is a secondary superheater inlet pipe, 13 is a superheater outlet pipe, 14 is Main steam pipe, 15 turbine inlet main blocking valve, 16 and 17 primary and secondary superheater outlet blow control valves, 18 and 19
Indicates the attached pipes, respectively.

高圧タービン8の排気は、低温再熱蒸気管20を経て再
熱器21に入って、規定温度まで過熱され、その後連絡
管22及び再熱塞止弁23を経て中圧タービン24に到
る。この中圧タービンより蒸気は、クロスオーバ管25
を経て低圧タービン26に到る。この低圧タービンの排
気は、復水器27にて凝縮し、復水ポンプ28にて昇圧
され、低圧給水加熱器29を経て脱気器30に到る。給
水は、この脱気器からボイラ給水ポンプ31にて昇圧さ
れ、高圧給水加熱器32を経てボイラへ給水される。
The exhaust gas from the high-pressure turbine 8 enters the reheater 21 via the low-temperature reheat steam pipe 20, is superheated to a specified temperature, and then reaches the intermediate-pressure turbine 24 via the communication pipe 22 and the reheat stop valve 23. Steam from this medium-pressure turbine is crossover pipe 25
To reach the low-pressure turbine 26. The exhaust gas of the low-pressure turbine is condensed in the condenser 27, boosted in pressure by the condensate pump 28, and reaches the deaerator 30 via the low-pressure feed water heater 29. Water supply is boosted from the deaerator by the boiler water supply pump 31, and is supplied to the boiler via the high-pressure water supply heater 32.

なお、33は過熱低減器スプレイ制御弁、34はその給
水管を示す。
In addition, 33 is a superheat reducer spray control valve, 34 is a water supply pipe.

しかして、これらの火力発電プラントは、ベースロード
運用の原子力発電設備の増加とともに負荷変動用として
使用され、毎深夜停止・早朝起動のいわゆるツーシフト
運転が必要となっている。
However, these thermal power plants are used for load changes as the number of base-load operated nuclear power generation facilities increases, and so-called two-shift operation in which each night is stopped / started in the early morning is required.

第5図は8時間停止のユニット停止起動特性曲線の一例
を示し、この例では、ユニットは0時に解列し、ボイラ
はホットバンキングの状態に入り、7時点火、8時併
入、9時全負荷に到達している。
FIG. 5 shows an example of the unit stop activation characteristic curve of 8 hours stop, in this example, the unit is disconnected at 0 o'clock, the boiler enters the state of hot banking, 7 o'clock fire, 8 o'clock joint, 9 o'clock Full load has been reached.

このようなツーシフト運転ユニットに要求される最も基
本的な機能は、急速な起動ができること(点火〜全負荷
所要時間が短かいこと)、機器の寿命消費が少ないこ
と、起動損失が少ないこと等である。また、一般的に、
適当な起動時の熱回収装置を有しているユニットでは、
起動時間が短かい程、起動損失も少なくなる。したがっ
て、急速起動は火力発電プラントにとっては非常に重要
となるが、この制限条件となるのが急速起動により発生
する機器の温度変化に起因する熱応力である。起動時間
が短かい程従来のボイラでは発生熱応力も大きく、寿命
消費も大きくなる。
The most basic functions required for such a two-shift operation unit are that it can be rapidly started (ignition to full load time is short), that the life of the equipment is small, and that start-up loss is small. is there. Also, in general,
For units that have a suitable start-up heat recovery device,
The shorter the startup time, the less the startup loss. Therefore, the rapid start is very important for the thermal power plant, but the limiting condition is the thermal stress caused by the temperature change of the equipment caused by the rapid start. The shorter the startup time, the greater the thermal stress generated in the conventional boiler, and the longer the life consumption.

しかして、ボイラにおいて、起動停止による寿命消費が
最大となるのが、過熱器出口管寄せである。これは、発
電用ボイラにおいては、過熱器出口蒸気が高圧/高温の
為、管寄せ板厚が厚いことと、温度変化が大きいことに
起因している。前者については、プラントの高効率化の
観点より高圧・高温化が進むので、高級材料の使用によ
り若干の改善は可能としても、増々厳しい条件に曝され
ることになる。従って、効果的な対策としては、過熱器
出口管寄せの温度変化を少なくすることである。即ち、
ユニット停止時の温度低下を抑制することである。
In the boiler, however, it is the superheater outlet heading that maximizes the life consumption by starting and stopping. This is because, in the power generation boiler, the steam at the outlet of the superheater has a high pressure / high temperature, so that the pipe thickness is large and the temperature change is large. With regard to the former, high pressure and high temperature are advancing from the viewpoint of increasing plant efficiency, so even if some improvements can be made by using high-grade materials, they will be exposed to increasingly severe conditions. Therefore, an effective measure is to reduce the temperature change of the superheater outlet pipe offset. That is,
This is to suppress the temperature drop when the unit is stopped.

この過熱器出口管寄せ温度降下は、ボイラ消火後のボイ
ラパージによる伝熱面冷却および熱放散等による過熱器
・主蒸気管系統内蒸気の低温化により冷却されることが
主要な原因である。また、起動時発生する低温蒸気で冷
却されるともあるが、これは過熱器ブローライン又は過
熱器バイパスラインの適切な適用により避けることがで
きる。
This temperature drop near the outlet of the superheater is mainly due to cooling of the heat transfer surface by boiler purging after extinguishing the boiler and cooling of the steam in the superheater / main steam pipe system due to heat dissipation. It may also be cooled by the low temperature steam generated at startup, which can be avoided by proper application of the superheater blow line or superheater bypass line.

発明が解決しようとする問題点 以上述べたように、今後の火力発電プラントは、ユニッ
ト容量が大形化すると共に高効率化の為、高圧・高温化
し、この為ボイラ耐圧部材特に過熱器出口管寄せは大形
・厚肉部材となり、起動停止による寿命消費が大となる
が、一方頻繁なかつ急速な起動停止又はシーシフト運転
が必要になる。
Problems to be Solved by the Invention As described above, in the future thermal power plant, the unit capacity becomes large and the efficiency becomes high, so that the pressure becomes high and the temperature becomes high. Therefore, the boiler pressure resistant member, especially the superheater outlet pipe The displacement is a large-sized / thick-walled member, and the life consumption is large due to start / stop, but on the other hand, frequent and rapid start / stop or sea shift operation is required.

本発明は、このような状況に鑑み、起動・停止に伴なう
過熱器出口管寄せの温度変化(降下)を最小限に抑える
ことにより、寿命消費を最少とし、高圧/高温ボイラの
急速な起動を可能にし、併せて起動時間短縮により、起
動用燃料消費量の低減を図り、経済的な起動を可能とす
るものである。
In view of such a situation, the present invention minimizes the lifespan consumption by minimizing the temperature change (fall) of the superheater outlet pipe heading accompanying the start-up / shutdown, and the rapid operation of the high-pressure / high-temperature boiler. The start-up is enabled, and at the same time, the start-up time is shortened, so that the fuel consumption for start-up is reduced and the economical start-up is enabled.

問題点を解決するための手段 ボイラ停止中の過熱器出口管寄せ及び主蒸気管の冷却
(温度降下)はボイラパージ(冷空気によるボイラ内可
燃性ガスの置換)及びボイラ特に過熱器・主蒸気管から
の熱放散及びそれにより低温化した系統内蒸気が移動す
ることにより生ずる現象であるので、これを防止する
為、本発明は、タービン入口主塞止弁近傍の主蒸気管に
補助蒸気ラインを接続し、ボイラの停止時及び起動時該
ボイラ以外の蒸気源から保温用の補助蒸気を前記補助蒸
気ラインを通して主蒸気管に導入して、過熱器側へ逆向
きに流すと共に、二次過熱器入口管寄せに設置したブロ
ーラインに設けたブロー制御弁により系統圧力を制御し
て、必要な補助蒸気量を確保するようにし、これにより
ボイラの停止時及び起動時においても主蒸気管及び過熱
器出口管寄せを高温状態に保持するようにしたものであ
る。
Means for solving the problems When the boiler is stopped, the superheater outlet heading and the main steam pipe cooling (temperature drop) are performed by the boiler purge (replacement of combustible gas in the boiler with cold air) and the boiler, especially the superheater / main steam pipe. Since this is a phenomenon caused by heat dissipation from the turbine and movement of steam in the system whose temperature is lowered, the present invention provides an auxiliary steam line in the main steam pipe near the turbine inlet main block valve in order to prevent this. Connected, at the time of stopping and starting the boiler, introducing auxiliary steam for heat insulation from the steam source other than the boiler into the main steam pipe through the auxiliary steam line, and flowing in the reverse direction to the superheater side, and the secondary superheater. The blow control valve installed in the blow line installed near the inlet pipe controls the system pressure to ensure the required amount of auxiliary steam, and thus the main steam pipe and And the outlet pipe of the superheater are kept at a high temperature.

実施例 以下図面を参照して本発明の一実施例について詳述す
る。
Embodiment An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明によるボイラの系統を示し、第2図はボ
イラ構成を概略的に示す。
FIG. 1 shows a boiler system according to the present invention, and FIG. 2 schematically shows a boiler configuration.

第1及び2図において、高圧給水加熱器(図示せず)よ
りのボイラ給水は給水管40を経て節炭器入口管寄せ4
1に入り、節炭器42にて加熱され、節炭器出口管寄せ
43より節炭器出口給水管44を経て蒸気ドラム45に
至る。この給水はボイラ循環水と共に降水管45-1にて水
ドラム45-2に至り、火炉水冷壁にて熱吸収を行ない、汽
水混合物となって、蒸気ドラム45に戻る。この蒸気ド
ラムで分離された蒸気は、天井・後部煙道後壁(蒸気冷
却壁)46を経て下部半環状寄せ47に至る。ここよ
り、蒸気は後部煙道側壁48、同出口管寄せ49、同出
口連絡管50を経て、一次過熱器入口管寄せ51に入
る。蒸気は、この一次過熱器53で熱吸収を行ない、出
口管寄せ54より減温器55で温度制御され、二次過熱
器入口管寄せ56に入り、二次過熱器57にて規定温度
迄昇温されて、二次過熱器出口管寄せ58より主蒸気管
59を経てタービン60へ送気される。このタービンの
入口には主塞止弁61が設置されている。
In FIGS. 1 and 2, boiler feed water from a high-pressure feed water heater (not shown) passes through a water feed pipe 40 and a coal economizer inlet header 4
1, it is heated by the economizer 42 and reaches the steam drum 45 from the economizer outlet header 43 through the economizer outlet water supply pipe 44. This supply water reaches the water drum 45-2 in the downcomer 45-1 together with the boiler circulating water, absorbs heat in the furnace water cooling wall, becomes a brackish water mixture, and returns to the steam drum 45. The steam separated by the steam drum reaches the lower semi-annular gather 47 through the ceiling / rear flue rear wall (steam cooling wall) 46. From here, the steam enters the primary superheater inlet pipe 51 through the rear flue side wall 48, the outlet pipe 49, and the outlet communication pipe 50. The steam absorbs heat in the primary superheater 53, the temperature is controlled by the desuperheater 55 from the outlet pipe 54, enters the secondary superheater inlet pipe 56, and rises to a specified temperature in the secondary superheater 57. After being heated, it is sent to the turbine 60 from the secondary superheater outlet pipe 58 through the main steam pipe 59. A main stop valve 61 is installed at the inlet of this turbine.

なお、62は減温器55へ接続されているスプレイ水供
給管、63はスプレイ水量制御弁で、過熱器出口蒸気温
度が所定値になる様に制御する。64、65、66は夫々後部煙
道蒸気冷却壁ドレンライン、二次過熱器入口ブローライ
ン、過熱器出口ブローラインを示し、67はタービン入
口主蒸気管ブローラインを示し、また68、69、70、71は夫
々制御弁を示す。これらブローラインは、ボイラ起動に
際し、ボイラ停止時発生したドレンを排出することと、
ボイラ起動時発生する低温蒸気を処理する為に使用され
る(復水器へ回収又は大気へ放出する)。
In addition, 62 is a spray water supply pipe connected to the desuperheater 55, 63 is a spray water amount control valve, and controls so that the superheater outlet steam temperature becomes a predetermined value. Reference numerals 64, 65 and 66 respectively indicate a rear flue steam cooling wall drain line, a secondary superheater inlet blow line and a superheater outlet blow line, 67 indicates a turbine inlet main steam pipe blow line, and 68, 69 and 70 respectively. , 71 are control valves, respectively. These blow lines discharge the drain generated when the boiler is stopped when the boiler is started,
Used to treat low temperature steam generated at boiler startup (collected in condenser or released to atmosphere).

以上述べた構成は従来と同じものであるが、本発明によ
れば、ボイラ停止中の過熱器出口管寄せ温度低下防止の
補助蒸気ライン72がタービン入口主塞止弁61近傍の
主蒸気管59に接続され、過熱器出口管寄せ金属温度を
所定値に維持する様に補助蒸気を注入する。
Although the configuration described above is the same as the conventional one, according to the present invention, the auxiliary steam line 72 for preventing the temperature drop of the superheater outlet pipe approaching temperature when the boiler is stopped has the main steam pipe 59 near the turbine inlet main blocking valve 61. The auxiliary steam is injected to maintain the metal temperature of the superheater outlet pipe head at a predetermined value.

この補助蒸気ラインについて詳細に説明すると、補助蒸
気ライン72は当該ボイラが停止中、運転している他の
ボイラ又は補助ボイラに接続されており、当該ボイラが
停止中の保温用補助蒸気を供給するラインである。補助
蒸気制御弁73は過熱器出口管寄せ58に設置された金
属温度計測用熱電対75の温度が所定温度になる様に、
温度制御74により制御される。76は逆止弁を示す。
Explaining this auxiliary steam line in detail, the auxiliary steam line 72 is connected to another boiler or an auxiliary boiler that is operating while the boiler is stopped, and supplies the auxiliary steam for heat retention while the boiler is stopped. It is a line. The auxiliary steam control valve 73 is provided so that the temperature of the metal temperature measuring thermocouple 75 installed in the superheater outlet pipe 58 becomes a predetermined temperature.
It is controlled by the temperature control 74. Reference numeral 76 indicates a check valve.

しかして、ボイラ停止中は、タービン入口に設置されて
いる主蒸気止弁61は全閉され、ボイラはボレルアップ
されている。従って、唯補助蒸気ラインを設置したのみ
では、所定温度維持に必要な補助蒸気流を確保すること
が出来ない。この様な不具合を解決する為に、圧力検出
器90により系統圧力を検出し、当該圧力が所定圧力に
なる様に二次過熱器入口ブロー制御弁69が圧力制御器
77にて制御され、これにより必要な補助蒸気量が確保
される。
While the boiler is stopped, the main steam stop valve 61 installed at the turbine inlet is fully closed and the boiler is bored up. Therefore, it is not possible to secure the auxiliary steam flow necessary for maintaining the predetermined temperature only by installing the auxiliary steam line. In order to solve such a problem, the pressure detector 90 detects the system pressure, and the secondary superheater inlet blow control valve 69 is controlled by the pressure controller 77 so that the pressure becomes a predetermined pressure. Will ensure the required amount of auxiliary steam.

即ち、過熱器出口管寄せ金属温度が所定量となる様、補
助蒸気制御弁73にて補助蒸気量を制御し、系統圧力が
所定圧力になる様に二次過熱器入口ブロー制御弁69に
て系統蒸気圧力を制御する。
That is, the auxiliary steam control valve 73 controls the amount of auxiliary steam so that the metal temperature of the outlet superheater outlet pipe is a predetermined amount, and the secondary superheater inlet blow control valve 69 is controlled so that the system pressure becomes a predetermined pressure. Control system steam pressure.

ここで、補助蒸気の温度・圧力は、起動時のタービン通
気蒸気条件との関係で制約される。本発明は、特に、毎
深夜停止運用を行なうプラントを対象としているが、通
気時のタービン側要求蒸気条件は、一般にタービン形
式、タービン停止時の蒸気条件によるタービン金属温度
により相違するが、70kg/cm2×460℃前後である。従っ
て、タービン通気時は過熱器出口管寄せおよび主蒸気管
共460℃程度の蒸気に曝らされることになるので、それ
らの金属温度も略同程度になる。従って、ボイラ停止時
に、通気時の蒸気温度以下に低下しない様に保持するこ
とが合理的である。
Here, the temperature and pressure of the auxiliary steam are restricted in relation to the turbine ventilation steam conditions at the time of startup. The present invention is particularly directed to a plant that performs a night-time stop operation, but the turbine-side required steam condition at the time of aeration generally differs depending on the turbine type and the turbine metal temperature depending on the steam condition at the time of turbine stop, but 70 kg / It is around cm 2 × 460 ° C. Therefore, when the turbine is ventilated, both the outlet pipe of the superheater and the main steam pipe are exposed to the steam of about 460 ° C., and the metal temperatures thereof are also about the same. Therefore, when the boiler is stopped, it is rational to maintain the temperature so that it does not drop below the vapor temperature during ventilation.

即ち、補助蒸気ライン72より供給される加熱蒸気は、
通気時の蒸気条件(圧力、温度)より若干高い蒸気を用
い、過熱器出口管寄せ金属温度を監視して、これが通気
時の蒸気温度以下にならない様に、加熱蒸気制御弁73
にて蒸気量は制御される。また、加熱蒸気を主蒸気管系
内に導入する為には、系内圧力は加熱蒸気圧力より低く
なければならないので、過熱器出口管寄せ金属温度が通
気条件温度に低下しても、なお系内圧力が高い場合は、
二次過熱器入口ブロー制御弁69にて通気条件圧力に制
御される。即ち、最終過熱器および主蒸気管温度は停止
時もタービン通気時と略同一レベルに維持されることに
なる。
That is, the heating steam supplied from the auxiliary steam line 72 is
The steam temperature slightly higher than the steam conditions (pressure, temperature) at the time of ventilation is used, and the superheater outlet header metal temperature is monitored, so that the heating steam control valve 73 does not fall below the steam temperature at the time of ventilation.
The amount of steam is controlled at. Moreover, in order to introduce the heating steam into the main steam pipe system, the system internal pressure must be lower than the heating steam pressure, so even if the superheater outlet header metal temperature falls to the ventilation condition temperature, If the internal pressure is high,
The ventilating condition pressure is controlled by the secondary superheater inlet blow control valve 69. That is, the temperatures of the final superheater and the main steam pipe are maintained at substantially the same level as when the turbine is ventilated even when stopped.

通気条件、圧力の制御において、一般には、停止時の圧
力降下の為、ブロー制御弁による圧力制御の必要はない
が、ブロー系統をタービングランドシール、低圧給水加
熱器シール、脱気器シール等又は重油配管等のトレース
等用の補助蒸気系統に接続し、有効利用することもでき
る。
Generally, in controlling ventilation conditions and pressure, there is no need to control the pressure with a blow control valve because of the pressure drop at the time of stop, but the blow system has a turbine gland seal, low pressure feed water heater seal, deaerator seal, etc. It can also be used effectively by connecting to an auxiliary steam system for traces such as heavy oil piping.

発明の効果 以上述べたように、本発明によれば、過熱器出口管寄せ
金属温度はボイラ停止時低下するが、主蒸気管に所定
(通気時の蒸気温度以上)温度の加熱蒸気を導入するこ
とにより、所定温度以上に保持することができる。即
ち、停止−起動に伴なう金属温度の変化を最少或いは許
容値以下に抑えることができる(第3図参照)ので、起
動時間を短縮することができる。したがって、ボイラ停
止−起動に伴なう熱応力発生が少なく或いは許容レベル
以下となるので、寿命が長くなると共に信頼性が向上す
る。また、起動時間短縮により、効率的な起動が可能と
なり、燃料使用量を削減できる。すなわち、起動時、発
生蒸気の温度が高温要素である主蒸気管及び過熱器出口
管寄せを冷却することがないような充分高い温度になる
までは、発生蒸気を主蒸気管及び過熱器出口管寄せには
導入しないことにより、これら主蒸気管及び過熱器出口
管寄せは高温状態に保持されていて冷却を受けないた
め、タービン起動に必要な高温蒸気が速かに得られ、よ
って急速起動が可能となり、起動時の所要燃料を節約す
ることができる。なお、熱応力の発生低減について詳し
く説明すれば、過熱器出口管寄せに発生する熱応力はボ
イラの起動・停止に伴なって生ずる内外面の温度差に起
因する。金属温度は停止時は内面側低−外面側高、起動
時は内面側高−外面側低となり、温度変化巾が大きい
程、かつ温度変化速度が速く(急速起動停止)程、内外
面温度差が大きくなり、発生熱応力が大きくなる。従っ
て、ボイラ停止時、相当温度の加熱蒸気を系統内に注入
して金属温度の低下を低減することにより、熱応力の発
生を低減することができるものである。
EFFECTS OF THE INVENTION As described above, according to the present invention, the superheater outlet header metal temperature decreases when the boiler is stopped, but the heating steam having a predetermined temperature (equal to or higher than the steam temperature during ventilation) is introduced into the main steam pipe. As a result, the temperature can be maintained above the predetermined temperature. That is, since the change in metal temperature due to stop-start can be suppressed to a minimum value or below an allowable value (see FIG. 3), start-up time can be shortened. Therefore, the generation of thermal stress associated with the stop-start of the boiler is reduced or becomes less than the allowable level, so that the life is extended and the reliability is improved. In addition, the shortening of the start-up time enables efficient start-up and reduces the amount of fuel used. That is, at the time of start-up, until the temperature of the generated steam reaches a sufficiently high temperature that does not cool the main steam pipe and superheater outlet pipe, which are high-temperature elements, the generated steam is kept in the main steam pipe and superheater outlet pipe. Since the main steam pipe and the superheater outlet pipe are kept at a high temperature and are not cooled by not introducing them into the heat pump, the high temperature steam necessary for starting the turbine can be quickly obtained, and therefore the quick start can be achieved. It becomes possible and the fuel required at the time of starting can be saved. If the reduction of thermal stress is explained in detail, the thermal stress generated at the outlet pipe of the superheater is caused by the temperature difference between the inner and outer surfaces caused by starting and stopping the boiler. The metal temperature is low on the inner side-high on the outer side when stopped, and high on the inner side-low on the outer side at startup.The larger the temperature change width and the faster the temperature change rate (quick start / stop), the difference between the inner and outer surface temperatures. Becomes larger and the generated thermal stress becomes larger. Therefore, the generation of thermal stress can be reduced by injecting the heating steam of a corresponding temperature into the system when the boiler is stopped to reduce the decrease in the metal temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による蒸気発生装置の一例を示す系統
図、第2図はその概略構成図、第3図は過熱器出口管寄
せの金属温度変化を示す図、第4図は火力発電プラント
の一例を示す系統図、第5図はボイラ停止・起動特性の
一例を示す図である。 56・・二次過熱器入口管寄せ、59・・主蒸気管、6
0・・タービン、61・・主塞止弁、65・・二次過熱
器入口ブローライン、69・・二次過熱器入口ブロー制
御弁、72・・補助蒸気ライン。
FIG. 1 is a system diagram showing an example of a steam generator according to the present invention, FIG. 2 is a schematic configuration diagram thereof, FIG. 3 is a diagram showing changes in metal temperature of a superheater outlet pipe, and FIG. 4 is a thermal power plant. FIG. 5 is a system diagram showing an example, and FIG. 5 is a diagram showing an example of boiler stop / start characteristics. 56..Secondary superheater inlet pipe, 59..main steam pipe, 6
0 ... Turbine, 61 ... Main blocking valve, 65 ... Secondary superheater inlet blow line, 69 ... Secondary superheater inlet blow control valve, 72 ... Auxiliary steam line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タービン入口主塞止弁近傍の主蒸気管に補
助蒸気ラインを接続し、ボイラの停止時及び起動時該ボ
イラ以外の蒸気源から保温用の補助蒸気を前記補助蒸気
ラインを通して主蒸気管に導入して、過熱器側へ逆向き
に流すと共に、二次過熱器入口管寄せに設置したブロー
ラインに設けたブロー制御弁により系統圧力を制御し
て、必要な補助蒸気量を確保するようにしたことを特徴
とする蒸気発生装置。
1. An auxiliary steam line is connected to a main steam pipe in the vicinity of a turbine inlet main shut-off valve, and auxiliary steam for heat insulation is supplied from a steam source other than the boiler through the auxiliary steam line when the boiler is stopped or started. It is introduced into the steam pipe and flows in the opposite direction to the superheater side, and the system pressure is controlled by the blow control valve installed in the blow line installed near the secondary superheater inlet pipe to secure the necessary amount of auxiliary steam. A steam generator characterized in that
JP59143251A 1984-07-12 1984-07-12 Steam generator Expired - Fee Related JPH063286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143251A JPH063286B2 (en) 1984-07-12 1984-07-12 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143251A JPH063286B2 (en) 1984-07-12 1984-07-12 Steam generator

Publications (2)

Publication Number Publication Date
JPS6124906A JPS6124906A (en) 1986-02-03
JPH063286B2 true JPH063286B2 (en) 1994-01-12

Family

ID=15334398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143251A Expired - Fee Related JPH063286B2 (en) 1984-07-12 1984-07-12 Steam generator

Country Status (1)

Country Link
JP (1) JPH063286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279783A (en) * 1993-03-29 1994-10-04 Nichiban Kenkyusho:Kk Solid catalyst for laundry

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716442B2 (en) * 1987-12-03 1998-02-18 バブコツク日立株式会社 Waste heat recovery boiler device
JP6871827B2 (en) * 2017-08-30 2021-05-12 三菱パワー株式会社 Boiler structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107401A (en) * 1976-03-05 1977-09-09 Nippon Mining Co Method of maintenance for waste heat boiler
JPS5618206A (en) * 1979-07-24 1981-02-20 Babcock Hitachi Kk Shell protection of boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279783A (en) * 1993-03-29 1994-10-04 Nichiban Kenkyusho:Kk Solid catalyst for laundry

Also Published As

Publication number Publication date
JPS6124906A (en) 1986-02-03

Similar Documents

Publication Publication Date Title
US8959917B2 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator
RU2152527C1 (en) Method of operation of gas-and-steam turbine plant and plant operating according to this method
US8820078B1 (en) Heat recovery steam generator and method for fast starting combined cycles
US6339926B1 (en) Steam-cooled gas turbine combined power plant
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
JP4540472B2 (en) Waste heat steam generator
US3575002A (en) Combination fossil fuel and superheated steam nuclear power plant
JP2000161014A5 (en)
JPH08121703A (en) Waste heat recovery apparatus
EP2698507B1 (en) System and method for temperature control of reheated steam
JP5183305B2 (en) Startup bypass system in steam power plant
JP5725913B2 (en) Combined cycle plant
CN101305163B (en) Method for starting a steam turbine installation
US3882680A (en) By-pass system
US20040025510A1 (en) Method for operating a gas and steam turbine installation and corresponding installation
JP4373420B2 (en) Combined power plant and closed air cooled gas turbine system
JPH063286B2 (en) Steam generator
RU2550414C2 (en) Starting device and method for starting of power unit with direct-flow boiler
JP2000303803A (en) Power generation system
RU35374U1 (en) DEVICE FOR STARTING POWER UNIT OF HEAT POWER PLANTS
JP3659659B2 (en) Exhaust gas boiler
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JP3794724B2 (en) Gasification combined power generation facility
Anisimov et al. Optimization of Start-Up of a Fully Fired Combined-Cycle Plant with GT13E2 Gas Turbine
JPH09210301A (en) Emergency protective apparatus for fluidized bed boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370