JPH0632814A - Method for removing impurity in resin for electronic part - Google Patents
Method for removing impurity in resin for electronic partInfo
- Publication number
- JPH0632814A JPH0632814A JP19384792A JP19384792A JPH0632814A JP H0632814 A JPH0632814 A JP H0632814A JP 19384792 A JP19384792 A JP 19384792A JP 19384792 A JP19384792 A JP 19384792A JP H0632814 A JPH0632814 A JP H0632814A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- impurities
- acid
- treatment
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Phenolic Resins Or Amino Resins (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子部品用樹脂中の不
純物除去方法に係り、特に樹脂中に含まれる鉄やナトリ
ウムなどの金属系不純物の除去・低減に有効な電子部品
用樹脂中の不純物除去方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing impurities in a resin for electronic parts, and particularly to a method for removing and reducing metallic impurities such as iron and sodium contained in the resin. The present invention relates to a method for removing impurities.
【0002】[0002]
【従来の技術】たとえば集積回路の製造においては、能
動素子などのパターニングに当たり、一般的に環化イソ
プレンゴムを素材としたネガ型レジスト、あるいはノボ
ラック樹脂を素材としたポジ型レジストが使用されてい
る。そして、近年では、集積回路の集積度上昇に伴い、
解像度のすぐれたポジ型感光樹脂が多用される状況にな
ってきている。2. Description of the Related Art In the manufacture of integrated circuits, for example, a negative resist made of cyclized isoprene rubber or a positive resist made of novolac resin is generally used for patterning active elements and the like. . And in recent years, with the increase in the degree of integration of integrated circuits,
It is becoming more and more common to use positive photosensitive resin with excellent resolution.
【0003】しかし、前記フォトレジスト樹脂中にアル
カリ金属や、重金属などの金属系の不純物が存在する
(含有されている)と、たとえその量が極微量であった
としても、絶縁酸化膜の耐圧不良およびPN接合リ−ク不
良などを引き起こす原因となる。つまり、ULSIの製造工
程で用いたフォトレジスト樹脂に、含有されていた極微
量の金属系不純物が、最終的に製造されたUSLIの機能的
な信頼性に重要な影響を与える。したがって、この種の
フォトレジスト樹脂においては、可能な限り金属系不純
物を除去することが望まれている。However, if metal-based impurities such as alkali metals and heavy metals are present (contained) in the photoresist resin, even if the amount thereof is extremely small, the withstand voltage of the insulating oxide film is high. It may cause defects and PN junction leak defects. That is, the very small amount of metallic impurities contained in the photoresist resin used in the ULSI manufacturing process has an important influence on the functional reliability of the finally manufactured USLI. Therefore, in this type of photoresist resin, it is desired to remove metallic impurities as much as possible.
【0004】上記の要求に対して、一般的には図2に示
す手順での純水(常温)による洗浄操作で、フォトレジ
スト樹脂中の不純物の除去・低減化を図っている。具体
的には、たとえばアルコ−ルやアセトンなどの有機溶媒
にフォトレジスト樹脂を溶解し、この樹脂溶液1を多量
の攪拌純水(常温)中に滴下して攪拌洗浄処理2した
後、樹脂成分のみを沈殿・瀘別分離処理3して乾燥処理
4する方法、あるいは酢酸エチルやトルエンなどの非水
溶性の溶媒にフォトレジスト樹脂を溶解し、その樹脂溶
液を純水(常温)と激しく攪拌洗浄処理して不純物のみ
を抽出除去してから、前記非水溶性の溶媒を除去し、乾
燥処理4する方法などが挙げられる。そして、これらの
洗浄操作方法は、通常、前記の洗浄操作を反復し、許容
範囲まで不純物濃度を低下させている。In response to the above requirements, generally, a cleaning operation with pure water (normal temperature) in the procedure shown in FIG. 2 is carried out to remove / reduce impurities in the photoresist resin. Specifically, for example, a photoresist resin is dissolved in an organic solvent such as alcohol or acetone, and the resin solution 1 is dropped into a large amount of agitated pure water (normal temperature) to perform an agitation washing treatment 2. A method of precipitating / separating and separating only 3 and then drying 4 or dissolving the photoresist resin in a non-water-soluble solvent such as ethyl acetate or toluene, and washing the resin solution with pure water (room temperature) under vigorous stirring Examples include a method in which only impurities are extracted and removed by treatment, the insoluble solvent is removed, and a drying treatment 4 is performed. Then, in these cleaning operation methods, the above-mentioned cleaning operation is usually repeated to reduce the impurity concentration to an allowable range.
【0005】なお、上記ではフォトレジスト樹脂におけ
る金属系不純物の影響、および不純物の除去・低減化手
段について例示したが、たとえば半導体装置の封止用樹
脂、保護膜用樹脂、もしくは多層配線の層間絶縁用樹脂
などの場合も、適用(使用)する装置などに要求される
性能・機能の点から無視し得ない問題である。In the above description, the influence of metallic impurities in the photoresist resin and the means for removing / reducing the impurities have been exemplified. For example, the resin for encapsulating a semiconductor device, the resin for a protective film, or the interlayer insulation of multilayer wiring. Even in the case of resin for use, it is a problem that cannot be ignored in terms of the performance and functions required for the applied (used) device.
【0006】[0006]
【発明が解決しようとする課題】上記常温の純水を用い
洗浄する方法は、樹脂中に含有されている不純物の除去
・低減化を図り得るが、未だアルカリ金属元素や重金属
元素の除去効率が悪く、たとえば金属系の各不純物元素
濃度を 0.1 ppm以下に除去・低減化することは困難であ
った。つまり、常温の純水による洗浄操作の繰り返し
で、金属系の不純物元素濃度をある程度までは比較的容
易に低減しえるが、たとえば 1 ppm程度の極微量に達し
た時点以降においては、前記洗浄操作の繰り返し回数は
大幅に増やしても、その割に金属系の不純物元素濃度の
除去・低減率が低く、実用的な面で限界を認めざるを得
ないからである。Although the above-mentioned method of cleaning with pure water at room temperature can remove and reduce impurities contained in the resin, the efficiency of removing alkali metal elements and heavy metal elements is still low. Unfortunately, it was difficult to remove / reduce the concentration of each metallic impurity element to 0.1 ppm or less. In other words, by repeating the cleaning operation with pure water at room temperature, it is possible to relatively easily reduce the concentration of metallic impurity elements to some extent, but for example, after reaching a trace amount of about 1 ppm, the cleaning operation is performed. This is because even if the number of repetitions of is greatly increased, the removal / reduction rate of the metal-based impurity element concentration is relatively low, and a practical limit must be recognized.
【0007】本発明はこのような事情に対処してなされ
たもので、電子部品用樹脂中の不純物を容易に、かつ金
属系の各不純物元素濃度を 0.1 ppm以下に除去・低減化
することが可能な、電子部品用樹脂中の不純物除去方法
の提供を目的とする。The present invention has been made in view of such circumstances, and it is possible to easily remove and reduce impurities in the resin for electronic parts and the concentration of each metallic impurity element to 0.1 ppm or less. An object of the present invention is to provide a possible method for removing impurities in a resin for electronic parts.
【0008】[0008]
【課題を解決するための手段】本発明に係る電子部品用
樹脂中の不純物除去方法は、不純物を含有する電子部品
用樹脂を少なくとも熱水処理もしくは希酸処理のいずれ
か一つの処理を施し含有不純物を除去する工程と、前記
含有不純物の除去された電子部品用樹脂を不純物侵入を
防止しながら分離し、乾燥処理する工程とを具備して成
ることを特徴とする。A method for removing impurities from a resin for electronic parts according to the present invention includes a resin for electronic parts containing impurities by at least one of hot water treatment and dilute acid treatment. It is characterized by comprising a step of removing impurities, and a step of separating the resin for electronic parts from which the contained impurities have been removed while preventing the intrusion of impurities and drying the resin.
【0009】そして、この発明はフォトレジスト樹脂な
ど電子部品用樹脂において、微量含有している金属不純
物の除去・低減の方策を鋭意、検討・研究した結果、熱
水処理もしくは希酸処理いずれかの処理を施した場合、
樹脂中の金属不純物元素濃度をそれぞれ 0.1 ppm以下
に、容易かつ確実に除去・低減化し得るとの知見に基づ
いてなされたものである。The present invention has been earnestly studied and studied a method for removing and reducing a small amount of metal impurities contained in a resin for electronic parts such as a photoresist resin, and as a result, either hot water treatment or dilute acid treatment was conducted. When treated,
This is based on the finding that the concentration of metal impurity elements in the resin can be easily and surely reduced to 0.1 ppm or less, respectively.
【0010】本発明において、被処理体となる不純物を
含有する電子部品用樹脂としては、従来公知のいずれの
方法で製造されたレジスト樹脂であってもよく、たとえ
ばポリイソプレンやポリブタジェンなどのゴム系レジス
ト樹脂、アクリル酸エステルやメタクリル酸エステルな
どのアクリル系レジスト樹脂、ノボラックなどのフェノ
ール系レジスト樹脂などが挙げられる。そして、含有さ
れている不純物濃度が感度、もしくはパターンプロファ
イルに敏感に影響を与えるレジスト樹脂、たとえば環境
に対して敏感な性質を有する化学増幅型レジスト樹脂を
被処理体とした場合、さらに有効である。In the present invention, the resin for electronic parts containing impurities to be treated may be a resist resin produced by any conventionally known method, for example, a rubber-based resin such as polyisoprene or polybutadiene. Examples thereof include resist resins, acrylic resist resins such as acrylic acid esters and methacrylic acid esters, and phenolic resist resins such as novolacs. Further, it is more effective when a resist resin whose contained impurity concentration sensitively affects the sensitivity or pattern profile, for example, a chemically amplified resist resin having a property of being sensitive to the environment is used as the object to be treated. .
【0011】このような化学増幅型レジスト樹脂として
は、たとえばフェノールノボラック樹脂型、クレゾール
ノボラック樹脂型、キシレノールノボラック樹脂型、ビ
ニルフェノール樹脂、イソプロペニルフェノール樹脂、
ビニルフェノールとアクリル酸,メタクリル酸誘導体,
アクリロニトリル,スチレン誘導体などとの共重合体、
イソプロペニルフェノールとアクリル酸,メタクリル酸
誘導体,アクリロニトリル,スチレン誘導体などとの共
重合体などがあり、具体的には、たとえばポリ(p-ヒニ
ルフェノール)、p-イソプロペニルフェノールとニトリ
ルとの共重合体(共重合比 1:1)、p-イソプロペニルフ
ェノールとスチレンとの共重合体(共重合比 1:1)、p-
ビニルフェノールとメチルメタクリレートとの共重合体
(共重合比 1:1)、p-ビニルフェノールとメチルスチレ
ンとの共重合体(共重合比 1:1)などが挙げられる。Examples of such chemically amplified resist resin include phenol novolac resin type, cresol novolac resin type, xylenol novolac resin type, vinyl phenol resin, isopropenyl phenol resin,
Vinylphenol and acrylic acid, methacrylic acid derivatives,
Copolymer with acrylonitrile, styrene derivative, etc.,
There are copolymers of isopropenylphenol with acrylic acid, methacrylic acid derivatives, acrylonitrile, styrene derivatives, and the like. Specific examples include copolymers of poly (p-hinylphenol) and p-isopropenylphenol with nitrile. Polymer (copolymerization ratio 1: 1), p-isopropenylphenol / styrene copolymer (copolymerization ratio 1: 1), p-
Examples thereof include a copolymer of vinylphenol and methylmethacrylate (copolymerization ratio 1: 1) and a copolymer of p-vinylphenol and methylstyrene (copolymerization ratio 1: 1).
【0012】さらに、前記レジスト樹脂においては、現
像液溶解性の制御、あるいは感光性の付与を目的とし
て、反応試薬にアルカリ金属化合物などを用いて重合体
の水酸基を、たとえばアセトキシ,ホルミロキシ,メタ
クリルアニリド,o-ニトロベンジル,ジヒドロピリジ
ル,o-キノンジアジドスルホン酸,アクリロイル,ジア
ゾニウム,スルホニウム,ヨウドニウム,有機ハロゲン
化物などの感光性置換基、あるいはカルボン酸の tert-
ブチルエステル, tert-ブチルカルボナートなどの第三
級炭素を有する保護基、シクルヘキシル,sec-ブチル
基,イソプロピル基などの第二級炭素を有する保護基、
トリアルキル基,フェニルシリル基,テトラヒドロピラ
ニル基,メチルメトキシ基などの保護基で置換した場合
などの処理に適する。Further, in the above resist resin, for the purpose of controlling the solubility in a developing solution or imparting photosensitivity, an alkali metal compound or the like is used as a reaction reagent to give a hydroxyl group of a polymer such as acetoxy, formyloxy or methacrylanilide. , O-Nitrobenzyl, dihydropyridyl, o-quinonediazidosulfonic acid, acryloyl, diazonium, sulfonium, iodonium, organic halides and other photosensitive substituents, or tert-carboxylic acid
Butyl ester, tert-butyl carbonate and other protective groups having a tertiary carbon, cyclohexyl, sec-butyl group, isopropyl group and other secondary carbon protective groups,
It is suitable for treatment when it is substituted with a protecting group such as a trialkyl group, a phenylsilyl group, a tetrahydropyranyl group, and a methylmethoxy group.
【0013】上記電子部品用樹脂中に含有されている不
純物としては、たとえば鉄(Fe) 、ナトリウム(Na)、
カリウム( K)、銅(Cu)などが挙げられ、これら金属
の不純物中、たとえば鉄( 2+ もしくは 3+ )、ナトリ
ウム( 1+ )、カリウム( 1+ )、銅( 1+ もしくは 2
+ )のようにイオン表示されるものである。The impurities contained in the resin for electronic parts include, for example, iron (Fe), sodium (Na),
Potassium (K), copper (Cu), etc. are mentioned. Among these metal impurities, for example, iron (2+ or 3+), sodium (1+), potassium (1+), copper (1+ or 2)
+) Is an ion display.
【0014】本発明において使用する熱水(純水)、酸
および溶媒などは、可能な限り高純度であることが必要
で、それぞれ金属不純物濃度として、たとえば鉄:5ppb
以下、ナトリウム:10ppb 以下、カリウム:10ppb 以
下、銅:5ppb以下が望ましい。そして、所要の洗浄処理
に熱水(純水)を用いる場合の温度条件は、高温にする
ほど洗浄効果が向上することから、その温度を35℃程度
以上、好ましくは40℃以上でにすることにより熱水によ
る有効性が現れる。上限温度につていは被処理樹脂が熱
分解を起さない範囲に設定することが必要で、一般的に
被処理樹脂の熱分解温度より20℃以下を上限とすること
が好ましい。また、熱水(純水)の使用量は特に制限な
いが、より十分な洗浄効果を達成するためには、被処理
樹脂量と同量以上に選択することが望ましい。The hot water (pure water), the acid, the solvent, etc. used in the present invention need to be as pure as possible, and each has a metal impurity concentration of, for example, iron: 5 ppb.
Below, sodium: 10 ppb or less, potassium: 10 ppb or less, and copper: 5 ppb or less are desirable. The temperature condition when using hot water (pure water) for the required cleaning treatment is that the temperature is about 35 ° C or higher, preferably 40 ° C or higher, because the higher the temperature, the better the cleaning effect. Therefore, the effectiveness of hot water appears. It is necessary to set the upper limit temperature in a range that does not cause thermal decomposition of the resin to be treated, and it is generally preferable that the upper limit is 20 ° C. or lower than the thermal decomposition temperature of the resin to be treated. The amount of hot water (pure water) used is not particularly limited, but in order to achieve a more sufficient cleaning effect, it is desirable to select the amount equal to or more than the amount of resin to be treated.
【0015】一方、所要の洗浄処理に希酸水溶液を用い
る場合、その酸濃度は被処理樹脂の酸に対する安定性な
ど考慮して選択・設定する。たとえば酸架橋性あるいは
酸分解性基を有する化学増幅型レジスト材料のときは、
0.1〜0.5M程度に設定される。そして、この種の希酸水
溶液は、高純度の純水に、同じく高純度のたとえば硝
酸,塩酸,フッ酸,クエン酸,酒石酸,乳酸などから選
択された少なくとも1種の酸を所要量添加して、溶液化
することにより調製し得る。なお、この希酸水溶液によ
る洗浄処理は、常温で行ってもよいが、希酸水溶液によ
る洗浄処理系を、たとえば40℃以上に加熱保温すること
により、金属不純物をさらに効率的に除去・低減し得
る。On the other hand, when a dilute acid aqueous solution is used for the required cleaning treatment, the acid concentration is selected and set in consideration of the stability of the resin to be treated against the acid. For example, in the case of a chemically amplified resist material having an acid crosslinkable or acid decomposable group,
It is set to about 0.1 to 0.5M. This kind of dilute aqueous acid solution is prepared by adding a required amount of at least one acid selected from high purity pure water such as nitric acid, hydrochloric acid, hydrofluoric acid, citric acid, tartaric acid and lactic acid. It can be prepared by making a solution. The cleaning treatment with the diluted acid aqueous solution may be carried out at room temperature, but by heating and maintaining the cleaning treatment system with the diluted acid aqueous solution at, for example, 40 ° C. or higher, the metal impurities can be removed and reduced more efficiently. obtain.
【0016】また、いずれの場合も、洗浄処理系のpH調
整もしくは有機溶媒の選択(被処理樹脂を溶液化しての
洗浄処理)などによって、たとえばクロム,亜鉛,銅の
除去・低減を成し得る。In any case, for example, chromium, zinc, and copper can be removed or reduced by adjusting the pH of the cleaning treatment system or selecting an organic solvent (cleaning treatment by dissolving the resin to be treated). .
【0017】本発明においては、前記洗浄処理など一連
の操作で使用する洗浄装置(容器や器具)、分離装置、
乾燥装置などが新たな汚染源となることを回避するた
め、不純物が溶出しない材質製、たとえばテフロン製や
合成石英製(もしくはこれらでコーテングした構成)な
どを用いたり、作業環境(雰囲気)を考慮することは勿
論である。In the present invention, a cleaning device (container or instrument) used in a series of operations such as the cleaning process, a separation device,
In order to avoid new sources of pollution such as a drying device, use materials that do not elute impurities, such as Teflon or synthetic quartz (or a composition coated with these), and consider the working environment (atmosphere) Of course.
【0018】[0018]
【作用】上記本発明方法によれば、たとえばナトリウム
やカリウムなどの不純物を含有する電子部品用樹脂を、
先ず熱水(純水)もしくは希酸水溶液と接触させ、洗浄
処理を行う。そして、熱水(純水)による洗浄処理の場
合、その熱により活性化エネルギーが向上し、含有され
ているナトリウムやカリウムなど溶出し易い元素は、速
やかにイオン化して熱水中に容易に移動し、樹脂から分
離されるので、電子部品用樹脂中の不純物の除去・低減
が達成される。また、希酸水溶液で洗浄処理した場合
も、希酸水溶液中の陰イオンが不純物であるたとえば鉄
( 2+ もしくは 3+ )、銅( 1+ もしくは 2+ )などの
陽イオンと速やかに反応して樹脂から分離されるので、
電子部品用樹脂中の不純物の除去・低減が達成される。
そして、この希酸水溶液で洗浄処理においても、加熱し
た場合は活性化エネルギーが向上し、不純物の除去・低
減化の効率が高められる。なお、ここで被処理樹脂が粉
末である場合よりも、溶液の場合の方が均一に洗浄され
るため、不純物の除去効率は一般的に高くなる。According to the above-mentioned method of the present invention, a resin for electronic parts containing impurities such as sodium and potassium,
First, contact with hot water (pure water) or a dilute acid aqueous solution is carried out to carry out a cleaning treatment. In the case of cleaning treatment with hot water (pure water), the activation energy is improved by the heat, and the easily contained elements such as sodium and potassium are quickly ionized and easily moved into the hot water. However, since it is separated from the resin, the removal and reduction of impurities in the resin for electronic parts can be achieved. In addition, even when washed with a dilute aqueous acid solution, the anions in the dilute aqueous acid solution react rapidly with impurities such as iron (2+ or 3+) and copper (1+ or 2+) cations. Is separated from the resin,
Removal and reduction of impurities in the resin for electronic parts are achieved.
Even in the cleaning treatment with this dilute aqueous acid solution, the activation energy is improved when heated, and the efficiency of removing and reducing impurities is increased. It should be noted that the efficiency of removing impurities is generally higher because the solution is more uniformly washed than the case where the resin to be treated is a powder.
【0019】[0019]
【実施例】以下実施例により本発明をさらに具体的に説
明するが、本発明はこれらの実施例に限定されるもので
なく、要旨を逸脱しない範囲で適宜変形して実施し得る
ことは勿論ある。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples, and it is needless to say that the present invention can be appropriately modified and carried out without departing from the scope of the invention. is there.
【0020】実施例1 先ず、不純物濃度が、Na:20ppm , K:30ppm ,Fe:10
ppm ,Cr:50ppm ,Cu:10 ppmのm-クレゾールノボラッ
ク樹脂 100 gをテフロン製容器に収容し、さらに 0.5M
酢酸水溶液 500 gを加え、60℃に加温(加熱)保持した
状態で10分間激しく振とう攪拌し洗浄処理した。その
後、テフロン製フィルターを用いて、前記樹脂分を濾取
し、上記洗浄処理を再度施してから、テフロン製フィル
ターで樹脂分を濾取した。なお、このとき 2 lの純水を
用いて前記洗浄処理に使用した酢酸を十分に取り除い
た。Example 1 First, the impurity concentrations were Na: 20 ppm, K: 30 ppm, Fe: 10
100 g of m-cresol novolac resin containing ppm, Cr: 50 ppm, and Cu: 10 ppm was placed in a Teflon container and 0.5 M was added.
An aqueous acetic acid solution (500 g) was added, and the mixture was washed with vigorous shaking and stirring for 10 minutes while being heated (heated) and maintained at 60 ° C. Then, the resin component was collected by filtration using a Teflon filter, the washing treatment was performed again, and the resin component was collected by a Teflon filter. At this time, 2 l of pure water was used to sufficiently remove the acetic acid used for the cleaning treatment.
【0021】前記洗浄処理し、かつ濾取した樹脂分を真
空乾燥器内に収容し、50℃で 2日間乾燥処理して、樹脂
中の不純物除去を終了した。このようにして不純物除去
処理を行った樹脂粉末中の不純物濃度をフレームレス原
子吸光装置により測定したところ、Na:10ppb , K:20
ppb ,Fe:50ppb ,Cr:10ppb ,Cu:10ppb と大幅に除
去・低減していた。The resin component that had been washed and filtered was housed in a vacuum dryer and dried at 50 ° C. for 2 days to complete the removal of impurities from the resin. The impurity concentration in the resin powder thus treated for impurity removal was measured by a flameless atomic absorption spectrophotometer to find that Na: 10 ppb, K: 20
ppb, Fe: 50 ppb, Cr: 10 ppb, and Cu: 10 ppb were removed and reduced significantly.
【0022】なお、m-クレゾールノボラック樹脂 100 g
を酢酸エチル400gに溶解して調製した溶液の形で、上記
洗浄処理条件に準じた表1に示す条件で、熱水による洗
浄処理(実施例1a)、熱水−常温酸溶液による洗浄処
理(実施例1b)、熱水−熱酸溶液による洗浄処理(実
施例1c)、熱酸溶液による洗浄処理(実施例1d)を
それぞれ行った結果を表2に実施例1の場合と併せて示
す。100 g of m-cresol novolac resin
Was dissolved in 400 g of ethyl acetate to prepare a solution, which was washed with hot water under the conditions shown in Table 1 according to the above washing treatment conditions (Example 1a) and a washing treatment with hot water-normal temperature acid solution ( The results of Example 1b), washing with a hot water-hot acid solution (Example 1c), and washing with a hot acid solution (Example 1d) are shown in Table 2 together with the case of Example 1.
【0023】上記実施例から分かるように、洗浄処理系
を常温に設定した場合に比べ、加温(加熱)保持した場
合の方が不純物除去効果が高く、また熱水洗浄の場合
は、ナトリウム、カリウムの除去効果が大であった。さ
らに、図1にフローチャートで示すように、上記実施例
において、洗浄処理工程5の後、熱水洗浄工程6を付加
し、その後濾過・分離工程7、乾燥処理工程8を行った
場合は、前記不純物の除去・低減がさらに効果的になさ
れた。As can be seen from the above examples, the effect of removing impurities is higher when the cleaning treatment system is kept at a normal temperature (heated) than when the cleaning treatment system is set to room temperature, and when the cleaning is performed with hot water, sodium, The effect of removing potassium was great. Further, as shown in the flow chart of FIG. 1, in the above-mentioned embodiment, after the washing treatment step 5, the hot water washing step 6 is added, and then the filtration / separation step 7 and the drying treatment step 8 are performed, The removal / reduction of impurities was made more effective.
【0024】実施例2 先ず、不純物濃度が、Na:100ppm, K:300ppm,Fe:10
ppm ,Cr:4.0ppm,Cu:1.0ppmのtert- ブトキシカルボ
ニル化ヒニルフェノール樹脂 100 gを酢酸エチル 400 g
に溶解して調製した溶液をテフロン製容器に収容し、さ
らに0.5M酢酸水溶液 500 gを加え、40℃に加温(加熱)
保持した状態で10分間激しく振とう攪拌し洗浄処理た。
その後、30分間静置して樹脂溶液と酸水溶液の2層分離
を行い、上層の樹脂溶液を分取した。この樹脂溶液から
溶媒(酢酸エチル)を留去した後、アセトン 400 gで再
度溶液化してから、 3 lの純水中に滴下して再沈殿させ
た後、テフロン製フィルターを用いて、前記樹脂分を濾
取し、その濾取した樹脂分を真空乾燥器内に収容し、50
℃で 2日間乾燥処理して、樹脂中の不純物除去を終了し
た。このようにして不純物除去処理を行った樹脂粉末中
の不純物濃度をフレームレス原子吸光装置により測定し
たところ、Na:50ppb , K:300ppb,Fe:100ppb,Cr:
20ppb ,Cu:10ppb と大幅に除去・低減していた。Example 2 First, the impurity concentrations were Na: 100 ppm, K: 300 ppm, Fe: 10.
ppm, Cr: 4.0 ppm, Cu: 1.0 ppm tert-butoxycarbonylated hynylphenol resin 100 g ethyl acetate 400 g
Dissolve the solution in a Teflon container, add 500 g of 0.5 M acetic acid solution, and heat (heat) to 40 ° C.
While maintaining the state, it was washed by vigorously shaking and stirring for 10 minutes.
Then, the mixture was allowed to stand for 30 minutes to separate the resin solution and the acid aqueous solution into two layers, and the upper layer resin solution was separated. After distilling off the solvent (ethyl acetate) from this resin solution, the solution was made into a solution again with 400 g of acetone, and then dropped into 3 l of pure water for reprecipitation. The resin was collected by filtration, and the resin content collected by filtration was placed in a vacuum dryer.
Drying treatment was carried out at 0 ° C for 2 days to complete the removal of impurities in the resin. When the impurity concentration in the resin powder thus treated for impurity removal was measured by a flameless atomic absorption spectrometer, Na: 50 ppb, K: 300 ppb, Fe: 100 ppb, Cr:
It was significantly reduced and reduced to 20ppb and Cu: 10ppb.
【0025】なお、tert- ブトキシカルボニル化ヒニル
フェノール樹脂を溶液とせず粉末のの形で、上記洗浄処
理条件に準じた表1に示す条件で、熱水による洗浄処理
(実施例2a)、熱水−常温酸溶液による洗浄処理(実
施例2b)、熱水−熱酸溶液による洗浄処理(実施例2
c)、熱酸溶液による洗浄処理(実施例2d)をそれぞ
れ行った結果を表2に実施例2の場合と併せて示す。The tert-butoxycarbonylated hynylphenol resin was not made into a solution but in the form of powder under the conditions shown in Table 1 according to the above-mentioned washing treatment conditions, hot water washing treatment (Example 2a), heat treatment Cleaning treatment with water-normal temperature acid solution (Example 2b), cleaning treatment with hot water-hot acid solution (Example 2)
c) and the result of performing the cleaning treatment with the hot acid solution (Example 2d) are shown in Table 2 together with the case of Example 2.
【0026】上記実施例から分かるように、洗浄処理系
を常温に設定した場合に比べ、加温(加熱)保持した場
合の方が不純物除去効果が高く、また熱水洗浄の場合
は、ナトリウム、カリウムの除去効果が大であった。As can be seen from the above-described examples, the effect of removing impurities is higher when the cleaning treatment system is kept at room temperature (heating) than when the cleaning treatment system is set to room temperature, and when cleaning with hot water, sodium, The effect of removing potassium was great.
【0027】[0027]
【表1】 [Table 1]
【表2】 実施例3〜12 上記実施例1および実施例2に準じて、各種の電子部品
用樹脂について、表3に示すような条件でそれぞれ洗浄
処理し、含有していた不純物の除去・低減化を行った。
一方、比較のため、従来の純水(常温)による洗浄処理
の場合も、その処理条件を表3に併せて示す。さらに、
これらの洗浄処理(不純物除去)に当たって当初の不純
物濃度( ppm)および処理後の不純物濃度( ppm)を表
4にそれぞれ示した。[Table 2] Examples 3 to 12 Various kinds of resins for electronic parts were washed under the conditions shown in Table 3 according to the above Examples 1 and 2 to remove and reduce the impurities contained therein. It was
On the other hand, for comparison, Table 3 also shows the processing conditions in the case of the conventional cleaning process using pure water (normal temperature). further,
The initial impurity concentration (ppm) and the impurity concentration (ppm) after the cleaning treatment (removal of impurities) are shown in Table 4, respectively.
【0028】なお、表1において、試料の状態aは酢酸
エチル20%溶液の場合を、また 樹脂A:tert- ブトキシカルボニル化ビニルフェノール
樹脂 樹脂B:ポリビニルフェノール樹脂 樹脂C:tert- ブトキシカルボニルメトキシ化ビニルフ
ェノール樹脂 樹脂D:ポリイソプロペニル化フェノール樹脂 樹脂E:m-クレゾールノボラック樹脂 の場合をそれぞれ示す。In Table 1, the state a of the sample is the case of a 20% ethyl acetate solution, and resin A: tert-butoxycarbonylated vinylphenol resin Resin B: polyvinylphenol resin Resin C: tert-butoxycarbonylmethoxylated Vinylphenol resin Resin D: polyisopropenylated phenol resin Resin E: m-cresol novolac resin
【0029】[0029]
【表3】 [Table 3]
【表4】 [Table 4]
【0030】[0030]
【発明の効果】以上説明したように本発明に係る不純物
の除去方法によれば、レジスト樹脂中の金属系の各不純
物元素を 0.1ppm 程度以下と、容易に除去・低減するこ
とが可能となる。つまり、煩雑な操作など要せずに、か
つ短時間の洗浄処理で従来法に比較して、10倍以上の除
去効率で高純度のレジスト樹脂を調製することが可能に
なる。As described above, according to the method for removing impurities according to the present invention, it is possible to easily remove / reduce each metallic impurity element in the resist resin to about 0.1 ppm or less. . That is, it is possible to prepare a high-purity resist resin with a removal efficiency that is 10 times or more as compared with the conventional method by a cleaning treatment for a short time without requiring complicated operations.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明に係る電子部品用樹脂中の不純物除去方
法例を示すフロ−チャート図。FIG. 1 is a flow chart showing an example of a method for removing impurities from a resin for electronic parts according to the present invention.
【図2】従来のレジスト樹脂中の不純物除去方法を示す
フロ−チャート図。FIG. 2 is a flowchart showing a conventional method for removing impurities from a resist resin.
1,1′…レジスト試料 2,2′…洗浄(純水…常
温)工程 3,7…レジスト試料分離工程 4,8
…乾燥処理工程 5…洗浄(希酸水)工程 6…洗浄(熱水)工程1, 1 '... Resist sample 2, 2' ... Cleaning (pure water ... normal temperature) step 3, 7 ... Resist sample separation step 4, 8
… Drying process 5… Washing (dilute acid water) process 6… Washing (hot water) process
Claims (1)
くとも熱水処理もしくは希酸処理のいずれか一つの処理
を施し含有不純物を除去する工程と、 前記含有不純物の除去された電子部品用樹脂を不純物侵
入を防止しながら分離し、乾燥処理する工程とを具備し
て成ることを特徴とする電子部品用樹脂中の不純物除去
方法。1. A step of removing at least one of a hot water treatment and a dilute acid treatment of an electronic component resin containing impurities to remove the contained impurities, and the electronic component resin from which the contained impurities have been removed. A method for removing impurities from a resin for electronic parts, comprising a step of separating while preventing impurities from entering and performing a drying treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19384792A JPH0632814A (en) | 1992-07-21 | 1992-07-21 | Method for removing impurity in resin for electronic part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19384792A JPH0632814A (en) | 1992-07-21 | 1992-07-21 | Method for removing impurity in resin for electronic part |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0632814A true JPH0632814A (en) | 1994-02-08 |
Family
ID=16314741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19384792A Pending JPH0632814A (en) | 1992-07-21 | 1992-07-21 | Method for removing impurity in resin for electronic part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0632814A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06287261A (en) * | 1993-04-06 | 1994-10-11 | Kanebo Nsc Ltd | Method for purifying novolak resin |
WO1999062964A1 (en) * | 1998-06-04 | 1999-12-09 | Nippon Zeon Co., Ltd. | PURIFIED METHYL α-CHLOROACRYLATE/α-METHYLSTYRENE COPOLYMER AND ELECTRON BEAM RESIST COMPOSITION CONTAINING THE SAME |
JP2002097219A (en) * | 2000-09-21 | 2002-04-02 | Sumitomo Chem Co Ltd | Method for producing poly(meth)acrylates with reduced metal content |
WO2007011017A1 (en) * | 2005-07-22 | 2007-01-25 | Kuraray Co., Ltd. | Method of taking (meth)acrylic ester polymer out of liquid reaction mixture |
JP2008044990A (en) * | 2006-08-11 | 2008-02-28 | Mitsubishi Rayon Co Ltd | Method for producing polymer, polymer and resist composition |
WO2015045628A1 (en) * | 2013-09-25 | 2015-04-02 | 住友電気工業株式会社 | Method for manufacturing silicon-carbide semiconductor device |
JP2016044241A (en) * | 2014-08-22 | 2016-04-04 | 信越化学工業株式会社 | Method for producing organic film forming composition |
-
1992
- 1992-07-21 JP JP19384792A patent/JPH0632814A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06287261A (en) * | 1993-04-06 | 1994-10-11 | Kanebo Nsc Ltd | Method for purifying novolak resin |
WO1999062964A1 (en) * | 1998-06-04 | 1999-12-09 | Nippon Zeon Co., Ltd. | PURIFIED METHYL α-CHLOROACRYLATE/α-METHYLSTYRENE COPOLYMER AND ELECTRON BEAM RESIST COMPOSITION CONTAINING THE SAME |
JP2002097219A (en) * | 2000-09-21 | 2002-04-02 | Sumitomo Chem Co Ltd | Method for producing poly(meth)acrylates with reduced metal content |
WO2007011017A1 (en) * | 2005-07-22 | 2007-01-25 | Kuraray Co., Ltd. | Method of taking (meth)acrylic ester polymer out of liquid reaction mixture |
US8119749B2 (en) | 2005-07-22 | 2012-02-21 | Kuraray Co., Ltd. | Method of taking (meth)acrylic ester polymer out of liquid reaction mixture |
JP2008044990A (en) * | 2006-08-11 | 2008-02-28 | Mitsubishi Rayon Co Ltd | Method for producing polymer, polymer and resist composition |
WO2015045628A1 (en) * | 2013-09-25 | 2015-04-02 | 住友電気工業株式会社 | Method for manufacturing silicon-carbide semiconductor device |
JP2015065316A (en) * | 2013-09-25 | 2015-04-09 | 住友電気工業株式会社 | Method for manufacturing silicon carbide semiconductor device |
US9653297B2 (en) | 2013-09-25 | 2017-05-16 | Sumitomo Electric Industries, Ltd. | Method of manufacturing silicon carbide semiconductor device by forming metal-free protection film |
JP2016044241A (en) * | 2014-08-22 | 2016-04-04 | 信越化学工業株式会社 | Method for producing organic film forming composition |
US10047244B2 (en) | 2014-08-22 | 2018-08-14 | Shin-Etsu Chemical Co., Ltd. | Method for producing a composition for forming an organic film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4241165A (en) | Plasma development process for photoresist | |
DE69215383T2 (en) | REDUCTION OF METALION CONTENT IN NOVOLA RESIN | |
EP0005775B1 (en) | Article comprising a substrate and an overlying processing layer of actinic radiation-sensitive material and process for fabrication of the article | |
EP0519297B1 (en) | Radiation-sensitive composition comprising as binders novel polymers with units derived from amides of alpha,beta-unsaturated carboxylic acids | |
EP0060585B2 (en) | Method of applying a resist pattern on a substrate, and resist material mixture | |
JP3805373B2 (en) | Method for reducing metal ions in a photoresist composition by chelating ion-exchange resin | |
JP3052449B2 (en) | Method for reducing metal in resist | |
JPH0632814A (en) | Method for removing impurity in resin for electronic part | |
DE69507343T2 (en) | REDUCING THE METAL ION CONTENT OF A SOLUTION IN PGMEA FROM NOVOLAK RESINS WITH A CHELATE-MAKING ION EXCHANGE RESIN | |
CA1164262A (en) | Photosensitive bodies including an o-nitroarylmethyl ester | |
JP3895776B2 (en) | 4,4 '-[1- [4- [1- (4-Hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] bisphenol having a low metal ion concentration and a photoresist composition obtained therefrom | |
JP2731730B2 (en) | How to remove photoresist | |
US4590149A (en) | Method for fine pattern formation on a photoresist | |
US3346385A (en) | Process for photo-engraving by use of photo-chromic dye and product | |
DE3415791A1 (en) | METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS | |
JPS5952824B2 (en) | Photosensitive composition processing method | |
DE3112196C2 (en) | Photosensitive mixture for dry development and its use | |
US5443736A (en) | Purification process | |
JPS636026A (en) | Purification of novolak resin | |
JPS6359131B2 (en) | ||
JP2825543B2 (en) | Negative radiation sensitive resin composition | |
EP0110576A2 (en) | Ionizing radiation-sensitive material and its use for preparing a pattern | |
DE69012084T2 (en) | Process for etching copper and printed circuit diagram produced thereby. | |
JPH06345711A (en) | (((2-nitro-4, 5-dimethoxybenzyl) oxy)carbonyl)cyclohexylamine and method for utilizing the same | |
US5024918A (en) | Heat activated dry development of photoresist by means of active oxygen atmosphere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010206 |