JPS6217163Y2 - - Google Patents

Info

Publication number
JPS6217163Y2
JPS6217163Y2 JP18262981U JP18262981U JPS6217163Y2 JP S6217163 Y2 JPS6217163 Y2 JP S6217163Y2 JP 18262981 U JP18262981 U JP 18262981U JP 18262981 U JP18262981 U JP 18262981U JP S6217163 Y2 JPS6217163 Y2 JP S6217163Y2
Authority
JP
Japan
Prior art keywords
welding
voltage
resistor
current
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18262981U
Other languages
Japanese (ja)
Other versions
JPS5885473U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18262981U priority Critical patent/JPS5885473U/en
Publication of JPS5885473U publication Critical patent/JPS5885473U/en
Application granted granted Critical
Publication of JPS6217163Y2 publication Critical patent/JPS6217163Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、溶接電流の小電流域および大電流
域において、アーク長の変化に対してワイヤの送
給をすみやかに追従させ、良好な溶接を行なうこ
とができるようにしたパルスアーク溶接機に関す
る。
[Detailed description of the invention] This invention enables wire feeding to quickly follow changes in arc length in the small and large welding current ranges, allowing for good welding. This article relates to a pulse arc welding machine.

一般に、消耗式溶接ワイヤを送給して溶接する
パルスアーク溶接機において、溶接時のワイヤ送
給速度の急減により、あるいは被溶接物のくぼみ
により、アーク長が長くなると、ワイヤの溶融速
度が減少し、アーク長が再び短くなつて所定のア
ーク長に戻り、逆に、何らかの原因でアーク長が
短くなるとワイヤの溶融速度が増加し、アーク長
が再び長くなつて所定のアーク長に戻る。すなわ
ち、当該パルスアーク溶接機には、いわゆるアー
クの自己制御作用があるが、通常溶接時に溶接電
圧の変動が生じてもワイヤの溶融を安定化させる
ため、ベース電流の定電流制御がおこなわれてい
る。
In general, in a pulse arc welding machine that feeds a consumable welding wire for welding, when the arc length increases due to a sudden decrease in the wire feed speed during welding or due to a dent in the workpiece, the wire melting rate decreases and the arc length shortens again to return to the specified arc length, and conversely, when the arc length shortens for some reason, the wire melting rate increases and the arc length lengthens again to return to the specified arc length. That is, the pulse arc welding machine has a so-called self-regulating function of the arc, but in order to stabilize the melting of the wire even if the welding voltage fluctuates during normal welding, a constant current control of the base current is performed.

しかし、この場合、溶接中にアーク長が長くな
つても溶接負荷に大電力が供給されるため、アー
ク長が長いまま持続され、所定のアーク長に戻る
のに長時間を要し、母材側のアークが広がり、シ
ールドの低下を招いて溶接欠陥が生じ易くなると
いう欠点がある。
However, in this case, even if the arc length becomes longer during welding, a large amount of power is supplied to the welding load, so the arc length remains long and it takes a long time to return to the predetermined arc length. The disadvantage is that the arc on the side spreads, lowering the shielding and making welding defects more likely.

そこで、溶接電圧をほぼ一定に保持するための
手段として、アーク長が変化したときのアーク電
圧を検出し、当該検出電圧により、パルス電流の
パルス幅を制御する手段、ベース電流を制御する
手段、パルス電流の周波数を変化させる手段等が
行なわれているが、パルス電流時の入熱量の変化
が大きいため、溶球が大きくなりすぎたり、また
溶球が多くなりすぎたりして良好な溶接を行なう
ことができない。
Therefore, as means for keeping the welding voltage approximately constant, means for detecting the arc voltage when the arc length changes and controlling the pulse width of the pulse current based on the detected voltage, means for controlling the base current, Measures have been taken to change the frequency of the pulsed current, but due to the large change in heat input during pulsed current, the molten ball becomes too large or there are too many molten balls, making it difficult to achieve good welding. I can't do it.

そこで、アーク長が変化したときの溶接電圧を
検出し、当該検出電圧によりワイヤの送給速度を
制御するパルスアーク溶接機が実施されており、
たとえば第1図ないし第3図に示すように構成さ
れている。それらの図面において、1は交流電源
に接続され溶接負荷にベース電流およびパルス電
流からなる溶接電流を供給するパルスアーク電源
装置、2はワイヤロール3からローラ4により送
給される消耗式溶接ワイヤ、5はワイヤ2ととも
に溶接負荷を構成する母材、6は電源装置1と母
材5との間に設けられ溶接電流を検出して検出信
号を出力する電流検出器、7はベース電流または
ベース電流およびパルス電流を所定値に設定する
指令信号を出力する出力電流設定器、8は電源制
御装置であり、電流検出器6からの検出信号と出
力電流設定器7からの指令信号とが入力され、溶
接電流が一定になるように電源装置1の出力を定
電流制御する。
Therefore, a pulse arc welder is implemented in which the welding voltage when the arc length changes is detected and the wire feed speed is controlled based on the detected voltage.
For example, it may be configured as shown in Figures 1 to 3. In these figures, reference numeral 1 denotes a pulse arc power supply unit connected to an AC power supply and supplying a welding current consisting of a base current and a pulse current to a welding load, 2 denotes a consumable welding wire fed by roller 4 from wire roll 3, 5 denotes a base metal constituting the welding load together with wire 2, 6 denotes a current detector provided between power supply unit 1 and base metal 5 and detecting the welding current and outputting a detection signal, 7 denotes an output current setter outputting a command signal for setting the base current or the base current and the pulse current to a predetermined value, and 8 denotes a power supply control device which receives the detection signal from current detector 6 and the command signal from output current setter 7 and controls the output of power supply unit 1 to a constant current so that the welding current is constant.

9は溶接電圧を検出してワイヤ送給用モータM
の回転数を制御するワイヤ送給速度制御装置であ
り、第2図の1点鎖線で囲まれた回路構成からな
る。すなわち、ワイヤ送給速度制御装置9の正、
負入力端子a,bがそれぞれワイヤ2および母材
5に接続されるとともに、両入力端子a,b間に
分圧用の第1、第2抵抗R1,R2が直列に設け
られ、第1抵抗R1と第2抵抗R2との接続点に
第3抵抗R3の一端が接続されれ、基準用直流電
源Eと可変抵抗VRとからなるアーク長設定装置
ASの直流電源Eの正端子および可変抵抗VRの一
端が正入力端子aに接続されるとともに、可変抵
抗VRの分圧端子に第4抵抗R4の一端が接続さ
れ、非反転入力端子が正入力端子aに接続された
演算増幅器Qの反転入力端子に第3、第4抵抗R
3,R4の他端が接続され、第1抵抗R1の両端
の溶接電圧信号および可変抵抗VRの分圧端子と
正入力端子aとの間のアーク長設定用の設定電圧
信号が入力されるとともに、演算増幅器Qの反転
入力端子と出力端との間に出力用第5抵抗R5が
接続され、演算増幅器Qの出力端に限流用第6抵
抗R6を介して演算増幅器(図示せず)を内蔵す
るワイヤ送給用モータ制御装置MCの入力端が接
続され、モータ制御装置MCの出力端がワイヤ送
給用モータMに接続され、モータ制御装置MCに
よりモータMに所定の駆動電圧が印加される。
9 is a wire feeding motor M that detects the welding voltage.
This is a wire feeding speed control device that controls the rotation speed of the wire, and consists of a circuit configuration surrounded by a chain line in FIG. That is, the positive of the wire feeding speed control device 9,
Negative input terminals a and b are connected to the wire 2 and the base material 5, respectively, and first and second resistors R1 and R2 for voltage division are provided in series between both input terminals a and b, and the first resistor R1 One end of the third resistor R3 is connected to the connection point between the and the second resistor R2, and the arc length setting device is composed of a reference DC power source E and a variable resistor VR.
The positive terminal of the DC power supply E of AS and one end of the variable resistor VR are connected to the positive input terminal a, and one end of the fourth resistor R4 is connected to the voltage dividing terminal of the variable resistor VR, and the non-inverting input terminal is the positive input terminal. The third and fourth resistors R are connected to the inverting input terminal of the operational amplifier Q connected to the terminal a.
3. The other end of R4 is connected, and the welding voltage signal at both ends of the first resistor R1 and the setting voltage signal for setting the arc length between the voltage dividing terminal of the variable resistor VR and the positive input terminal a are input. , a fifth output resistor R5 is connected between the inverting input terminal and the output terminal of the operational amplifier Q, and an operational amplifier (not shown) is connected to the output terminal of the operational amplifier Q via a sixth current-limiting resistor R6. The input end of the wire feeding motor control device MC is connected, the output end of the motor control device MC is connected to the wire feeding motor M, and a predetermined driving voltage is applied to the motor M by the motor control device MC. .

そして、溶接機を始動する場合、パルスアーク
電源装置1により、ワイヤ2および母材5からな
る溶接負荷に無負荷電圧が印加されるとともに、
当該無負荷電圧がワイヤ送給速度制御装置9の第
1、第2抵抗R1,R2により分圧され、溶接電
圧信号である第1抵抗R1の両端間の電圧が第3
抵抗R3を介して演算増幅器Qの反転入力端子に
入力されるとともに、アーク長設定装置ASの直
流電源Eの電圧が可変抵抗VRにより分圧され、
設定電圧信号である可変抵抗VRの分圧端子と正
入力端子a間の電圧が第4抵抗R4を介して演算
増幅器Qの反転入力端子に入力され、演算増幅器
Qにより前記両電圧が加算され、演算増幅器Qの
出力端から第6抵抗R6を介してモータ制御装置
MCに制御用指令電圧信号が出力されるととも
に、モータ制御装置MCによりモータMに印加さ
れる駆動電圧がモータ制御装置MCに帰還入力さ
れ、モータ制御装置MCの演算増幅器により前記
指令電圧信号の電圧と前記駆動電圧とが比較さ
れ、両電圧の差が0になるようにモータ制御装置
MCからモータMに駆動電圧が印加され、モータ
Mが回転してワイヤ2の送給が開始される。
When starting the welding machine, the pulse arc power supply 1 applies a no-load voltage to the welding load consisting of the wire 2 and the base metal 5, and
The no-load voltage is divided by the first and second resistors R1 and R2 of the wire feed speed control device 9, and the voltage across the first resistor R1, which is the welding voltage signal, is divided by the third resistor R1 and R2.
The voltage of the DC power supply E of the arc length setting device AS is input to the inverting input terminal of the operational amplifier Q via the resistor R3, and is divided by the variable resistor VR.
The voltage between the voltage dividing terminal of the variable resistor VR and the positive input terminal a, which is a set voltage signal, is inputted to the inverting input terminal of the operational amplifier Q via the fourth resistor R4, and the operational amplifier Q adds the two voltages, The motor control device is connected from the output terminal of the operational amplifier Q through the sixth resistor R6.
A control command voltage signal is output to the MC, and the drive voltage applied to the motor M by the motor control device MC is fed back into the motor control device MC, and the voltage of the command voltage signal is adjusted by the operational amplifier of the motor control device MC. and the drive voltage are compared, and the motor control device is configured so that the difference between the two voltages becomes 0.
A driving voltage is applied from the MC to the motor M, the motor M rotates, and feeding of the wire 2 is started.

このとき、電源装置1からの無負荷電圧が溶接
時の所定の溶接電圧より大きく、第1抵抗R1の
両端間の電圧、すなわち、演算増幅器Qへの入力
電圧が大きいため、演算増幅器Qからの指令電圧
信号の電圧が大きく、モータMに印加される駆動
電圧も大きくなり、モータMが高速で回転してワ
イヤ2を送給し、ワイヤ2が母材5に短絡してワ
イヤ2と母材5との間に電流が流れ、ワイヤ2が
切れてアークが発生し、溶接機が始動する。
At this time, the no-load voltage from the power supply device 1 is higher than the predetermined welding voltage during welding, and the voltage across the first resistor R1, that is, the input voltage to the operational amplifier Q is high. The voltage of the command voltage signal is large, the driving voltage applied to the motor M is also large, the motor M rotates at high speed and feeds the wire 2, and the wire 2 is short-circuited to the base material 5, causing the wire 2 and the base material to be short-circuited. A current flows between wire 5 and wire 2, causing an arc to be generated and the welding machine to start.

つぎに、アーク発生後、定常的に溶接が行なわ
れる場合、アークの発生により、ワイヤ2と母材
5との間の電圧が前記の無負荷電圧から所定の溶
接電圧に低下するため、第1抵抗R1の両端間の
電圧も低下し、演算増幅器Qからの指令電圧信号
の電圧が低下して所定値になり、モータ制御装置
MCによりモータMに所定の駆動電圧が印加さ
れ、ワイヤ2が所定の速度で送給され、アーク長
が一定の安定した溶接が行なわれる。
Next, when welding is performed steadily after arc generation, the voltage between the wire 2 and the base metal 5 decreases from the no-load voltage to the predetermined welding voltage due to the generation of the arc. The voltage across the resistor R1 also decreases, and the voltage of the command voltage signal from the operational amplifier Q decreases to a predetermined value, causing the motor control device to
A predetermined drive voltage is applied to the motor M by the MC, the wire 2 is fed at a predetermined speed, and stable welding with a constant arc length is performed.

また、溶接時にワイヤ2の送給速度が急減して
アーク長が大きくなつた場合、あるいは、母材5
の溶接部分のくぼみによりアーク長が長くなつた
場合、ワイヤ2と母材5との間のインピーダンス
が大きくなるため、電源装置1によりワイヤ2と
母材5との間に印加される電圧が前記した所定の
溶接電圧よりも大きくなる。そして、第1抵抗R
1の両端間の電圧が定常時より増加するため演算
増幅器Qからの指令電圧信号の電圧が増加して所
定値以上になり、モータ制御装置MCによりモー
タMに所定値よりも大なる駆動電圧が印加され、
ワイヤ2が高速で母材5側に送給され、アーク長
が再び短くなるとともに、前記の定常的な溶接状
態にすみやかに復帰し、安定した溶接が行なわれ
る。また、アーク長が短くなつた場合、前記のア
ーク長が長くなつた場合とは逆に、演算増幅器Q
からの指令電圧信号の電圧が低下して所定値以下
になり、モータ制御装置MCによりモータMに所
定値よりも小なる駆動電圧が印加され、ワイヤ2
が低速で母材5側に送給され、アーク長が再び長
くなるとともに、定常的な溶接状態にすみやかに
復帰し、安定した溶接が行なわれる。
In addition, if the feeding speed of the wire 2 suddenly decreases during welding and the arc length increases, or if the
When the arc length becomes longer due to a depression in the welding part, the impedance between the wire 2 and the base metal 5 increases, so the voltage applied between the wire 2 and the base metal 5 by the power supply 1 increases as described above. higher than the predetermined welding voltage. And the first resistor R
1 increases from the normal state, the voltage of the command voltage signal from the operational amplifier Q increases and exceeds a predetermined value, and the motor controller MC applies a drive voltage to the motor M that is larger than the predetermined value. applied,
The wire 2 is fed to the base metal 5 side at high speed, the arc length is shortened again, and the steady welding state described above is quickly returned to perform stable welding. Also, when the arc length becomes shorter, the operational amplifier Q
The voltage of the command voltage signal from the wire 2 decreases to below a predetermined value, and the motor control device MC applies a drive voltage smaller than the predetermined value to the motor M.
is fed to the base metal 5 side at a low speed, the arc length becomes long again, and a steady welding state is quickly returned to perform stable welding.

しかし、第2図に示すパルスアーク溶接機によ
り、炭酸ガスが20%、アルゴンガスが80%のシー
ルドガス中で直径1.2mmの鉄ワイヤをパルスアー
ク溶接した場合、第3図の実線に示すように溶接
電流が200Aを越えると、溶接電流の変化に比べ
溶接電圧の変化が少なくなつており、200A以上
の溶接電流の大電流域ではアーク長の変化に対し
て、溶接電圧を検出することによるワイヤ2の送
給の追従性が悪くなつている。また、酸素が2
%、アルゴンガスが98%のシールドガス中で直径
1.2mmのステンレスワイヤをパルスアーク溶接し
た場合、同図の破線に示すように、200A以上の
溶接電流の大電流域において、鉄ワイヤの場合ほ
ど少なくはないが、溶接電圧の変化はなお少な
く、アーク長の変化に対して、溶接電圧を検出す
ることによるワイヤ2の送給の追従性が悪くなつ
ている。
However, when an iron wire with a diameter of 1.2 mm is pulse-arc welded using the pulse arc welding machine shown in Figure 2 in a shielding gas containing 20% carbon dioxide gas and 80% argon gas, the solid line in Figure 3 When the welding current exceeds 200A, the change in welding voltage is smaller than the change in welding current, and in the large current range of welding current of 200A or more, the change in welding voltage is affected by the change in arc length. The followability of feeding the wire 2 is getting worse. Also, oxygen is 2
%, diameter in shielding gas with 98% argon gas
When 1.2 mm stainless steel wire is pulsed arc welded, as shown by the broken line in the same figure, in the high current range of 200 A or more, the change in welding voltage is not as small as with iron wire, but the change in welding voltage is still small. The ability to follow the change in the arc length by detecting the welding voltage is poor.

したがつて、電源制御装置8により電源装置1
の出力を定電流制御する場合に、電源装置1から
の溶接電流を200A以上の大電流域に設定する
と、ワイヤの材質、シールガスの成分等により若
干の差はあるが、アーク長の変化に対するワイヤ
2の送給の追従性が低下し、良好な溶接を行なう
ことができない。
Therefore, the power supply control device 8 causes the power supply device 1 to
When controlling the output of The followability of feeding the wire 2 deteriorates, making it impossible to perform good welding.

この考案は、前記の点に留意してなされたもの
であり、つぎにこの考案を、その1実施例を示し
た第4図以下の図面とともに詳細に説明する。
This invention has been made with the above-mentioned points in mind, and next, this invention will be explained in detail with reference to the drawings from FIG. 4 showing one embodiment of the invention.

それらの図面において、第1図および第2図と
同一記号は同一のものを示し、第1図および第2
図と異なる点は、ワイヤ送給速度制御装置9′に
おいて、第1抵抗R1と第2抵抗R2との接続点
に第7抵抗R7の一端を接続し、第7抵抗R7の
他端にツエナダイオードZDのアノードを接続す
るとともに、ツエナダイオードZDのカソードを
演算増幅器Qの反転入力端子に接続し、第7抵抗
R7とツエナダイオードZDとから、溶接電流が
所定値以上のときに作動して演算増幅器Qの増幅
度を増加させる補償回路CCを構成するととも
に、切換スイツチSWの各接点に抵抗値の異なる
第8〜第10抵抗R8〜R10の一端を接続し、切
換スイツチSWの共通接点および第8〜第10抵抗
R8〜R10の他端をそれぞれ補償回路CCの両
端に接続した点である。
In those drawings, the same symbols as in FIGS. 1 and 2 indicate the same things, and
The difference from the diagram is that in the wire feed speed control device 9', one end of the seventh resistor R7 is connected to the connection point between the first resistor R1 and the second resistor R2, and a Zener diode is connected to the other end of the seventh resistor R7. At the same time, the anode of Zener diode ZD is connected, and the cathode of Zener diode ZD is connected to the inverting input terminal of operational amplifier Q. A compensation circuit CC is configured to increase the amplification degree of Q, and one end of the 8th to 10th resistors R8 to R10 having different resistance values is connected to each contact of the changeover switch SW, and the common contact of the changeover switch SW and the 8th to - The other ends of the tenth resistors R8 to R10 are respectively connected to both ends of the compensation circuit CC.

そしてワイヤ2の材質、直径等に応じて切換ス
イツチSWを操作し、第8〜第10抵抗R8〜R1
0のうち適正なものを選定し、出力電流設定器7
および電源制御装置8により、電源装置1からの
溶接電流を小電流域の電流値に設定して定電流制
御を行ない溶接する場合、溶接負荷間の溶接電圧
が低いため、ツエナダイオードZDが導通するこ
とはなく、補償回路CCは作動せず、溶接機の始
動時および定常時、第1図および第2図の場合と
同様の動作により、第1抵抗R1の両端間の電圧
が第8〜第10抵抗R8〜R10のうち選定された
いずれかの抵抗を介して演算増幅器Qの反転入力
端子に入力されるとともに、可変抵抗VRの分圧
端子と正入力端子aとの間の電圧が第4抵抗R4
を介して演算増幅器Qに入力され、演算増幅器Q
から第6抵抗R6を介してモータ制御装置MCに
指令電圧信号が出力されるとともに、モータ制御
装置MCによりモータMに駆動電圧が印加され、
溶接機の始動および定常溶接が行なわれる。な
お、溶接時に、アーク長が長くなつた場合および
短くなつ場合も、第1図および第2図の場合と同
様の動作を行ない、アーク長の変化に対し、ワイ
ヤ2がすみやかに追従して送給される。
Then, operate the changeover switch SW according to the material, diameter, etc. of the wire 2, and select the 8th to 10th resistors R8 to R1.
Select the appropriate one from 0 and set the output current setting device 7.
When the welding current from the power supply device 1 is set to a current value in the small current range by the power supply control device 8 to perform constant current control and welding, the welding voltage between the welding loads is low, so the Zener diode ZD becomes conductive. Therefore, the compensation circuit CC does not operate, and when the welding machine is started and in steady state, the voltage across the first resistor R1 increases to the eighth to The voltage between the voltage dividing terminal of the variable resistor VR and the positive input terminal a is input to the inverting input terminal of the operational amplifier Q through one of the resistors R8 to R10 selected from among the resistors R8 to R10. Resistor R4
is input to the operational amplifier Q through the operational amplifier Q.
A command voltage signal is output from the motor control device MC via the sixth resistor R6, and a driving voltage is applied to the motor M by the motor control device MC.
The welding machine is started and steady welding is performed. In addition, when the arc length becomes longer or shorter during welding, the same operation as in Figs. 1 and 2 is performed so that the wire 2 quickly follows the changes in the arc length and is fed. be provided.

つぎに、出力電流設定器7および電源制御装置
8により、電源装置1からの溶接電流を大電流域
の電流値に対して定電流制御を行ない溶接する場
合、溶接負荷間の溶接電圧が高いため、ツエナダ
イオードZDが導通して補償回路CCが作動する。
そして、溶接機の始動時および定常時、第1抵抗
R1の両端間の電圧、すなわち溶接電圧信号が、
第8〜第10抵抗R8〜R10のうち選定されたも
のおよび補償回路CCを介して演算増幅器Qの反
転入力端子に入力されるため、第7抵抗R7と第
8〜第10抵抗R8〜R10のいずれかとの並列合
成抵抗により、演算増幅器Qの増幅度が補償回路
CCが作動しない場合よりも増加し、第5図に示
すように、溶接電流が所定値以上のときに、溶接
電流の変化に対し、演算増幅器Qの出力、すなわ
ち指令電圧信号の電圧値の変化が多くなり、モー
タ制御装置MCによりモータMに印加される駆動
電圧が増してモータMの回転数が増加し、アーク
長の変化に対するワイヤ2の送給の追従性が向上
する。
Next, when welding is performed by controlling the welding current from the power supply 1 to a current value in a large current range using the output current setting device 7 and the power supply control device 8, the welding voltage between the welding loads is high. , the Zener diode ZD becomes conductive and the compensation circuit CC is activated.
When the welding machine is started and in steady state, the voltage across the first resistor R1, that is, the welding voltage signal, is
Since it is input to the inverting input terminal of the operational amplifier Q via a selected one of the 8th to 10th resistors R8 to R10 and the compensation circuit CC, the 7th resistor R7 and the 8th to 10th resistors R8 to R10 The amplification degree of the operational amplifier Q is adjusted by the parallel combined resistance with either of the compensating circuits.
As shown in Figure 5, when the welding current exceeds a predetermined value, the output of the operational amplifier Q, that is, the voltage value of the command voltage signal, changes in response to a change in the welding current. increases, the drive voltage applied to the motor M by the motor control device MC increases, the rotational speed of the motor M increases, and the followability of the feeding of the wire 2 to changes in the arc length improves.

したがつて、補償回路CCを設けたことによ
り、溶接電流の小電流域においても、大電流域に
おいても、アーク長の変化に対してワイヤ2の送
給がすみやかに追従し、母材5側のアークの広が
ることもなく、シールド性がよく、かつ、安定し
た溶球を得ることができ、良好な溶接を行なうこ
とができる。また、抵抗値の異なる第8〜第10抵
抗R8〜R10を切換スイツチSWにより可変自
在に設けたことにより、ワイヤ2の材質、直径、
シールドガスの成分等に適合した溶接を行なうこ
とができる。
Therefore, by providing the compensation circuit CC, the feed of the wire 2 can quickly follow changes in the arc length in both small and large welding current ranges, and the wire 2 can be fed quickly to the base metal 5 side. The arc does not spread, the shielding properties are good, a stable molten ball can be obtained, and good welding can be performed. In addition, by providing the 8th to 10th resistors R8 to R10 with different resistance values, which can be changed freely by the changeover switch SW, the material and diameter of the wire 2 can be changed.
Welding can be performed in accordance with the components of the shielding gas.

以上のように、この考案は、溶接負荷にベース
電流およびパルス電流からなる溶接電流を供給す
るパルスアーク電源装置と、前記溶接負荷の両端
に接続された分圧抵抗と、前記溶接負荷のアーク
長設定用の設定電圧信号を出力するアーク長設定
装置と、非反転入力端子が前記溶接負荷の一端に
接続され、反転入力端子が前記アーク長設定装置
の出力端および前記分圧抵抗の分圧点に抵抗を介
して接続され、指令電圧信号を出力する演算増幅
器と、前記演算増幅器の出力端に接続されたワイ
ヤ送給用モータを制御し消耗式溶接ワイヤの送給
速度を制御するモータ制御装置とを備えたパルス
アーク溶接機において、前記分圧抵抗の分圧点と
前記反転入力端子との間にツエナダイオードと抵
抗の直列回路からなる補償回路を設けたパルスア
ーク溶接機である。
As described above, this invention includes a pulsed arc power supply device that supplies a welding current consisting of a base current and a pulsed current to a welding load, a partial voltage resistor connected to both ends of the welding load, and an arc length of the welding load. An arc length setting device that outputs a set voltage signal for setting, a non-inverting input terminal connected to one end of the welding load, and an inverting input terminal connected to the output end of the arc length setting device and the voltage dividing point of the voltage dividing resistor. an operational amplifier connected through a resistor to output a command voltage signal; and a motor control device that controls a wire feeding motor connected to the output end of the operational amplifier to control the feeding speed of the consumable welding wire. In the pulse arc welding machine, a compensation circuit including a series circuit of a Zener diode and a resistor is provided between the voltage dividing point of the voltage dividing resistor and the inverting input terminal.

したがつて、この考案によると、演算増幅器の
反転入力端子にツエナダイオードと抵抗の直列回
路からなる補償回路が設けられているため、この
補償回路が溶接電流の所定値以上のときに作動
し、演算増幅器の増幅度を増加させ、溶接電流の
小電流域および大電流域において、アーク長の変
化に対してワイヤの送給をすみやかに追従させる
ことができ、良好な溶接を行なうことができる。
Therefore, according to this invention, since a compensation circuit consisting of a series circuit of a Zener diode and a resistor is provided at the inverting input terminal of the operational amplifier, this compensation circuit is activated when the welding current exceeds a predetermined value. By increasing the amplification degree of the operational amplifier, the wire feeding can be made to quickly follow changes in the arc length in the small current range and large current range of the welding current, and good welding can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパルスアーク溶接機のブロツク図、第
2図は第1図の一部の従来の結線図、第3図は第
2図の結線による第1図の溶接電流と溶接電圧と
の関係図、第4図以下の図面はこの考案のパルス
アーク溶接機の1実施例を示し、第4図は要部の
結線図、第5図は溶接電流と演算増幅器の出力電
圧との関係図である。 1……パルスアーク電源装置、9′……ワイヤ
送給速度制御装置、AS……アーク長設定装置、
Q……演算増幅器、2……ワイヤ、M……ワイヤ
送給用モータ、CC……補償回路、SW……切換ス
イツチ、R8〜R10……抵抗。
Fig. 1 is a block diagram of a pulse arc welding machine, Fig. 2 is a conventional wiring diagram of a part of Fig. 1, and Fig. 3 is the relationship between welding current and welding voltage in Fig. 1 using the wiring shown in Fig. 2. Figure 4 and the following drawings show one embodiment of the pulse arc welding machine of this invention, Figure 4 is a wiring diagram of the main parts, and Figure 5 is a diagram showing the relationship between welding current and output voltage of the operational amplifier. be. 1...Pulse arc power supply device, 9'...Wire feeding speed control device, AS...Arc length setting device,
Q...Operation amplifier, 2...Wire, M...Wire feeding motor, CC...Compensation circuit, SW...Selector switch, R8 to R10...Resistance.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 溶接負荷にベース電流およびパルス電流からな
る溶接電流を供給するパルスアーク電源装置と、
前記溶接負荷の両端に接続された分圧抵抗と、前
記溶接負荷のアーク長設定用の設定電圧信号を出
力するアーク長設定装置と、非反転入力端子が前
記溶接負荷の一端に接続され、反転入力端子が前
記アーク長設定装置の出力端および前記分圧抵抗
の分圧点に抵抗を介して接続され、指令電圧信号
を出力する演算増幅器と、前記演算増幅器の出力
端に接続されワイヤ送給用モータを制御し消耗式
溶接ワイヤの送給速度を制御するモータ制御装置
とを備えたパルスアーク溶接機において、前記分
圧抵抗の分圧点と前記反転入力端子との間にツエ
ナダイオードと抵抗の直列回路からなる補償回路
を設けたパルスアーク溶接機。
a pulsed arc power supply device that supplies a welding current consisting of a base current and a pulsed current to a welding load;
a partial voltage resistor connected to both ends of the welding load; an arc length setting device that outputs a setting voltage signal for setting the arc length of the welding load; and a non-inverting input terminal connected to one end of the welding load; an operational amplifier whose input terminal is connected to the output end of the arc length setting device and the voltage dividing point of the voltage dividing resistor via a resistor and outputs a command voltage signal; and an operational amplifier connected to the output end of the operational amplifier and wire feeding. In the pulse arc welding machine, a Zener diode and a resistor are connected between the voltage dividing point of the voltage dividing resistor and the inverting input terminal. A pulse arc welding machine equipped with a compensation circuit consisting of a series circuit.
JP18262981U 1981-12-07 1981-12-07 Pulse arc bath welding machine Granted JPS5885473U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18262981U JPS5885473U (en) 1981-12-07 1981-12-07 Pulse arc bath welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18262981U JPS5885473U (en) 1981-12-07 1981-12-07 Pulse arc bath welding machine

Publications (2)

Publication Number Publication Date
JPS5885473U JPS5885473U (en) 1983-06-09
JPS6217163Y2 true JPS6217163Y2 (en) 1987-04-30

Family

ID=29981164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18262981U Granted JPS5885473U (en) 1981-12-07 1981-12-07 Pulse arc bath welding machine

Country Status (1)

Country Link
JP (1) JPS5885473U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11090752B2 (en) 2016-02-04 2021-08-17 Panasonic Intellectual Property Management Co., Ltd. Pulsed arc welding control method and pulsed arc welding device

Also Published As

Publication number Publication date
JPS5885473U (en) 1983-06-09

Similar Documents

Publication Publication Date Title
US11534848B2 (en) Control method for MIG/MAG-welding and welding equipment applying this method
US4300035A (en) Welding apparatus with time interval control
CA1128142A (en) Short-circuit arc welding apparatus
JPH10277740A (en) Pulse arc welding equipment
CA1187562A (en) Welding method and apparatus
JPS6217163Y2 (en)
JPS60187468A (en) Short arc welding method
JPS6235576Y2 (en)
JPH0751854A (en) Consumable electrode type arc welding controller
JPS6319268B2 (en)
US3502897A (en) Method of and power supply for electric arc welding
JPH09150267A (en) Carbon dioxide shield arc welding
JPS6178568A (en) Short circuiting transfer arc welding method and its device
JPS587388B2 (en) Shoumoden Kiyokushiki - Kuyosetsuki
JP3115173B2 (en) Wire feeding speed control device for consumable electrode arc welding machine
JPS607908Y2 (en) Control device for battery-powered resistance welding machine
JPH06170537A (en) Method and device of welding automatic control
JPS6222307Y2 (en)
JPH0329503B2 (en)
JPS6239893Y2 (en)
JPH0339789B2 (en)
JP2541733B2 (en) Consumable electrode type arc welding controller
JPS59166373A (en) Dc arc welding machine
JPS5825871A (en) Arc welding machine
JPH064192B2 (en) Arc welding control device