JPH0632854B2 - Short-circuit transfer welding control method and apparatus - Google Patents

Short-circuit transfer welding control method and apparatus

Info

Publication number
JPH0632854B2
JPH0632854B2 JP262683A JP262683A JPH0632854B2 JP H0632854 B2 JPH0632854 B2 JP H0632854B2 JP 262683 A JP262683 A JP 262683A JP 262683 A JP262683 A JP 262683A JP H0632854 B2 JPH0632854 B2 JP H0632854B2
Authority
JP
Japan
Prior art keywords
voltage
welding
circuit
short
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP262683A
Other languages
Japanese (ja)
Other versions
JPS59127969A (en
Inventor
隆明 小笠原
徳治 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP262683A priority Critical patent/JPH0632854B2/en
Publication of JPS59127969A publication Critical patent/JPS59127969A/en
Publication of JPH0632854B2 publication Critical patent/JPH0632854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 この発明は短絡移行溶接の制御方法と制御装置に関す
る。
The present invention relates to a control method and a control device for short-circuit transfer welding.

短絡移行溶接は、溶接ワイヤと母材との間での短絡とア
ーク発生とをくり返しつつ溶接を行なう方法である。こ
の種のアーク溶接方法においてはアークの再生時の溶接
電流が大きい場合には大粒のスパツタが発生する。この
スパツタ発生の問題を解決する方法として、アーク再生
時の電流を低下させる技術が知られている。
Short-circuit transfer welding is a method of performing welding while repeating short-circuiting and arc generation between the welding wire and the base material. In this type of arc welding method, if the welding current at the time of arc regeneration is large, large-sized spatters are generated. As a method of solving the problem of the occurrence of the spatter, a technique of reducing the current during arc regeneration is known.

この方法としてWelding Research International Vol.
4,No.2.1974には大電流通電期間を短絡期の中
央期間に限定させて、大電流期間中消耗電極ワイヤと母
材間の電圧を検出して、アーク再生の徴候としての溶滴
のくびれが発生したときの電圧を設定しておき、検出電
圧が設定電圧と等しくなつたとき、大電流期間を終了さ
せるようにプログラム制御してスパツタ発生を抑制する
方法が開示されている。しかし、この方法は溶接ワイヤ
突出長の変動によつて、電極と母材との間の電圧降下が
変動するため、融滴がくびれた時の電圧が一定になら
ず、大電流期間の終了を指示する時期に誤差を生じ、安
定してスパツタを除去することができないという問題が
あつた。
Welding Research International Vol.
No. 4, No. 2.1974, the high current energization period was limited to the central period of the short circuit period, and the voltage between the consumable electrode wire and the base material was detected during the high current period, and the droplet as a sign of arc regeneration was detected. A method is disclosed in which the voltage at the time of occurrence of the constriction is set, and when the detected voltage becomes equal to the set voltage, program control is performed so as to end the large current period to suppress the occurrence of spatter. However, in this method, since the voltage drop between the electrode and the base material fluctuates due to the fluctuation of the welding wire protrusion length, the voltage when the molten droplet is constricted is not constant and the end of the high current period is terminated. There was a problem that an error occurred at the time of pointing and the spatter could not be removed stably.

この問題を解決する一方法として、短絡時のあるタイミ
ングにおける溶接ワイヤ電圧Vを記憶するとともに、
その後に生じる電圧Vとの差△V=V−V……
(1)が設定値となつたとき、溶接電流を低下させる方法
が特願昭56−127973号の特許出願(特開昭58
−29574号公報で公開。)により提案されている。
As one method for solving this problem, the welding wire voltage V L at a certain timing at the time of short circuit is stored, and
The difference between the subsequently resulting voltage V M △ V = V M -V L ......
A method of reducing the welding current when (1) reaches a set value is a patent application of Japanese Patent Application No. 56-127973 (Japanese Patent Application Laid-Open No. 58-58197).
-Published in No. 29574. ).

この提案に係る方法によればスパツタを非常に減少させ
ることができるが、完全にスパツタをなくすことはでき
なかつた。
According to the method according to this proposal, the spatter can be greatly reduced, but the spatter cannot be completely eliminated.

この発明は上述の特許出願により提案されせた制御方法
を改良して、スパツタの発生をさらに低減することを目
的とするものである。
The present invention aims to improve the control method proposed by the above-mentioned patent application to further reduce the occurrence of spatter.

この発明の発明者は、前述の制御方法を詳細に検討した
結果、△V=V−Vが設定値に達した時点を、溶接
ワイヤ先端のくびれが生じる時点とする方法では、実際
のくびれの生じる時点を正確に検出できないことが判明
した。
The inventor of this invention, the method of the time the result of examining in detail the control method described above, the time when △ V = V M -V L has reached the set value, the constriction of the welding wire tip occurs, actual It was found that it was not possible to accurately detect the point at which the necking occurred.

この点を詳述すると、ワイヤ送給速度変更や溶融池の振
動などにより、短絡時間に変化が生じたときに、溶接ワ
イヤ先端のくびれが生じた時点の検出に誤差が生じてい
ることが判明した。この点について、溶接電圧と溶接電
流の変化の波形を観察すると、短絡時においては、短絡
電流が一定であつても、溶接ワイヤのくびれの有無によ
る抵抗変化による△Vの変化の他に、短絡時間に比例し
て、電圧が、ほぼ直線的に、あるいはめるやかな指数関
数的に増加してゆくことが判明した。この電圧増加の要
因は、短絡時における溶接ワイヤのコンタクトチツプか
らの突出部の抵抗が短絡期間中に増加することによ
る。
Explaining this point in detail, it was found that there was an error in the detection at the time when the tip of the welding wire was constricted when the short-circuit time changed due to changes in the wire feed rate or vibration of the molten pool. did. Regarding this point, when observing the waveforms of changes in the welding voltage and the welding current, at the time of a short circuit, even if the short circuit current is constant, in addition to the change of ΔV due to the resistance change due to the presence or absence of the constriction of the welding wire, the short circuit It has been found that the voltage increases almost linearly or in a gradual exponential manner in proportion to time. The cause of this voltage increase is that the resistance of the protruding portion of the welding wire from the contact chip during a short circuit increases during the short circuit period.

溶接ワイヤ突出部の抵抗変化は、短絡電流により、該
突出部の温度が上昇することにより、生じるものであ
り、次式にて表わされる。
The resistance change of the protruding portion of the welding wire occurs when the temperature of the protruding portion rises due to the short-circuit current, and is represented by the following equation.

ここで △Rは溶接ワイヤの抵抗変化 J:定数(4.2) β:温度による抵抗変化率 ρ:密度 R:短絡直後の抵抗 c:比熱 I:短絡電流 d:ワイヤ径 上式において、短絡電流Iは一定に制御されており、
かつワイヤ径が定まつているので、 とおくと△R=k゜R・△tと表わされ、短絡時における
溶接電圧の変化△Vは△V=△R・I=kR・△
t・I=kV△tとみなせる。短絡後t時間後の溶接
ワイヤ突出部における抵抗変化による電圧増加Vと表わせる。
Here, ΔR is the resistance change of the welding wire J: Constant (4.2) β: Rate of resistance change due to temperature ρ: Density R: Resistance immediately after short circuit c: Specific heat I p : Short circuit current d: Wire diameter In the above formula, short circuit current I p is controlled to be constant,
And since the wire diameter is fixed, Putting a △ R = is represented as k ° R · △ t, the variation △ V N of the welding voltage at the time of short circuit △ V N = △ R · I p = kR · △
It can be considered that t · I p = kVΔt. The voltage increase V N due to the resistance change at the welding wire protrusion after t hours is Can be expressed as

この発明は上述の点に着目してなされたものであつて、
(1)式の演算時に上記変化△Vを導入することによ
り、より正確な溶接ワイヤのくびれ点を決定し得ること
を特徴とするものである。
The present invention was made by paying attention to the above points,
(1) by introducing the change △ V N at the time of calculation of the expression, is characterized in that can determine a more constricted point accurate welding wire.

以下にこの発明の一実施例を図面とともに説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は溶接電流、2は給電ケーブル、3
は図示されないモータで送給される溶接ワイヤ、4はコ
ンタクトチツプ、5は溶接ワイヤ3と母材6間に生じる
アーク、7はアースケーブルを示す。溶接ワイヤ3と母
材6との間で短絡とアーク発生を適宜時間間隔でくり返
して、公知の短絡移行溶接を行なう。
In FIG. 1, 1 is a welding current, 2 is a power supply cable, 3
Is a welding wire fed by a motor (not shown), 4 is a contact chip, 5 is an arc generated between the welding wire 3 and the base metal 6, and 7 is a ground cable. Short-circuiting and arc generation are repeated at appropriate time intervals between the welding wire 3 and the base material 6 to perform known short-circuit transfer welding.

第2図は上述の短絡移行溶接時における溶接ワイヤ電圧
波形、電流波形ならびに溶接ワイヤ3と母材6との間の
位置関係を示したものであり、各図において、a,b,
c,d,eはそれぞれの溶接状態を示す。即ちアーク発
生中aから徐々にアーク長が短かくなり、短絡bに至
る。このとき電流を上昇させて、ある一定値に保持す
る。溶滴が最も強固に、母材6に結合した時点cを経過
した後、溶接ワイヤ3の先端がくびれ始めたd点後、溶
接電流を急激に低下させて、電流が充分に低下した時点
eにてアーク再生に移行する。
FIG. 2 shows the welding wire voltage waveform, current waveform, and positional relationship between the welding wire 3 and the base material 6 during the above-described short-circuit transfer welding.
c, d, and e show the respective welding states. That is, during arc generation, the arc length gradually becomes shorter from a, leading to a short circuit b. At this time, the current is increased and maintained at a certain constant value. After the time point c at which the droplet was most strongly bonded to the base material 6 and after the point d at which the tip of the welding wire 3 started to be constricted, the welding current was rapidly reduced to a time point e at which the current was sufficiently reduced. Move to arc playback.

上述の溶接動作時において、この発生においては、第3
図に示すように、短絡移行後、溶接電流がIとして安
定した時点fでの溶接ワイヤの電圧Vを記憶する。次
いで期間cについて、所定の関数V(t)について、 を求める。その後溶接ワイヤの電圧Vを測定しながら が所定の値になつたとき、溶接ワイヤ端のくびれが生じ
た時点であると判定して、溶接電流を低下させる。これ
によつて従来方法よりも確実にスパツタを減少させるこ
とができる。
During the above-mentioned welding operation, the third
As shown in the figure, the voltage V L of the welding wire at the time f when the welding current becomes stable as I p after the transition to the short circuit is stored. Then, for a period c, for a given function V (t), Ask for. After that, while measuring the voltage V M of the welding wire Is reached to a predetermined value, it is determined that the necking of the welding wire end has occurred, and the welding current is reduced. As a result, the spatter can be reduced more reliably than in the conventional method.

実験によれば、溶接ワイヤ径1.2mmφ、溶接電流I
400Aのとき、△V=0.3〜0.6Vであり、電圧V
は、1m秒後に0.20〜0.25Vである。
According to the experiment, when the welding wire diameter is 1.2 mmφ and the welding current I p is 400 A, ΔV = 0.3 to 0.6 V, and the voltage V
N is 0.20 to 0.25V after 1 ms.

なお、第4図に示すように時間t>tとなつた場
合、或いは第5図に示すように、溶接ワイヤ突出長が
となつた場合でも、上述の方法によりVM2
−(VL2+VN2)=△V、或いはVM3−(VL3
+VN3)=△Vとなつた時点で、溶接電流を低下させ
ることにより、スパツタのない溶接を行なうことができ
た。
When the time t 2 > t 1 is satisfied as shown in FIG. 4, or when the welding wire protrusion length is as shown in FIG.
Even if 2 > 1 , V M2 is obtained by the above method.
- (V L2 + V N2) = △ V, or V M3 - (V L3
When + V N3 ) = ΔV, the welding current was reduced to enable welding without spatter.

第6図は上述の制御方法を実施する制御装置の一例であ
り、積分回路11の一方の端子11aは、コンタクトチ
ツプ4と母材6との間の電圧を検出する電圧検出器12
の出力を受けるとともに、他方の端子11bは溶接電流
検出器13から、溶接ワイヤ3の電流を表わす信号を受
けて、該溶接ワイヤ3に流れる電流が所定の値、たとえ
ば、第2図において、短絡移行後所定の電流になつた時
点bから、電圧検出器12の出力電圧を積分する。
FIG. 6 shows an example of a control device for carrying out the above-described control method. One terminal 11a of the integrating circuit 11 has a voltage detector 12 for detecting the voltage between the contact chip 4 and the base material 6.
And the other terminal 11b receives a signal representing the current of the welding wire 3 from the welding current detector 13, and the current flowing through the welding wire 3 has a predetermined value, for example, a short circuit in FIG. The output voltage of the voltage detector 12 is integrated from a time point b when a predetermined current is reached after the shift.

最低値記憶器14は短絡移行時の電流がある値になつた
後の最低電圧を記憶する。
The minimum value storage 14 stores the minimum voltage after the current at the time of transition to a short circuit reaches a certain value.

減算器15は電圧検出器12から溶接電圧Vを受け、
さらに積分回路11から電圧の積分値Vを受け、さら
に最低値記憶器14から電圧Vを受けて△V=V
(V+V)……(2)を演算し、この演算結果△Vは
比較器16の一方の入力端子に印加される。比較器16
の他方の入力端子にはくびれ電圧設定器17から所定の
設定値Eを印加され、△V=Eとなつたとき、該比
較器16は信号を電源1に印加して、溶接ワイヤ3に流
れる電流をアーク再生時にスパツタを生じないような値
に低減する。
The subtractor 15 receives the welding voltage V M from the voltage detector 12,
Further receiving the integrated value V N of the voltage from the integrating circuit 11, and further receives a voltage V L from the lowest value storage 14 △ V = V M -
(V L + V N ) ... (2) is calculated, and the calculation result ΔV is applied to one input terminal of the comparator 16. Comparator 16
Of the other input terminal is applied a predetermined value E V from the voltage setter 17 the constriction, △ V = when coming E V, the comparator 16 applies a signal to the power supply 1, the welding wire 3 The current flowing through is reduced to a value that does not cause spatter during arc regeneration.

第7図は上述の積分回路の詳細を示す回路図であつて、
電圧検出器12からの信号と、短絡とアークの中間の電
圧、たとえば12Vに相当する信号を発生する基準電圧
設定器18aの信号とを比較する比較器19は短絡また
はアーク発生のいずれかの信号を論理回路20に送る。
一方電流検出器13の信号と短絡電流Iに相当する信
号を発生する基準電圧設定器18bの信号とを比較する
比較器21は、溶接電流が短絡電流Iに達したか否か
を表わす信号を論理回路20に送る。
FIG. 7 is a circuit diagram showing the details of the integration circuit described above.
The comparator 19 for comparing the signal from the voltage detector 12 with the signal of the reference voltage setting device 18a for generating a signal corresponding to a voltage between the short circuit and the arc, for example, 12 V is a signal for either short circuit or arc generation. To the logic circuit 20.
Meanwhile comparator 21 for comparing the signal of the reference voltage setting unit 18b for generating a signal corresponding to the signal and the short-circuit current I p of the current detector 13 indicates whether the welding current reaches the short-circuit current I p The signal is sent to the logic circuit 20.

論理回路20は、比較器19が短絡を検出し、かつ比較
器21が、短絡電流がIに達したことを検出したとき
信号“1”を出力し、他は“0”となる。なお、論理回
路20は短絡検出だけで信号“1”を出力するようにし
てもよい。23は積分器であつて、積分定数を定める抵
抗24とコンデンサ25と増幅器26とを有し、抵抗2
4は電圧検出器12と接続され、積分用コンデンサ25
にはアナログスイツチ27が並列に接続されている。ア
ナログスイツチ27は論理回路20の出力が“1”のと
きオフとなり、電圧検出器12の出力電圧を積分し、ま
た論理回路20の出力が“0”のとき、オンとなつて、
コンデンサ25を放電させる。
The logic circuit 20 outputs a signal "1" when the comparator 19 detects a short circuit and the comparator 21 detects that the short circuit current has reached I p , and becomes "0" at other portions. The logic circuit 20 may output the signal "1" only by detecting a short circuit. Reference numeral 23 is an integrator, which has a resistor 24, a capacitor 25, and an amplifier 26 that determine an integration constant.
4 is connected to the voltage detector 12 and includes an integrating capacitor 25.
An analog switch 27 is connected in parallel with. The analog switch 27 is turned off when the output of the logic circuit 20 is "1", integrates the output voltage of the voltage detector 12, and is turned on when the output of the logic circuit 20 is "0".
The capacitor 25 is discharged.

上記の構成により、短絡移行によつて、電圧検出器12
の出力電圧が、基準電圧設定器18aの設置値よりも低
くなり、かつ電流検出器13の出力電圧が基準電圧設定
器18bの設定値よりも大きくなつたとき、即ち短絡電
流が安定値Iよりも大きくなつたとき、したがつて時
点fに達したとき論理回路20は出力“1”を生じて、
アナログスイツチ28をオフとし、コンデンサ25の積
分を開始する。
With the above-mentioned configuration, the voltage detector 12 is
Output voltage becomes lower than the set value of the reference voltage setting device 18a, and the output voltage of the current detector 13 becomes higher than the set value of the reference voltage setting device 18b, that is, the short-circuit current is a stable value I p. Logic circuit 20 produces an output "1" when time point f is reached.
The analog switch 28 is turned off and the integration of the capacitor 25 is started.

積分値は減算器15に印加され、(2)式の演算を行な
い、△Vが所定値に達すると、電流を低下させる。この
ときの比較器16の出力は論理回路20に印加されて、
該論理回路の出力を“0”とし、アナログスイツチ27
をオンとして積分器23の充電電圧を0にリセツトす
る。
The integrated value is applied to the subtractor 15, and the calculation of the equation (2) is performed. When ΔV reaches a predetermined value, the current is reduced. The output of the comparator 16 at this time is applied to the logic circuit 20,
The output of the logic circuit is set to "0", and the analog switch 27
Is turned on to reset the charging voltage of the integrator 23 to zero.

なお積分回路11の積分は、比較器19の出力によつて
アーク再生へ移行したときに終了させてもよい。また、
次回の積分の開始まで、あるいは開始時に積分値をリセ
ットする回路構成としても良い。
The integration of the integrating circuit 11 may be terminated when the arc reproduction is started by the output of the comparator 19. Also,
The circuit configuration may be such that the integrated value is reset until or at the start of the next integration.

第7図において最低値記憶器14は短絡移行時点で論理
回路20の出力が“1”となつたとき、最低電圧の記憶
を開始し、アーク再生時に論理回路20の出力が“0”
となつたとき、その記憶値をリセツトする。なお、記憶
器14のリセットは、次回の記憶開始まで、あるいは開
始時に記憶のリセットを行なう回路構成としても良い。
In FIG. 7, the minimum value storage 14 starts storing the minimum voltage when the output of the logic circuit 20 becomes "1" at the time of transition to the short circuit, and the output of the logic circuit 20 is "0" at the time of arc regeneration.
When this happens, the stored value is reset. The storage device 14 may be reset by a circuit configuration in which the storage is reset until or next time the storage is started.

第8図はくびれ電圧設定器17の詳細を示す回路図であ
り、電流検出器13の出力信号が抵抗R1を介して、演
算増幅器30の一方の入力端子に印加され、該演算増幅
器30の他方の入力端子には所定の基準電圧が印加され
る。
FIG. 8 is a circuit diagram showing the details of the constriction voltage setting device 17, in which the output signal of the current detector 13 is applied to one input terminal of the operational amplifier 30 via the resistor R1 and the other of the operational amplifier 30. A predetermined reference voltage is applied to the input terminal of.

抵抗R2は演算増幅器30の入出力端子間に接続されて
いる。上記の構成により、電流検出器13で検出された
溶接電流Iを表わす信号VIpを表わす信号VIp
受けて、演算増幅器30は を出力する。これによつて、電流Iに応じた設定値△
Vを基準入力として比較器16に送ることができる。
The resistor R2 is connected between the input and output terminals of the operational amplifier 30. With the above configuration, by receiving a signal V Ip representing the signal V Ip representing the welding current I p that is detected by the current detector 13, the operational amplifier 30 is Is output. As a result, the set value Δ according to the current I p
V can be sent to the comparator 16 as a reference input.

なおくびれ電圧設定器の信号としては、溶接機の短絡時
の電流Iを設定する設定器の出力信号を用いてもよ
い。
As the signal of the constriction voltage setting device, the output signal of the setting device that sets the current I p when the welding machine is short-circuited may be used.

また上記電流Iが一定である場合には、くびれ電圧設
定器として、一定の電圧を出力する可変抵抗器等を用い
てもよい。
When the current I p is constant, a variable resistor or the like that outputs a constant voltage may be used as the constriction voltage setting device.

第9図は減算器15の一例を示す図であり、電圧検出器
12の出力信号Vと、短絡期間中における溶接電圧を
積分する積分回路11の出力値である積分値Vと最低
値記憶器14の出力信号Vとはそれぞれ抵抗R3,R
4,R5を介して演算増幅器33に印加され、各入力信
号の符号を適当に設定することにより、 を得ることができる。
FIG. 9 is a diagram showing an example of the subtractor 15, which is the output signal V M of the voltage detector 12 and the integrated value V N and the minimum value which are the output values of the integrating circuit 11 that integrates the welding voltage during the short circuit period. The output signal V L of the memory 14 is different from the resistors R3 and R, respectively.
4 and R5 are applied to the operational amplifier 33, and by appropriately setting the sign of each input signal, Can be obtained.

なおRは演算増幅器33の入力と出力端子間に接続さ
れた抵抗でありR3=R4=R5=R6とすることによ
りV−V−Vを得ることができる。
Note R 6 may be obtained V M -V N -V L by that there is R3 = R4 = R5 = R6 in connected between the output terminal and the input of the operational amplifier 33 resistors.

以上詳述したように、この発明は短絡移行溶接におい
て、溶接ワイヤと母材間の短絡が生じてからアーク再生
へ移行する際に生じる溶接ワイヤのくびれを、短絡初期
の溶接ワイヤ電圧とその後の溶接ワイヤ電圧との差から
検出して、溶接ワイヤ電流を低減して、アーク時のスパ
ツタの発生を防止する制御方法において、短絡開始時点
以後の溶接ワイヤの温度変化による抵抗降下の変動分を
加味して、上記差電圧を演算し、その差電圧が設定値に
なつたとき、溶接ワイヤのくびれが生じたものと判定
し、溶接電流を低減するようにしたものであるから、短
絡時間の変動などがあつても、溶接ワイヤのくびれが生
じるタイミングを正確に検出することができるようにな
り、スパツタの発生を確実に防止することができる。
As described above in detail, in the present invention, in the short-circuit transfer welding, the constriction of the welding wire that occurs when the short circuit between the welding wire and the base metal occurs and then transitions to arc regeneration is performed. In the control method of detecting the difference from the welding wire voltage and reducing the welding wire current to prevent the occurrence of spatter during arcing, the variation of the resistance drop due to the temperature change of the welding wire after the start of the short circuit is added. Then, the difference voltage is calculated, and when the difference voltage reaches the set value, it is determined that the welding wire is constricted, and the welding current is reduced. Even if there is a problem, it becomes possible to accurately detect the timing at which the constriction of the welding wire occurs, and it is possible to reliably prevent the occurrence of spatter.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明が適用される溶接装置の概略構成を示
す図、第2図は短絡移行溶接における溶接電圧と溶接電
流との波形図を溶接ワイヤと母材との間の関係を併せて
示す図、第3図ないし第5図はこの発明による溶接電圧
と溶接電流の関係を示す波形図、第6図はこの発明の一
実施例を示す回路図、第7図は第6図の実施例に用いら
れる積分回路の詳細な回路図、第8図は第6図の実施例
に用いられるくびれ電圧設定器の一例を示す回路図、第
9図は第6図の実施例に用いられる減算回路の一例を示
す回路図である。 1……電源、3……溶接ワイヤ、6……母材、12……
電圧検出器、11……積分回路、14……最低値記憶
器、15……減算器、16……比較器。
FIG. 1 is a diagram showing a schematic configuration of a welding apparatus to which the present invention is applied, and FIG. 2 is a waveform diagram of welding voltage and welding current in short-circuit transfer welding together with a relationship between a welding wire and a base material. FIG. 3, FIG. 3 to FIG. 5 are waveform diagrams showing the relationship between welding voltage and welding current according to the present invention, FIG. 6 is a circuit diagram showing an embodiment of the present invention, and FIG. A detailed circuit diagram of the integrating circuit used in the example, FIG. 8 is a circuit diagram showing an example of the constriction voltage setting device used in the embodiment of FIG. 6, and FIG. 9 is a subtraction used in the embodiment of FIG. It is a circuit diagram showing an example of a circuit. 1 ... Power supply, 3 ... Welding wire, 6 ... Base metal, 12 ...
Voltage detector, 11 ... Integrator circuit, 14 ... Minimum value memory, 15 ... Subtractor, 16 ... Comparator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】短絡移行溶接において、短絡発生時の特定
の時点の溶接電圧Vと、短絡期間における溶接電圧の
積分値Vと、短絡期間における溶接電圧Vとを測定
して、V−V−V=△Vを演算して、△Vが設定
値に達したとき、溶接電流を低減して、アーク再生に移
行することを特徴とする短絡移行溶接の制御方法。
1. In short-circuit transfer welding, a welding voltage V L at a specific time when a short circuit occurs, an integral value V N of the welding voltage during a short circuit period, and a welding voltage V M during a short circuit period are measured to obtain V. and calculates the M -V L -V N = △ V , △ when V reaches the set value, by reducing the welding current, the control method of the short circuit transfer welding, characterized in that the transition to the arc regeneration.
【請求項2】短絡移行溶接装置において、溶接電圧V
を検出する第1電圧検出手段と、短絡期間における溶接
電圧を積分して、積分値Vを出力する積分回路と、第
1電圧検出手段の信号により短絡期間中特定の時点の溶
接電圧Vを検出する第2電圧検出手段と、第1電圧検
出手段,積分回路ならびに第2電圧検出手段の各出力か
らV−V−Vを演算する減算回路と、減算回路の
出力電圧が所定の基準値になつたことを検出する比較回
路と、比較回路の出力によつて、溶接電流を低減する制
御手段とを備えたことを特徴とする短絡移行溶接の制御
装置。
2. A welding voltage V M in a short-circuit transfer welding apparatus.
Voltage detecting means for detecting the welding voltage, an integrating circuit for integrating the welding voltage in the short circuit period and outputting an integrated value V N , and a signal from the first voltage detecting means for welding voltage VL at a specific time point during the short circuit period. a second voltage detecting means for detecting a first voltage detecting means, the integration circuit and a subtraction circuit for calculating a V M -V L -V N from the output of the second voltage detecting means, the output voltage of the subtraction circuit is predetermined The control device for short-circuit transfer welding, comprising: a comparison circuit that detects that the reference value has been reached, and control means that reduces the welding current according to the output of the comparison circuit.
【請求項3】第1電圧検出手段は溶接トーチと母材間の
電圧を検出するものである特許請求の範囲第2項記載の
制御装置。
3. The control device according to claim 2, wherein the first voltage detecting means detects a voltage between the welding torch and the base metal.
【請求項4】比較回路の基準値は、溶接電流に応じて変
化するものである特許請求の範囲第2項記載の制御装
置。
4. The control device according to claim 2, wherein the reference value of the comparison circuit changes according to the welding current.
JP262683A 1983-01-10 1983-01-10 Short-circuit transfer welding control method and apparatus Expired - Lifetime JPH0632854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP262683A JPH0632854B2 (en) 1983-01-10 1983-01-10 Short-circuit transfer welding control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP262683A JPH0632854B2 (en) 1983-01-10 1983-01-10 Short-circuit transfer welding control method and apparatus

Publications (2)

Publication Number Publication Date
JPS59127969A JPS59127969A (en) 1984-07-23
JPH0632854B2 true JPH0632854B2 (en) 1994-05-02

Family

ID=11534601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP262683A Expired - Lifetime JPH0632854B2 (en) 1983-01-10 1983-01-10 Short-circuit transfer welding control method and apparatus

Country Status (1)

Country Link
JP (1) JPH0632854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679513B2 (en) * 1985-12-25 1994-10-05 株式会社日本自動車部品総合研究所 Method for manufacturing thin film electroluminescent device

Also Published As

Publication number Publication date
JPS59127969A (en) 1984-07-23

Similar Documents

Publication Publication Date Title
US7271365B2 (en) System and method for pulse welding
US4300035A (en) Welding apparatus with time interval control
JP3303155B2 (en) Battery charger
US6031203A (en) Method and apparatus for determining stability of arc welding
JP4703910B2 (en) Apparatus and method for determining electrode tip wear state
JP5808947B2 (en) Constriction detection control method for consumable electrode arc welding
JPH0632854B2 (en) Short-circuit transfer welding control method and apparatus
JP2733624B2 (en) Pulse arc welding method and pulse arc welding apparatus using this method
JPS5829575A (en) Electric power source device for welding
JP2672172B2 (en) Welding power output control method
JPH07108459B2 (en) Current control method and device for short-circuit transfer welding
JP2022185998A (en) Arc-welding power source
JP2534374B2 (en) Arc welding machine
JPS6322928B2 (en)
JPH0570549B2 (en)
JPS59199173A (en) Method and device for controlling power source for short circuit transfer welding
SU1496945A1 (en) Method and apparatus for determining overhang of electrode
JPS6217163Y2 (en)
JPH0331551B2 (en)
JPH1158016A (en) Short circuiting transfer type arc welding method
JPS6082272A (en) Short-circuit transfer arc welding machine
JPS6195777A (en) Method and device for groove detection
JPS60130469A (en) Method for controlling output of power source for welding
JPS60118377A (en) Detection of projecting length of welding wire in short-circuit transfer arc welding
JPS6235576Y2 (en)