JPH06323685A - Method and device for generation of cold heat - Google Patents

Method and device for generation of cold heat

Info

Publication number
JPH06323685A
JPH06323685A JP5138895A JP13889593A JPH06323685A JP H06323685 A JPH06323685 A JP H06323685A JP 5138895 A JP5138895 A JP 5138895A JP 13889593 A JP13889593 A JP 13889593A JP H06323685 A JPH06323685 A JP H06323685A
Authority
JP
Japan
Prior art keywords
pair
heat exchanger
pressure side
containers
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5138895A
Other languages
Japanese (ja)
Inventor
Naoki Ko
直樹 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5138895A priority Critical patent/JPH06323685A/en
Publication of JPH06323685A publication Critical patent/JPH06323685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide method and device for generation of cold heat which can take out easily cold heat in a freezing temperature range. CONSTITUTION:A pair of containers 1 and 3 formed of a low pressure side container which is charged with metal hydride of a low hydrogen balance pressure and a high pressure side container which is charged with metal hydride of a high hydrogen balance pressure and another pair of containers 2 and 4 are communicated mutually through hydrogen conduits 8a and 8b, so that a hydrogen stream may be switched to change its flowing direction alternately by a compressor 5 between the pairs of containers 1 and 3, and 2 and 4. In accordance with this switching, a heat exchanger of the low pressure side container which is on a hydrogen releasing side and a heat exchanger of the high pressure side container which is on a hydrogen absorbing side are connected, a heat exchanger of the low pressure side container on a hydrogen absorbing side and a heat exchanger of a heat releasing part are connected, and further a heat exchanger of the high pressure side container on a hydrogen releasing side and a heat exchanger of a cooling load 13 are connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属水素化物を利用し
て冷熱を連続的に取り出す冷熱発生方法および冷熱発生
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold heat generating method and a cold heat generating apparatus for continuously taking out cold heat from a metal hydride.

【0002】[0002]

【従来の技術】ある種の金属や合金が発熱的に水素を吸
蔵して金属水素化物を形成し、また、この金属水素化物
が可逆的に水素を放出することが知られている。ここ
で、金属水素化物は、脱水素化すると金属になるが、こ
の場合も含めて、金属水素化物ということにする。
2. Description of the Related Art It is known that certain metals and alloys exothermically absorb hydrogen to form a metal hydride, and this metal hydride reversibly releases hydrogen. Here, the metal hydride becomes a metal when it is dehydrogenated, and the metal hydride is also included in this case.

【0003】従来の金属水素化物を利用した冷暖房装置
の制御方法としては、例えば、特公昭58ー19954
号公報に示されたものがある。すなわち、異なる量の金
属水素化物を内蔵させた2つの熱交換型金属容器間に圧
縮機を設け、この圧縮機によって水素ガスの流れを繰り
返し反転させ、水素が放出過程にある金属容器を介して
冷房し、また、水素吸蔵過程にある金属容器を介して暖
房するように構成されている。
As a conventional method for controlling an air conditioner using a metal hydride, for example, Japanese Patent Publication No. 58-19954.
There is one disclosed in the publication. That is, a compressor is provided between two heat exchange type metal containers containing different amounts of metal hydride, the flow of hydrogen gas is repeatedly reversed by this compressor, and the hydrogen is released through the metal container. It is configured to be cooled and heated via a metal container in the process of storing hydrogen.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
方式では、冷凍温度域(−20℃以下)の冷熱を取り出
すようにすると、次の問題がある。
However, in the conventional method, when the cold heat in the freezing temperature range (-20 ° C. or less) is taken out, there are the following problems.

【0005】まず、特公昭58ー19954号公報によ
る異なる量の金属水素化物の温度圧力特性よれば、冷凍
温度域で冷熱を取り出す側の水素圧力が極めて低圧とな
る。従って、冷凍温度域の低圧の水素を圧縮機により吸
入して水素を圧縮して水素の流れを反転しようとする
と、圧縮機の圧縮比が極めて大きくなり、圧縮機を高速
に回転させなければならず、運転条件が過酷になり圧縮
機の性能上運転が困難となるという問題がある。
First, according to the temperature-pressure characteristics of different amounts of metal hydrides disclosed in Japanese Patent Publication No. 58-199554, the hydrogen pressure on the side for taking out cold heat becomes extremely low in the freezing temperature range. Therefore, if low-pressure hydrogen in the freezing temperature range is sucked by the compressor to compress the hydrogen to reverse the hydrogen flow, the compression ratio of the compressor becomes extremely large, and the compressor must be rotated at high speed. However, there is a problem that operating conditions become severe and operation of the compressor becomes difficult due to the performance of the compressor.

【0006】さらに、−50℃レベルの低温の冷熱を取
り出そうとすると、冷熱を取り出す側の水素圧力がさら
に低圧となるために、圧縮機の高速回転にも限界があ
り、加圧が充分にできず、連続して−50℃レベルの低
温の冷熱を取り出すことができないという問題があっ
た。この場合に、冷凍温度域で冷熱を取り出す側の水素
圧力比較的高圧となる特性の金属水素化物を用いること
が考えられが、そのようにすると、圧縮機により水素を
水素吸蔵する側の金属水素化物を冷凍温度域(−20℃
以下)とするように冷却する手段が必要となるという新
たな問題が生じる。
Furthermore, when trying to take out cold heat at a low temperature of -50 ° C., the hydrogen pressure at the cold heat take-out side becomes even lower, so there is a limit to the high speed rotation of the compressor, and sufficient pressurization is possible. However, there was a problem that low-temperature cold heat of -50 ° C level could not be taken out continuously. In this case, it is conceivable to use a metal hydride that has a relatively high hydrogen pressure on the side that takes out cold heat in the freezing temperature range. Compounds in the freezing temperature range (-20 ° C
A new problem arises in that a cooling means is required as described below.

【0007】そこで、本発明は、冷凍温度域の冷熱を容
易に取り出すことができる冷熱発生方法および冷熱発生
装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a cold heat generating method and a cold heat generating device which can easily take out cold heat in a freezing temperature range.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、熱交
換器と共に平衡水素圧力特性の低い金属水素化物を充填
した低圧側容器と熱交換器と共に平衡水素圧力特性の高
い金属水素化物を充填した高圧側容器とからなる一対の
容器を2組圧縮機を介して互に水素導管で連結し、前記
2組のうち一方の一対の容器から他方の一対の容器へ前
記圧縮機により水素を強制的に移送することにより前記
一方の一対の容器の低圧側容器内に発生する冷熱を前記
熱交換器を介して前記他方の一対の容器の高圧側容器内
に前記熱交換器を介して供給して冷却すると共に、前記
他方の一対の容器の低圧側容器内に発生する吸蔵熱を放
熱させる一方、前記一方の一対の容器の高圧側容器内に
発生する所望の冷熱を前記熱交換器を介して取り出す第
1サイクルと、前記他方の一対の容器から前記一方の一
対の容器へ前記圧縮機による水素移送を切り替えること
により前記他方の一対の容器の低圧側容器内に発生する
冷熱を前記熱交換器を介して前記一方の一対の容器の高
圧側容器内に前記熱交換器を介して供給して冷却すると
共に、前記一方の一対の容器の低圧側容器内に発生する
吸蔵熱を放熱させる一方、前記他方の一対の容器の高圧
側容器内に発生する所望の冷熱を前記熱交換器を介して
取り出す第2サイクルとを交互に繰り返して前記所望の
冷熱を連続して冷却負荷に供給するようにしたものであ
る。
According to the invention of claim 1, a low pressure side container filled with a metal hydride having a low equilibrium hydrogen pressure characteristic together with a heat exchanger and a metal hydride having a high equilibrium hydrogen pressure characteristic together with a heat exchanger are provided. A pair of containers consisting of the filled high-pressure side container are connected to each other by a hydrogen conduit via two sets of compressors, and one pair of the two sets of containers transfers hydrogen to the other pair of containers by the compressor. The cold heat generated in the low pressure side container of the one pair of containers by being forcibly transferred is supplied to the high pressure side container of the other pair of containers via the heat exchanger. While cooling with, while radiating the occlusion heat generated in the low pressure side container of the other pair of containers, the desired cold heat generated in the high pressure side container of the one pair of containers is the heat exchanger. Before the first cycle to take out via Cold heat generated in the low-pressure side container of the other pair of containers by switching the hydrogen transfer by the compressor from the other pair of containers to the one pair of containers is the one pair via the heat exchanger. While supplying and cooling through the heat exchanger into the high pressure side container of the container, while radiating the occlusion heat generated in the low pressure side container of the one pair of containers, the other pair of containers The desired cold heat generated in the high-pressure side container is alternately repeated with the second cycle for taking out the desired cold heat via the heat exchanger, and the desired cold heat is continuously supplied to the cooling load.

【0009】請求項2の発明は、熱交換器と共に平衡水
素圧力特性の低い金属水素化物を充填した低圧側容器と
熱交換器と共に平衡水素圧力特性の高い金属水素化物を
充填した高圧側容器とからなる一方の一対の容器と、熱
交換器と共に平衡水素圧力特性の低い金属水素化物を充
填した低圧側容器と熱交換器と共に平衡水素圧力特性の
高い金属水素化物を充填した高圧側容器とからなる他方
の一対の容器と、前記一方の一対の容器と前記他方の一
対の容器とを接続して配設される水素導管と、この水素
導管に設けられた水素の移送を切り替える第1の切替弁
および強制的に水素を移送する1台の圧縮機と、熱を放
熱させる熱交換器を備えた放熱部と、熱交換器を備えた
冷却負荷と、前記各熱交換器間を適宜切り替え接続する
熱媒配管およびその熱媒配管上に設けられた第2の切替
弁と、前記第1の切替弁を切り替えることにより前記一
方の一対の容器から前記他方の一対の容器へ前記圧縮機
により水素を強制的に移送する第1サイクルと、前記他
方の一対の容器から前記一方の一対の容器へ前記圧縮機
により水素を強制的に移送する第2サイクルとを交互に
繰り返す第1の切替制御手段と、前記第2の切替弁を切
り替えることにより前記第1サイクル時には、前記一方
の一対の容器の低圧側容器の熱交換器と前記他方の一対
の容器の高圧側容器の熱交換器とを接続し、前記他方の
一対の容器の低圧側容器の熱交換器と前記放熱部の熱交
換器とを接続し、前記一方の一対の容器の高圧側容器の
熱交換器と前記冷却負荷の熱交換器とをそれぞれ接続す
るように切替え、前記第2サイクル時には、前記他方の
一対の容器の低圧側容器の熱交換器と前記一方の一対の
容器の高圧側容器の熱交換器とを接続し、前記一方の一
対の容器の低圧側容器の熱交換器と前記放熱部の熱交換
器とを接続し、前記他方の一対の容器の高圧側容器の熱
交換器と前記冷却負荷の熱交換器とを接続するように切
り替える第2の切替制御手段とを設けるようにしたもの
である。
According to a second aspect of the present invention, there is provided a low pressure side container filled with a heat exchanger and a metal hydride having a low equilibrium hydrogen pressure characteristic, and a high pressure side container filled with a heat exchanger and a metal hydride having a high equilibrium hydrogen pressure characteristic. From a pair of vessels consisting of, a low-pressure side container filled with a metal hydride having low equilibrium hydrogen pressure characteristics together with a heat exchanger, and a high-pressure side vessel filled with metal hydride having high equilibrium hydrogen pressure characteristics together with a heat exchanger. The other pair of containers, the hydrogen conduit provided by connecting the one pair of containers and the other pair of containers, and the first switching for switching the transfer of hydrogen provided in the hydrogen conduit. A valve and one compressor for forcibly transferring hydrogen, a heat radiating section including a heat exchanger for radiating heat, a cooling load including a heat exchanger, and a switching connection between the heat exchangers as appropriate. Heat medium piping and By switching the second switching valve provided on the heat medium pipe and the first switching valve, hydrogen is forcibly transferred by the compressor from the one pair of vessels to the other pair of vessels. A first switching control means that alternately repeats a first cycle and a second cycle in which the compressor forcibly transfers hydrogen from the other pair of containers to the one pair of containers; and the second cycle. At the time of the first cycle by switching the switching valve, the heat exchanger of the low pressure side container of the one pair of containers and the heat exchanger of the high pressure side container of the other pair of containers are connected to each other, and the other pair is connected. Connecting the heat exchanger of the low-pressure side container of the container and the heat exchanger of the heat dissipation unit, and connecting the heat exchanger of the high-pressure side container of the one pair of containers and the heat exchanger of the cooling load, respectively. To switch to the second cycle Is connected to the heat exchanger of the low pressure side vessel of the other pair of vessels and the heat exchanger of the high pressure side vessel of the one pair of vessels, and heat exchange of the low pressure side vessel of the one pair of vessels. And a heat exchanger of the heat radiating unit, and second switching control means for switching to connect the heat exchanger of the high pressure side container of the other pair of containers and the heat exchanger of the cooling load. Is provided.

【0010】[0010]

【作用】請求項1の発明は、第1サイクル時に一方の一
対の容器の低圧側容器内に発生する冷熱が他方の一対の
容器の高圧側容器内に供給され冷却されると共に、他方
の一対の容器の低圧側容器内に発生する吸蔵熱が放熱さ
れる一方、一方の一対の容器の高圧側容器内に発生する
所望の冷熱が取り出される。第2サイクル時には、他方
の一対の容器から一方の一対の容器へ圧縮機による水素
移送を切り替えることにより他方の一対の容器の低圧側
容器内に発生する冷熱が一方の一対の容器の高圧側容器
内に供給されて冷却されると共に、一方の一対の容器の
低圧側容器内に発生する吸蔵熱が放熱される一方、他方
の一対の容器の高圧側容器内に発生する所望の冷熱が取
り出される。この第1サイクルと第2サイクルとが交互
に繰り返され所望の冷熱が連続して冷却負荷に供給され
る。これにより、水素を放出する側の低圧側容器の冷熱
によって水素を吸蔵する側の高圧側容器の吸蔵熱が冷却
されために高圧側容器の金属水素化物を水素平衡圧力の
高いものを用いることができる。従って、冷熱発生時の
圧縮機の吸入側の動作圧力が比較的に高くできるために
圧縮機の圧縮比を小さくすることができ、高速回転をす
ることなく運転ができる。さらに、−50℃レベルの低
温の冷熱が取り出すとき、冷凍時の水素平衡圧力を比較
的に高く維持できるために、圧縮機を高速回転しなくて
も、加圧が充分にでき、連続して−50℃レベルの低温
の冷熱を取り出すことができる。
According to the invention of claim 1, the cold heat generated in the low-pressure side container of the one pair of containers at the first cycle is supplied to the high-pressure side container of the other pair of containers to be cooled, and the other pair of containers is also cooled. While the stored heat generated in the low-pressure side container of the container is radiated, the desired cold heat generated in the high-pressure side container of the pair of one container is taken out. At the time of the second cycle, the cold heat generated in the low pressure side container of the other pair of containers by switching the hydrogen transfer by the compressor from the other pair of containers to the pair of one container causes the cold heat generated in the pair of high pressure side containers of the one pair of containers. While being supplied and cooled inside, the stored heat generated in the low pressure side container of the pair of one container is radiated, while the desired cold heat generated in the high pressure side container of the other pair of container is taken out. . The first cycle and the second cycle are alternately repeated, and desired cold heat is continuously supplied to the cooling load. As a result, the cold heat of the low-pressure side container that releases hydrogen cools the storage heat of the high-pressure side container that stores hydrogen. it can. Therefore, since the operating pressure on the suction side of the compressor can be made relatively high when cold heat is generated, the compression ratio of the compressor can be made small, and operation can be performed without rotating at high speed. Further, when the low-temperature cold heat of −50 ° C. is taken out, the hydrogen equilibrium pressure at the time of freezing can be kept relatively high. It is possible to take out cold heat at a low temperature of -50 ° C.

【0011】請求項2の発明は、第1の切替制御手段に
より第1の切替弁を切り替え一方の一対の容器から他方
の一対の容器へ1台の圧縮機により水素を強制的に移送
する第1サイクルと、他方の一対の容器から一方の一対
の容器へ前記圧縮機により水素を強制的に移送する第2
サイクルとが交互に繰り返される。第2の切替制御手段
では、第2の切替弁を切り替えることにより第1サイク
ル時には、一方の一対の容器の低圧側容器の熱交換器と
他方の一対の容器の高圧側容器の熱交換器とを接続し、
他方の一対の容器の低圧側容器の熱交換器と放熱部の熱
交換器とを接続し、一方の一対の容器の高圧側容器の熱
交換器と冷却負荷の熱交換器とをそれぞれ接続するよう
に切替え、第2サイクル時には、他方の一対の容器の低
圧側容器の熱交換器と一方の一対の容器の高圧側容器の
熱交換器とを接続し、一方の一対の容器の低圧側容器の
熱交換器と放熱部の熱交換器とを接続し、他方の一対の
容器の高圧側容器の熱交換器と冷却負荷の熱交換器とを
接続するように切り替える。これにより、水素を放出す
る側の低圧側容器の冷熱によって水素を吸蔵する側の高
圧側容器の吸蔵熱が冷却されために高圧側容器の金属水
素化物を水素平衡圧力の高いものを用いることができ
る。従って、冷熱発生時の圧縮機の吸入側の動作圧力が
比較的に高くできるために圧縮機の圧縮比を小さくする
ことができ、高速回転をすることなく運転ができる。ま
た、−50℃レベルの低温の冷熱が取り出すとき、冷凍
時の水素平衡圧力を比較的に高く維持できるために、圧
縮機を高速回転しなくても、加圧が充分にでき、連続し
て−50℃レベルの低温の冷熱を取り出すことができ
る。さらに、水素の強制的移送ために2台の圧縮機を用
いることなく1台の圧縮機によって実施できる。
According to a second aspect of the present invention, the first switching control means switches the first switching valve to forcibly transfer hydrogen from one pair of vessels to the other pair of vessels by one compressor. 1 cycle and second forcibly transferring hydrogen from the other pair of vessels to the one pair of vessels by the compressor
The cycle is repeated alternately. In the second switching control means, by switching the second switching valve, during the first cycle, the heat exchanger for the low-pressure side container of the pair of one container and the heat exchanger for the high-pressure side container of the other pair of containers are used. Connect
The heat exchanger of the low-pressure side container of the other pair of containers and the heat exchanger of the heat dissipation part are connected, and the heat exchanger of the high-pressure side container of the pair of containers and the heat exchanger of the cooling load are respectively connected. In the second cycle, the heat exchanger of the low-pressure side container of the other pair of containers and the heat exchanger of the high-pressure side container of the pair of one container are connected to each other, and the low-pressure side container of the pair of one container is connected. And the heat exchanger of the heat radiating portion are connected, and the heat exchanger of the high pressure side container of the other pair of containers and the heat exchanger of the cooling load are connected. As a result, the cold heat of the low-pressure side container that releases hydrogen cools the storage heat of the high-pressure side container that stores hydrogen. it can. Therefore, since the operating pressure on the suction side of the compressor can be made relatively high when cold heat is generated, the compression ratio of the compressor can be made small, and operation can be performed without rotating at high speed. Further, when the low-temperature cold heat of -50 ° C. is taken out, the hydrogen equilibrium pressure during freezing can be kept relatively high, so that the pressurization can be sufficiently performed without rotating the compressor at a high speed, and the continuous pressure can be continuously applied. It is possible to take out cold heat at a low temperature of -50 ° C. Further, it can be carried out by one compressor without using two compressors for forced transfer of hydrogen.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明の一実施例を示す冷熱発生
装置のブロック構成図である。図中、収納容器1,2
は、それぞれ熱交換器1a,2aが気密に内蔵されると
共に、フィルタの付いた水素吸放出管1b,2bが装着
され、このシステムの作動温度範囲において、水素平衡
圧力の低いLaNi5系の金属水素化物MH2がそれぞ
れ充填されている。
FIG. 1 is a block diagram of a cold heat generator showing an embodiment of the present invention. In the figure, storage containers 1 and 2
The heat exchangers 1a and 2a are hermetically built in, and the hydrogen absorbing / releasing pipes 1b and 2b with a filter are attached, and in the operating temperature range of this system, a LaNi 5 system metal having a low hydrogen equilibrium pressure is used. Each of them is filled with hydride MH2.

【0014】また、収納容器3,4は、それぞれ熱交換
器3a,4aが気密に内蔵されると共に、フィルタの付
いた水素吸放出管3b,4bが装着され、このシステム
の作動温度範囲において、水素平衡圧力の高いMm(ミ
ッシュメタル)Ni5系の金属水素化物MH1がそれぞ
れ充填されている。
Further, the storage containers 3 and 4 respectively have the heat exchangers 3a and 4a airtightly incorporated therein, and the hydrogen absorbing / releasing pipes 3b and 4b with the filter are attached, and in the operating temperature range of this system, Mm (Misch metal) Ni 5 -based metal hydrides MH1 having a high hydrogen equilibrium pressure are filled.

【0015】圧縮機5は、吐出側配管6aと吸入側配管
6bとが接続され、これらにチェックバルブ7a,7
b,7c,7dが一方向へのみ流れるように接続され
て、一方の水素導管8aが電動弁9aを介して収納容器
1の水素吸放出管1bに接続されると共に、収納容器3
の水素吸放出管3bに接続され、さらに、他方の水素導
管8bが電動弁9bを介して収納容器2の水素吸放出管
2bに接続されると共に、収納容器4の水素吸放出管4
bに接続されている。
In the compressor 5, a discharge side pipe 6a and a suction side pipe 6b are connected, and check valves 7a, 7 are connected to these.
b, 7c, 7d are connected so as to flow only in one direction, one hydrogen conduit 8a is connected to the hydrogen storage / release pipe 1b of the storage container 1 via the electric valve 9a, and the storage container 3
Is connected to the hydrogen storage / release pipe 3b of the storage container 4, and the other hydrogen conduit 8b is connected to the hydrogen storage / release pipe 2b of the storage container 2 via the electric valve 9b.
connected to b.

【0016】放熱部10は、空冷または水冷による熱交
換器10aが内蔵され、水やアルコール等を熱媒とする
熱媒輸送管11が熱媒切替部12の三方弁12a〜12
dによって後述する第1サイクルで収納容器1の熱交換
器1aに接続する一方、第2サイクルで収納容器2の熱
交換器2aに接続するようになっている。冷却負荷13
は、ファン等を設けた冷凍庫からなり、熱交換器13a
が内蔵され、水やアルコール等を熱媒とする熱媒輸送管
14が熱媒切替部12の三方弁12e〜12hによって
第1サイクルで収納容器3の熱交換器3aに接続する一
方、第2サイクルで収納容器4の熱交換器4aに接続す
るようになっている。
The heat radiating section 10 has a built-in air-cooled or water-cooled heat exchanger 10a, and a heat-medium transport pipe 11 using water, alcohol or the like as a heat medium is a three-way valve 12a-12 of the heat medium switching section 12.
By d, it is connected to the heat exchanger 1a of the storage container 1 in the first cycle described later, and is connected to the heat exchanger 2a of the storage container 2 in the second cycle. Cooling load 13
Is a freezer provided with a fan and the like, and includes a heat exchanger 13a.
And a heat medium transport pipe 14 having water, alcohol or the like as a heat medium is connected to the heat exchanger 3a of the storage container 3 in the first cycle by the three-way valves 12e to 12h of the heat medium switching unit 12, while the second The heat exchanger 4a of the storage container 4 is connected in a cycle.

【0017】また、熱媒切替部12では、三方弁12a
〜12hによって熱媒輸送管15を介して第1サイクル
で収納容器2の熱交換器2aと収納容器3の熱交換器3
aとが接続される一方、第2サイクルで収納容器1の熱
交換器1aと収納容器4の熱交換器4aとが接続される
ようになっている。
Further, in the heat medium switching section 12, the three-way valve 12a
~ 12h through the heat medium transport pipe 15 in the first cycle heat exchanger 2a of the storage container 2 and the heat exchanger 3 of the storage container 3
While a is connected to a, the heat exchanger 1a of the storage container 1 and the heat exchanger 4a of the storage container 4 are connected in the second cycle.

【0018】制御部16は、熱媒切替部12へ第1サイ
クルと第2サイクルの制御信号を出力して三方弁12a
〜12hを切替えると共に、電動弁9a,9bを制御
し、さらに、圧縮機5を制御するものである。
The control unit 16 outputs a control signal for the first cycle and a control signal for the second cycle to the heat medium switching unit 12 to output the three-way valve 12a.
.About.12h are switched, the electric valves 9a and 9b are controlled, and the compressor 5 is further controlled.

【0019】以上の構成で、まず、制御部16では、冷
却運転の第1サイクルのとき、第1サイクルの制御信号
が熱媒切替部12へ出力される。これによって、第1サ
イクルの制御信号に基づいて、図2の接続関係を示す如
く、熱媒切替部12の三方弁12a〜12hによって収
納容器1の熱交換器1aと放熱部10の熱交換器10a
とが熱媒輸送管11を介して接続されると共に、収納容
器4の熱交換器4aと冷却負荷13の熱交換器13aと
が熱媒輸送管14を介して接続され、さらに、収納容器
2の熱交換器2aと収納容器3の熱交換器3aとが熱媒
輸送管15を介して接続される。
With the above configuration, first, in the control section 16, the control signal of the first cycle is output to the heat medium switching section 12 in the first cycle of the cooling operation. Thereby, based on the control signal of the first cycle, as shown in the connection relationship of FIG. 2, the heat exchanger 1a of the storage container 1 and the heat exchanger of the heat radiating unit 10 are controlled by the three-way valves 12a to 12h of the heat medium switching unit 12. 10a
And the heat exchanger 4a of the storage container 4 and the heat exchanger 13a of the cooling load 13 are connected via the heat medium transport pipe 14, and the storage container 2 The heat exchanger 2 a and the heat exchanger 3 a of the storage container 3 are connected via the heat medium transport pipe 15.

【0020】そして、放熱部10の熱交換器10aが空
冷または水冷により冷却され、水またはアルコール等の
冷却された熱媒が収納容器1の熱交換器1aに流れて収
納容器1内が常温(約20℃)に保持される。
Then, the heat exchanger 10a of the heat radiating section 10 is cooled by air cooling or water cooling, and a cooled heat medium such as water or alcohol flows into the heat exchanger 1a of the storage container 1 so that the inside of the storage container 1 is at room temperature ( The temperature is maintained at about 20 ° C.

【0021】この状態では、収納容器1内が常温で、図
4に示す如く、金属水素化物MH2がAの状態となって
おり、圧縮機5の吐出側配管6aの加圧圧力に比べて収
納容器1側がやや低圧となっている。一方、収納容器2
の金属水素化物MH2は、図4に示す如くBの状態とな
っており、圧縮機5の吸入側配管6bの吸い込み圧に比
べて収納容器2側の圧力がやや高圧となっている。
In this state, the inside of the storage container 1 is at room temperature and the metal hydride MH2 is in the state A as shown in FIG. 4, which is stored in comparison with the pressure applied to the discharge side pipe 6a of the compressor 5. The pressure on the container 1 side is slightly low. On the other hand, the storage container 2
The metal hydride MH2 is in the state B as shown in FIG. 4, and the pressure on the storage container 2 side is slightly higher than the suction pressure of the suction side pipe 6b of the compressor 5.

【0022】ここで、圧縮機5が制御部16の信号によ
って駆動され、制御部16の信号によって電動弁9a,
9bが開動作とされると、収納容器2は圧縮機5の吸い
込み圧に比べてやや高圧であり、かつ、収納容器1は圧
縮機5の加圧に対してやや低圧であるためチェックバル
ブ7dを介して吸い込まれ、圧縮機5から加圧された水
素がチェックバルブ7aを介して水素導管8aと電動弁
9aを通って収納容器1に流入し金属水素化物MH2に
発熱的に吸蔵される。
Here, the compressor 5 is driven by a signal from the control unit 16, and the motor-operated valve 9a,
When the opening operation of 9b is performed, the storage container 2 has a slightly higher pressure than the suction pressure of the compressor 5, and the storage container 1 has a slightly lower pressure with respect to the pressurization of the compressor 5, so the check valve 7d. Hydrogen that has been sucked in through the compressor 5 and has been pressurized from the compressor 5 flows into the storage container 1 through the check valve 7a, the hydrogen conduit 8a and the motor-operated valve 9a, and is exothermically stored in the metal hydride MH2.

【0023】このとき、収納容器1内に発生する熱は、
熱交換器1aによって熱媒と熱交換され熱媒輸送管11
から放熱部10で放熱される。
At this time, the heat generated in the storage container 1 is
The heat medium is exchanged with the heat medium by the heat exchanger 1a, and the heat medium transport pipe 11
The heat is radiated from the heat radiating section 10.

【0024】これと共に、収納容器2は、圧縮機5によ
って水素が吸引されて金属水素化物MH2から水素が解
離され、水素が電動弁9bと水素導管8bを通って圧縮
機5に吸い込まれる。このとき、収納容器2内では、金
属水素化物MH2の水素解離によって約−20℃の冷熱
が発生し、これに伴い、熱交換器2aによって熱媒が冷
却され熱媒輸送管15に接続される収納容器3の熱交換
器3aを介して収納容器3内が冷却されて徐々に低圧と
される。
At the same time, in the storage container 2, hydrogen is sucked by the compressor 5 to dissociate the hydrogen from the metal hydride MH2, and the hydrogen is sucked into the compressor 5 through the electric valve 9b and the hydrogen conduit 8b. At this time, cold heat of about −20 ° C. is generated in the storage container 2 due to hydrogen dissociation of the metal hydride MH2, and accordingly, the heat medium is cooled by the heat exchanger 2a and connected to the heat medium transport pipe 15. The inside of the storage container 3 is cooled via the heat exchanger 3a of the storage container 3, and the pressure is gradually reduced.

【0025】この収納容器3内が低圧となると、圧縮機
5から加圧された水素がチェックバルブ7aを介して水
素導管8a、電動弁9aを通過して収納容器3に流入さ
れ大量の水素が金属水素化物MH1に吸蔵され、図4に
示すCの状態となる。
When the pressure in the storage container 3 becomes low, the hydrogen pressurized from the compressor 5 passes through the hydrogen pipe 8a and the motor-operated valve 9a via the check valve 7a and flows into the storage container 3 to generate a large amount of hydrogen. It is occluded by the metal hydride MH1 and enters the state of C shown in FIG.

【0026】このとき、圧縮機5の吸い込みによって水
素が電動弁9bと水素導管8bとチェックバルブ7dを
介して放出され、収納容器4の金属水素化物MH1が水
素を解離して図4の示すDの状態のように、約−50℃
レベルの冷熱が発生し、熱交換器4aから熱媒輸送管1
4を介して冷却負荷13へ供給される。
At this time, hydrogen is released by the suction of the compressor 5 through the motor-operated valve 9b, the hydrogen conduit 8b and the check valve 7d, the metal hydride MH1 in the storage container 4 dissociates the hydrogen, and D shown in FIG. Like the state of about -50 ℃
A level of cold heat is generated, and the heat medium transport pipe 1 is fed from the heat exchanger 4a.
It is supplied to the cooling load 13 via 4.

【0027】この第1サイクルが終了したとき直後に
は、、図4に示す如く、収納容器2内が常温で金属水素
化物MH2がAの状態となっており、圧縮機5の吐出側
配管6aの加圧圧力に比べて収納容器2側がやや低圧と
なっている。一方、収納容器1の金属水素化物MH2
は、図4に示す如くBの状態となっており、圧縮機5の
吸入側配管6bの吸い込み圧に比べて収納容器1側の圧
力がやや高圧となっている。また、収納容器4の金属水
素化物MH1は図4の示すDの状態となっており、収納
容器3の金属水素化物MH1は図4の示すCの状態とな
っている。このとき制御部16から第2サイクルの制御
信号が熱媒切替部12へ出力される。
Immediately after the completion of this first cycle, as shown in FIG. 4, the inside of the storage container 2 is at room temperature and the metal hydride MH2 is in the A state, and the discharge side pipe 6a of the compressor 5 is in a state. The pressure on the side of the storage container 2 is slightly lower than the pressurizing pressure. On the other hand, the metal hydride MH2 of the storage container 1
4 is in the state B as shown in FIG. 4, and the pressure on the storage container 1 side is slightly higher than the suction pressure of the suction side pipe 6b of the compressor 5. Further, the metal hydride MH1 of the storage container 4 is in the state D shown in FIG. 4, and the metal hydride MH1 of the storage container 3 is in the state C shown in FIG. At this time, the control signal of the second cycle is output from the control unit 16 to the heat medium switching unit 12.

【0028】これに伴い、熱媒切替部12では、図3に
示す如く、三方弁12a〜12hによって収納容器1の
熱交換器1aと収納容器4の熱交換器4aとが熱媒輸送
管15を介して接続されると共に、収納容器2の熱交換
器2aと放熱部10の熱交換器10aとが熱媒輸送管1
1を介して接続され、さらに、収納容器3の熱交換器3
aと冷却負荷13の熱交換器13aとが熱媒輸送管14
を介して接続される。
Accordingly, in the heat medium switching unit 12, as shown in FIG. 3, the heat exchanger 1a of the storage container 1 and the heat exchanger 4a of the storage container 4 are connected by the three-way valves 12a to 12h. And the heat exchanger 2a of the storage container 2 and the heat exchanger 10a of the heat radiating portion 10 are connected to each other via the heat medium transport pipe 1
1 through which the heat exchanger 3 of the storage container 3 is connected.
a and the heat exchanger 13a of the cooling load 13 are heat medium transport pipes 14
Connected via.

【0029】そして、放熱部10では、熱交換器10a
が空冷または水冷により冷却され、冷却された熱媒が収
納容器2の熱交換器2aへ流れ、収納容器2内が約20
℃の常温に保持される。このため、第2サイクルの最初
には、収納容器2内が常温で、金属水素化物MH2が図
4に示す如くのAの状態となっており、圧縮機5の吐出
側配管6aの加圧圧力が収納容器2内の圧力より高くな
っている。一方、収納容器1の金属水素化物MH2は、
図4に示すBの状態となっており、圧縮機5の吸入側配
管6bに比べて収納容器1側の圧力が高圧となってい
る。
In the heat radiation section 10, the heat exchanger 10a
Is cooled by air cooling or water cooling, and the cooled heat medium flows to the heat exchanger 2a of the storage container 2, and the inside of the storage container 2 has about 20
It is kept at room temperature of ℃. Therefore, at the beginning of the second cycle, the inside of the storage container 2 is at room temperature, the metal hydride MH2 is in the A state as shown in FIG. 4, and the pressure applied to the discharge side pipe 6a of the compressor 5 is increased. Is higher than the pressure inside the storage container 2. On the other hand, the metal hydride MH2 in the storage container 1 is
In the state B shown in FIG. 4, the pressure on the side of the storage container 1 is higher than that on the suction side pipe 6b of the compressor 5.

【0030】この状態で、圧縮機5が制御部16の信号
によって駆動され、制御部16の信号によって電動弁9
a,9bが開動作とされると、収納容器1は、圧縮機5
の吸い込み圧に比べやや高圧であるためチェックバルブ
7bを介して吸い込まれ、圧縮機5から加圧された水素
がチェックバルブ7cを介して水素導管8bと電動弁9
bを通って収納容器2に流入し、金属水素化物MH2に
発熱的に吸蔵される。このとき、収納容器2内に発生す
る吸蔵熱は、熱交換器2aによって熱媒と熱交換され熱
媒輸送管11から放熱部10で放熱される。
In this state, the compressor 5 is driven by the signal from the control unit 16, and the motor-operated valve 9 is driven by the signal from the control unit 16.
When a and 9b are opened, the storage container 1 moves to the compressor 5
Since it is slightly higher than the suction pressure of H.sub.2, the hydrogen sucked through the check valve 7b and pressurized by the compressor 5 receives hydrogen through the check valve 7c and the hydrogen conduit 8b and the motor-operated valve 9.
It flows into the storage container 2 through b, and is exothermically stored in the metal hydride MH2. At this time, the stored heat generated in the storage container 2 is heat-exchanged with the heat medium by the heat exchanger 2a and is radiated from the heat medium transport pipe 11 to the heat radiating unit 10.

【0031】これと共に、収納容器1では、金属水素化
物MH2から水素が解離され、水素が電動弁9aと水素
導管8aとを介して圧縮機5に吸い込まれる。このと
き、収納容器1内では、金属水素化物MH2の水素解離
によって約−20℃の冷熱が発生し、熱媒輸送管15に
よって接続される収納容器4内が冷却され低圧とされ
る。
At the same time, in the storage container 1, hydrogen is dissociated from the metal hydride MH2, and the hydrogen is sucked into the compressor 5 via the electric valve 9a and the hydrogen conduit 8a. At this time, in the storage container 1, cold heat of about −20 ° C. is generated by hydrogen dissociation of the metal hydride MH2, and the storage container 4 connected by the heat medium transport pipe 15 is cooled to a low pressure.

【0032】収納容器4内が低圧になると、圧縮機5か
ら加圧された水素がチェックバルブ7cを介して水素導
管8bと電動弁9bを通って収納容器4へ流入され、大
量の水素が収納容器4の金属水素化物MH1に吸蔵さ
れ、図4に示すCの状態となり、次の第1サイクル時の
負荷冷却用とされる。
When the pressure in the storage container 4 becomes low, hydrogen pressurized from the compressor 5 flows into the storage container 4 through the hydrogen valve 8b and the electric valve 9b via the check valve 7c, and a large amount of hydrogen is stored. It is occluded by the metal hydride MH1 in the container 4, enters the state of C shown in FIG. 4, and is used for load cooling in the next first cycle.

【0033】この状態のとき、圧縮機5の吸い込みによ
り、水素が電動弁9aと水素導管8aとチェックバルブ
7bを介して放出され、収納容器3では、第1サイクル
で吸蔵された水素が金属水素化物MH1から解離され、
吸熱反応によって−50℃のレベルの冷熱が発生し、図
4に示すDの状態となり、熱交換器3aから熱媒輸送管
14を介して冷却負荷13へ供給される。
In this state, due to the suction of the compressor 5, hydrogen is released through the motor-operated valve 9a, the hydrogen conduit 8a and the check valve 7b, and in the storage container 3, the hydrogen stored in the first cycle is the metal hydrogen. Dissociated from the compound MH1,
Cold heat at a level of −50 ° C. is generated by the endothermic reaction, the state becomes D shown in FIG. 4, and the heat is supplied from the heat exchanger 3 a to the cooling load 13 via the heat medium transport pipe 14.

【0034】上記した第1サイクルと第2サイクルとは
交互に制御部16の信号に基づいて繰り返され、収納容
器3と収納容器4とから交互に熱交換器3a,4aと熱
媒輸送管14を介して冷熱が連続して冷却負荷13へ供
給される。
The first cycle and the second cycle described above are alternately repeated based on the signal from the control unit 16, and the heat exchangers 3a and 4a and the heat medium transport pipe 14 are alternately arranged from the storage container 3 and the storage container 4. Cold heat is continuously supplied to the cooling load 13 via.

【0035】このように、冷熱発生時の圧縮機の吸入側
の動作圧力が比較的に高くできるために圧縮機の圧縮比
を小さくすることができ、高速回転をすることなく運転
ができる。さらに、−50℃レベルの低温の冷熱が取り
出すとき、冷凍時の水素平衡圧力を比較的に高く維持で
きるために、圧縮機を高速回転しなくても、加圧が充分
にでき、連続して−50℃レベルの低温の冷熱を取り出
すことができる。さらに、水素の強制的移送ために2台
の圧縮機を用いることなく1台の圧縮機によって実施で
きる。
As described above, since the operating pressure on the suction side of the compressor can be made relatively high when cold heat is generated, the compression ratio of the compressor can be made small, and the compressor can be operated without rotating at high speed. Further, when the low-temperature cold heat of −50 ° C. is taken out, the hydrogen equilibrium pressure at the time of freezing can be kept relatively high. It is possible to take out cold heat at a low temperature of -50 ° C. Further, it can be carried out by one compressor without using two compressors for forced transfer of hydrogen.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、一
方の一対の容器と他方の一対の容器間で圧縮機によって
水素の流れが交互に反転させるように切替えられ、対応
して一方の一対の容器と他方の一対の容器のそれぞれの
熱交換器がそれぞれの熱交換器と適宜接続される。従っ
て、冷熱発生時の動作圧力が比較的に高くできるため圧
縮機の圧縮比が小さくすることができ、圧縮機を高速回
転しなくても、加圧が充分にでき、運転が容易となる。
さらに、−50℃レベルの低温の冷熱が取り出すことが
できる。しかも、2台の圧縮機を用いることなく1台の
圧縮機によって−50℃レベルの低温の冷熱を発生させ
ることができる。
As described above, according to the present invention, the flow of hydrogen is switched between the pair of one container and the other pair of containers by the compressor so as to alternately invert the flow of hydrogen, and correspondingly, The heat exchangers of the pair of containers and the other pair of containers are appropriately connected to the respective heat exchangers. Therefore, since the operating pressure at the time of generation of cold heat can be made relatively high, the compression ratio of the compressor can be made small, and sufficient pressurization can be performed without rotating the compressor at a high speed, which facilitates the operation.
Further, low-temperature cold heat of -50 ° C level can be taken out. Moreover, it is possible to generate low-temperature cold heat of -50 ° C. level with one compressor without using two compressors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す冷熱発生装置のブロッ
ク構成図。
FIG. 1 is a block configuration diagram of a cold heat generator according to an embodiment of the present invention.

【図2】図1の冷熱発生装置の第1サイクルを示す説明
図。
2 is an explanatory diagram showing a first cycle of the cold heat generator of FIG. 1. FIG.

【図3】図1の冷熱発生装置の第2サイクルを示す説明
図。
FIG. 3 is an explanatory diagram showing a second cycle of the cold heat generator of FIG. 1.

【図4】金属水素化物の水素ガス吸収放出特性を示す説
明図。
FIG. 4 is an explanatory diagram showing hydrogen gas absorption / desorption characteristics of metal hydride.

【符号の説明】[Explanation of symbols]

1,2,3,4 収納容器 1a,2a,3a,4a,10a,13a 熱交換器 1b,2b,3b,4b 水素吸放出管 5 圧縮機 6a 吐出側配管 6b 吸入側配管 7a,7b,7c,7d チェックバルブ 8a,8b 水素導管 9a,9b 電動弁 10 放熱部 11,14,15 熱媒輸送管 12 熱媒切替部 12a〜12h 三方弁 13 冷却負荷 16 制御部 1, 2, 3, 4 Storage container 1a, 2a, 3a, 4a, 10a, 13a Heat exchanger 1b, 2b, 3b, 4b Hydrogen absorption / desorption pipe 5 Compressor 6a Discharge side pipe 6b Suction side pipe 7a, 7b, 7c , 7d Check valve 8a, 8b Hydrogen conduit 9a, 9b Motorized valve 10 Heat dissipation part 11, 14, 15 Heat medium transport pipe 12 Heat medium switching part 12a-12h Three-way valve 13 Cooling load 16 Control part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱交換器と共に平衡水素圧力特性の低い
金属水素化物を充填した低圧側容器と熱交換器と共に平
衡水素圧力特性の高い金属水素化物を充填した高圧側容
器とからなる一対の容器を2組圧縮機を介して互に水素
導管で連結し、前記2組のうち一方の一対の容器から他
方の一対の容器へ前記圧縮機により水素を強制的に移送
することにより前記一方の一対の容器の低圧側容器内に
発生する冷熱を前記熱交換器を介して前記他方の一対の
容器の高圧側容器内に前記熱交換器を介して供給して冷
却すると共に、前記他方の一対の容器の低圧側容器内に
発生する吸蔵熱を放熱させる一方、前記一方の一対の容
器の高圧側容器内に発生する所望の冷熱を前記熱交換器
を介して取り出す第1サイクルと、前記他方の一対の容
器から前記一方の一対の容器へ前記圧縮機による水素移
送を切り替えることにより前記他方の一対の容器の低圧
側容器内に発生する冷熱を前記熱交換器を介して前記一
方の一対の容器の高圧側容器内に前記熱交換器を介して
供給して冷却すると共に、前記一方の一対の容器の低圧
側容器内に発生する吸蔵熱を放熱させる一方、前記他方
の一対の容器の高圧側容器内に発生する所望の冷熱を前
記熱交換器を介して取り出す第2サイクルとを交互に繰
り返して前記所望の冷熱を連続して冷却負荷に供給する
ことを特徴とする冷熱発生方法。
1. A pair of vessels comprising a heat exchanger and a low pressure side vessel filled with a metal hydride having a low equilibrium hydrogen pressure characteristic, and a high pressure side vessel filled with a heat exchanger and a metal hydride having a high equilibrium hydrogen pressure characteristic. Are connected to each other via hydrogen compressors through two sets of compressors, and the one pair of containers is forcibly transferred by the compressor from one pair of containers of the two sets to the other pair of containers. The cold heat generated in the low-pressure side container of the container is supplied through the heat exchanger into the high-pressure side container of the other pair of containers to be cooled, and the other pair of While radiating the occlusion heat generated in the low pressure side container of the container, the first cycle of extracting the desired cold heat generated in the high pressure side container of the one pair of containers via the heat exchanger, and the other of the One of the one from the pair of containers The cold heat generated in the low pressure side container of the other pair of containers by switching the hydrogen transfer by the compressor to the pair of containers via the heat exchanger into the high pressure side container of the one pair of containers While supplying and cooling through a heat exchanger, while radiating the occlusion heat generated in the low pressure side container of the one pair of containers, the desired generated in the high pressure side container of the other pair of containers A method for generating cold heat, characterized in that the desired cold heat is continuously supplied to a cooling load by alternately repeating a second cycle in which cold heat is taken out through the heat exchanger.
【請求項2】 熱交換器と共に平衡水素圧力特性の低い
金属水素化物を充填した低圧側容器と熱交換器と共に平
衡水素圧力特性の高い金属水素化物を充填した高圧側容
器とからなる一方の一対の容器と、熱交換器と共に平衡
水素圧力特性の低い金属水素化物を充填した低圧側容器
と熱交換器と共に平衡水素圧力特性の高い金属水素化物
を充填した高圧側容器とからなる他方の一対の容器と、
前記一方の一対の容器と前記他方の一対の容器とを接続
して配設される水素導管と、この水素導管に設けられた
水素の移送を切り替える第1の切替弁および強制的に水
素を移送する1台の圧縮機と、熱を放熱させる熱交換器
を備えた放熱部と、熱交換器を備えた冷却負荷と、前記
各熱交換器間を適宜切り替え接続する熱媒配管およびそ
の熱媒配管上に設けられた第2の切替弁と、前記第1の
切替弁を切り替えることにより前記一方の一対の容器か
ら前記他方の一対の容器へ前記圧縮機により水素を強制
的に移送する第1サイクルと、前記他方の一対の容器か
ら前記一方の一対の容器へ前記圧縮機により水素を強制
的に移送する第2サイクルとを交互に繰り返す第1の切
替制御手段と、前記第2の切替弁を切り替えることによ
り前記第1サイクル時には、前記一方の一対の容器の低
圧側容器の熱交換器と前記他方の一対の容器の高圧側容
器の熱交換器とを接続し、前記他方の一対の容器の低圧
側容器の熱交換器と前記放熱部の熱交換器とを接続し、
前記一方の一対の容器の高圧側容器の熱交換器と前記冷
却負荷の熱交換器とをそれぞれ接続するように切替え、
前記第2サイクル時には、前記他方の一対の容器の低圧
側容器の熱交換器と前記一方の一対の容器の高圧側容器
の熱交換器とを接続し、前記一方の一対の容器の低圧側
容器の熱交換器と前記放熱部の熱交換器とを接続し、前
記他方の一対の容器の高圧側容器の熱交換器と前記冷却
負荷の熱交換器とを接続するように切り替える第2の切
替制御手段とを備えたことを特徴とする冷熱発生装置。
2. A pair of a low pressure side container filled with a metal hydride having a low equilibrium hydrogen pressure characteristic together with a heat exchanger, and a high pressure side container filled with a metal hydride having a high equilibrium hydrogen pressure characteristic together with a heat exchanger. The other pair of the low pressure side container filled with the metal hydride having a low equilibrium hydrogen pressure characteristic together with the heat exchanger and the high pressure side container filled with the metal hydride having a high equilibrium hydrogen pressure characteristic together with the heat exchanger. Container and
A hydrogen conduit provided by connecting the one pair of containers and the other pair of containers, a first switching valve provided in the hydrogen conduit for switching the transfer of hydrogen, and forcibly transferring hydrogen One compressor, a heat radiating section having a heat exchanger for radiating heat, a cooling load having a heat exchanger, a heat medium pipe for appropriately switching and connecting between the heat exchangers, and a heat medium thereof. A first switching valve provided on a pipe and the first switching valve are switched to forcibly transfer hydrogen from the one pair of vessels to the other pair of vessels by the compressor. First switching control means alternately repeating a cycle and a second cycle in which hydrogen is forcibly transferred from the other pair of vessels to the one pair of vessels by the compressor; and the second switching valve. By switching the first cycle Sometimes, the heat exchanger of the low pressure side container of the one pair of vessels and the heat exchanger of the high pressure side vessel of the other pair of containers are connected, and the heat exchanger of the low pressure side vessel of the other pair of containers And the heat exchanger of the heat dissipation part are connected,
Switching to connect the heat exchanger of the high-pressure side container of the one pair of containers and the heat exchanger of the cooling load, respectively,
At the time of the second cycle, the heat exchanger of the low pressure side container of the other pair of containers and the heat exchanger of the high pressure side container of the one pair of containers are connected to each other, and the low pressure side container of the one pair of containers is connected. The second heat exchanger and the heat exchanger of the heat radiating unit are connected, and the heat exchanger of the high pressure side container of the other pair of containers and the heat exchanger of the cooling load are switched to be connected to each other. A cold heat generator comprising: a control means.
JP5138895A 1993-05-18 1993-05-18 Method and device for generation of cold heat Pending JPH06323685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5138895A JPH06323685A (en) 1993-05-18 1993-05-18 Method and device for generation of cold heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5138895A JPH06323685A (en) 1993-05-18 1993-05-18 Method and device for generation of cold heat

Publications (1)

Publication Number Publication Date
JPH06323685A true JPH06323685A (en) 1994-11-25

Family

ID=15232633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5138895A Pending JPH06323685A (en) 1993-05-18 1993-05-18 Method and device for generation of cold heat

Country Status (1)

Country Link
JP (1) JPH06323685A (en)

Similar Documents

Publication Publication Date Title
EP0168062B1 (en) Metal hydride heat pump assembly
WO2010087723A1 (en) Continuously-operated metal hydride hydrogen compressor, and method of operating the same
JP3126086B2 (en) Compression metal hydride heat pump
JPH06323685A (en) Method and device for generation of cold heat
JPH0634230A (en) Cold generator
US7219501B2 (en) Cryocooler operation with getter matrix
JPH085173A (en) Pulse tube refrigerator
JP2642830B2 (en) Cooling device
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
JP2000121197A (en) Heat pump and operation thereof
US20240151364A1 (en) Hydrogen supply module and hydrogen supply method
JP2623006B2 (en) Refrigeration equipment using hydrogen storage alloy
JPH07139830A (en) Refrigeration cycle
JPH07190524A (en) Refrigerating cycle
JPH06235560A (en) Movable body using hydrogen storage metallic alloy
JP2643235B2 (en) Metal hydride heating and cooling equipment
JPH06265238A (en) Refrigerating/cooling system by composite of peltier device and hydrogen-occluding alloy
JPH11323466A (en) Hydrogen storage alloy unit for heat pump
JPH03105172A (en) Cooling device utilizing metal hydride
JPH0771838A (en) Cold generating device using metallic hydride
JP2647972B2 (en) Heat utilization equipment
JPH0735427A (en) Pulse tube refrigerating machine
JPH1163699A (en) Pulse pipe refrigerating machine
JPH0350464A (en) Control of air conditioner
JP2000097513A (en) Cold/hot air supplying device and method for controlling the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees