JPH06322798A - Method and device for utilizing water in closed space - Google Patents

Method and device for utilizing water in closed space

Info

Publication number
JPH06322798A
JPH06322798A JP13506093A JP13506093A JPH06322798A JP H06322798 A JPH06322798 A JP H06322798A JP 13506093 A JP13506093 A JP 13506093A JP 13506093 A JP13506093 A JP 13506093A JP H06322798 A JPH06322798 A JP H06322798A
Authority
JP
Japan
Prior art keywords
gel
polymer gel
water
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13506093A
Other languages
Japanese (ja)
Other versions
JP3398715B2 (en
Inventor
Okihiko Hirasa
興彦 平佐
Hisao Ichijo
久夫 一条
Taisuke Toya
泰典 遠矢
Takeshi Kobayashi
武司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Infilco Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP13506093A priority Critical patent/JP3398715B2/en
Publication of JPH06322798A publication Critical patent/JPH06322798A/en
Application granted granted Critical
Publication of JP3398715B2 publication Critical patent/JP3398715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Gas Separation By Absorption (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To obtain water, required for a closed space, as circulating water instead of the feed of water from the outside by using a high moisture absorption heat-sensitive high molecular gel prepared in a way that the surface of a heat-sensitive high molecular gel is impregnated with a material to promote absorption of steam and/or the material is kneaded and fixed at the inside. CONSTITUTION:A high moisture absorption heat-sensitive high molecular gel (reinforced gel) 3 prepared such that the surface of a heat-sensitive high molecular gel is impregnated with a material to promote absorption of steam and/or the material is kneaded and fixed at the inside is installed in a closed space 1. When, during the night, an outside air temperature is reduced to a value lower than the phase transition temperature of the reinforced gel 3, steam 4 is hydrated and contained in the reinforced gel 3. When, during a daytime, the outside air temperature is increased and the temperature of a gas phase part in the closed space 1 is increased to a value higher than the phase transition temperature of the reinforced gel 3, a moisture content held by the reinforced gel 3 produces water 5 being liquid, phase separation from the reinforced gel 3 is effected, and the water is fed to soil 7 and a steam divergent substance 6. This method and constitution facilitate formation of a water circulation system in the closed space.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部から水の供給が不
可能か或いは十分な供給ができない閉鎖系空間におい
て、生命維持に使用する水を、生命体から気相中に発散
される水蒸気から高吸湿感熱性高分子ゲルを媒介として
回収し、該閉鎖系空間内の生命体に供給する水の循環利
用方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water vapor used to sustain life in a closed space where water cannot be supplied from outside or cannot be supplied sufficiently, and water vapor emitted from living organisms into the vapor phase. The present invention relates to a method and an apparatus for circulating and utilizing water, which is collected from a highly hygroscopic heat-sensitive polymer gel as a medium and is supplied to living organisms in the closed space.

【0002】[0002]

【従来の技術】現在閉鎖系あるいは準閉鎖系空間におけ
る水循環システムの形成は要望が強く、さらに地球環境
保全、省資源、省エネルギーの観点からも水循環システ
ムの形成は社会的にも強く要望されている。
2. Description of the Related Art At present, there is a strong demand for the formation of a water circulation system in a closed or quasi-closed space, and further, there is a strong social demand for the formation of a water circulation system from the viewpoints of global environment conservation, resource saving, and energy saving. .

【0003】本発明でいう閉鎖系空間とは、例えば地球
を周回する宇宙カプセル内部や月に設けたシェルター、
地球上に設けた無菌室などを意味する。また、準閉鎖系
空間とは、例えば大気中の成分気体の一部や使用する水
の一部を該空間外からの供給や、閉鎖系空間からの廃棄
物の排出が不可能ではない閉鎖系空間を意味し、このよ
うな空間として例えば植物工場、バイオスペースや深海
潜水機のようなものを挙げることができる。本発明では
閉鎖系空間と準閉鎖系空間とを区別せず閉鎖系空間と呼
ぶことにする。
The closed space referred to in the present invention is, for example, a shelter provided inside the space capsule orbiting the earth or on the moon,
It means a sterile room on the earth. In addition, the semi-closed system space is, for example, a system in which it is not impossible to supply a part of component gas in the atmosphere or a part of water to be used from outside the space or to discharge waste from the closed system space. It means a space, and examples of such a space include a plant factory, a bio space, and a deep sea submersible. In the present invention, the closed system space and the quasi-closed system space will be referred to as a closed system space without distinction.

【0004】従来、閉鎖系空間における液体の水につい
ては種々の処理が提案されているが、系内での生体の呼
吸、発汗や蒸散などに起因する水蒸気やミストの回収再
利用について、効率的でコンパクトな手段はなかった。
このため水利用にロスが生じ、長期間にわたり閉鎖系空
間内で活動する際の阻害要因となっている。
[0004] Conventionally, various treatments have been proposed for liquid water in a closed system space. However, it is efficient to collect and reuse water vapor and mist caused by respiration of a living body, perspiration and transpiration in the system. There was no compact way.
This causes a loss in water use, which is an impediment to long-term activity in closed spaces.

【0005】近年、ゲルに吸水や脱水を行わせる技術が
進歩している。このような機能を持つゲルとして感熱性
高分子ゲルが挙げられる。この感熱性高分子ゲルの性質
を利用し、高性能の感熱性高分子ゲルを開発して、温度
較差を駆動力として高能率で、低コストの水循環システ
ムが開発できる可能性があるとして期待されている。こ
の感熱性高分子ゲルとは、低温では水和により膨潤して
いるゲルが、加熱により高温になって脱水和して水をゲ
ル外に放出する、感熱的に相転移を行う高分子ゲルの総
称である。感熱性高分子ゲルとしては、アクリルアミド
系モノマーとメチレンビスアクリルアミドのような2官
能基を持つモノマーを共重合することにより合成するこ
とができる。また別の種類の感熱性高分子ゲルとしてポ
リビニールメチルエーテル水溶液にγ線或いは電子線を
照射することにより高分子ゲルを生成することが出来
る。現段階ではこれらの中、アクリルアミド系の感熱性
高分子ゲルが主流であり、共重合するモノマーの種類を
選択し、共重合の量的比率を適切に設定することにより
希望する相転移温度に対応する高分子を合成できる利点
がある。
In recent years, techniques for absorbing and dehydrating gel have been improved. As a gel having such a function, a thermosensitive polymer gel can be mentioned. Utilizing the properties of this heat-sensitive polymer gel, it is expected that a high-performance heat-sensitive polymer gel will be developed, and that a water circulation system with high efficiency and low cost can be developed with temperature difference as a driving force. ing. This heat-sensitive polymer gel is a polymer gel that swells due to hydration at low temperature, heats up to high temperature by heating, and hydrates to release water out of the gel. It is a generic term. The thermosensitive polymer gel can be synthesized by copolymerizing an acrylamide monomer and a monomer having a bifunctional group such as methylenebisacrylamide. Further, as another type of heat-sensitive polymer gel, a polymer gel can be produced by irradiating an aqueous polyvinyl methyl ether solution with γ-rays or electron beams. Of these, acrylamide-based thermosensitive polymer gels are the mainstream at the present stage, and it corresponds to the desired phase transition temperature by selecting the type of monomer to be copolymerized and appropriately setting the quantitative ratio of copolymerization. There is an advantage that a polymer can be synthesized.

【0006】上記従来の感熱性高分子ゲルは、水中では
高分子ゲルの相転移温度の低温側或いは高温側におい
て、敏感に、かつ短時間に水和或いは脱水和する。しか
しながら、従来の感熱性高分子ゲルは水蒸気を含む気相
中に存在する場合には、相転移温度の高温側における脱
水和現象は、水中におけると同様に行われるが、相転移
温度の低温側における水蒸気の吸収力、すなわち水和力
はゲル表面に接触している水の分子凝集状態が水中にお
けると異なるので微弱であり、水蒸気を吸収するために
は大量の感熱性高分子ゲルが必要となる。
The above-mentioned conventional heat-sensitive polymer gel is hydrated or dehydrated in water sensitively and in a short time on the low temperature side or high temperature side of the phase transition temperature of the polymer gel in water. However, when the conventional thermosensitive polymer gel is present in the gas phase containing water vapor, the dehydration phenomenon on the high temperature side of the phase transition temperature is performed in the same manner as in water, but on the low temperature side of the phase transition temperature. The water vapor absorption capacity, namely the hydration power, is weak because the state of molecular aggregation of water in contact with the gel surface is different from that in water, and a large amount of heat-sensitive polymer gel is required to absorb the water vapor. Become.

【0007】閉鎖系空間、例えばバイオスフェア、バイ
オスペースやバイオカプセルなどの生命維持装置におい
て、生命体への水の供給を維持するために利用するに
は、従来の感熱性高分子ゲルの場合では、大容量のゲル
を多量に使用する必要があり水循環システムの形成は容
易ではなかった。更に、現時点においては気相中の水蒸
気をその相転移温度以下において強力に水和できる感熱
性高分子ゲルは存在せず、従ってこのゲルを媒体として
の閉鎖系空間における水循環システムは全く存在しな
い。
In a life-sustaining device such as a closed space, for example, a biosphere, a biospace or a biocapsule, the conventional thermosensitive polymer gel can be used for maintaining the water supply to the living body. However, it was not easy to form a water circulation system because it was necessary to use a large amount of gel in a large amount. Furthermore, at the present time, there is no thermosensitive polymer gel capable of strongly hydrating water vapor in the gas phase below its phase transition temperature, and therefore, there is no water circulation system in a closed space using this gel as a medium.

【0008】[0008]

【発明が解決しようとする課題】本発明は従来技術の上
記欠陥を改善し、閉鎖系空間において必要とする水を外
部から供給することなく循環水として提供する、全く新
規な発想による水循環の方法および装置を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned deficiencies of the prior art, and provides the water required in a closed space as circulating water without externally supplying the water. And to provide a device.

【0009】[0009]

【課題を解決するための手段】前記課題は、高吸湿感熱
性高分子ゲルによる本発明の閉鎖系空間における水循環
利用方法および装置によって達成される。
The above-mentioned object can be achieved by the method and apparatus for utilizing water circulation in a closed system space of the present invention by a highly hygroscopic heat-sensitive polymer gel.

【0010】すなわち、 (1)水蒸気の吸収を助長する物質を、感熱性高分子ゲ
ルの表面に添着及び/又は内部に混練し、固定化して得
た高吸湿感熱性高分子ゲルを用いて、前記高吸湿感熱性
高分子ゲルの温度を相転移温度以下として該高吸湿感熱
性高分子ゲル内に閉鎖系空間の気相中の水分を液体とし
て保持した後、該高吸湿感熱性高分子ゲルの温度を前記
相転移温度以上として該高吸湿感熱性高分子ゲル外に液
体の水として放出させ使用点に供給することを特徴とす
る閉鎖系空間における水循環利用方法。 (2)水蒸気の吸収を助長する物質を、感熱性高分子ゲ
ルの表面に添着及び/又は内部に混練し、固定化して得
た高吸湿感熱性高分子ゲルを保持する調整装置と、該調
整装置に閉鎖系空間の気相を導く送気装置と、前記調整
装置内の高吸湿感熱性高分子ゲルの温度を維持又は変化
させる温度調整手段と、高吸湿感熱性高分子ゲルより放
出された液体の水を使用点に供給する供給装置を配備し
てなることを特徴とする閉鎖系空間における水循環利用
装置。 (3)前記水蒸気の吸収を助長する物質が、Zn、C
a、Mg、Cu及びFeより選ばれた金属の酸化物、又
は硫酸塩であるか、又はアクリル酸ユニットを含む架橋
高分子であるか、又は該高分子と前記金属の酸化物、又
は硫酸塩の混合物であって、前記感熱性高分子ゲルの基
材が、アクリルアミド系樹脂又はポリビニルメチルエー
テル系樹脂の単独又は2官能性モノマーとの重合物であ
ることを特徴とする上記(1)記載の閉鎖系空間におけ
る水循環利用方法。 (4)前記水蒸気の吸収を助長する物質が、Zn、C
a、Mg、Cu及びFeより選ばれた金属の酸化物、又
は硫酸塩であるか、又はアクリル酸ユニットを含む架橋
高分子であるか、又は該高分子と前記金属の酸化物、又
は硫酸塩の混合物であって、前記感熱性高分子ゲルの基
材が、アクリルアミド系樹脂又はポリビニルメチルエー
テル系樹脂の単独又は2官能性モノマーとの重合物であ
ることを特徴とする上記(2)記載の閉鎖系空間におけ
る水循環利用装置。
That is, (1) using a highly hygroscopic heat-sensitive polymer gel obtained by immobilizing a substance that promotes absorption of water vapor on the surface of the heat-sensitive polymer gel and / or kneading and immobilizing it. After the temperature of the highly hygroscopic heat-sensitive polymer gel is kept below the phase transition temperature, the moisture in the gas phase of the closed system space is retained as a liquid in the highly hygroscopic heat-sensitive polymer gel, and then the highly hygroscopic heat-sensitive polymer gel is obtained. A method of utilizing water circulation in a closed system space, wherein the temperature of is set to be equal to or higher than the phase transition temperature and is discharged as liquid water outside the highly hygroscopic heat-sensitive polymer gel and supplied to a point of use. (2) An adjusting device for holding a highly hygroscopic heat-sensitive polymer gel obtained by immobilizing a substance which promotes absorption of water vapor on the surface of the heat-sensitive polymer gel and / or kneading the mixture inside, and the adjustment. An air supply device for guiding the gas phase of the closed system space to the device, a temperature adjusting means for maintaining or changing the temperature of the highly hygroscopic heat-sensitive polymer gel in the adjusting device, and a highly hygroscopic heat-sensitive polymer gel An apparatus for circulating water in a closed space, comprising a supply device for supplying liquid water to a point of use. (3) The substance that promotes the absorption of water vapor is Zn or C
an oxide or sulfate of a metal selected from a, Mg, Cu and Fe, or a cross-linked polymer containing an acrylic acid unit, or an oxide or sulfate of the polymer and the metal. The mixture according to (1) above, wherein the base material of the thermosensitive polymer gel is a polymer of an acrylamide resin or a polyvinyl methyl ether resin alone or with a bifunctional monomer. How to use water circulation in closed space. (4) The substance that promotes the absorption of water vapor is Zn or C
an oxide or sulfate of a metal selected from a, Mg, Cu and Fe, or a cross-linked polymer containing an acrylic acid unit, or an oxide or sulfate of the polymer and the metal. The mixture according to (2) above, wherein the base material of the thermosensitive polymer gel is a polymer of an acrylamide resin or a polyvinyl methyl ether resin alone or with a bifunctional monomer. Water circulation utilization device in closed space.

【0011】本発明においては、上記調整装置、引いて
は調整装置内部のゲルの温度変化が重要なファクターで
ある。また、上記高吸湿感熱性高分子ゲルの相転移温度
は5〜80℃の範囲であることが好ましい。上記温度変
化は温度調整手段により達成される。これら温度調整の
態様は概ね下記の3つの態様である。
In the present invention, the temperature change of the above-mentioned adjusting device, that is, the temperature of the gel inside the adjusting device is an important factor. The phase transition temperature of the highly hygroscopic heat-sensitive polymer gel is preferably in the range of 5 to 80 ° C. The temperature change is achieved by the temperature adjusting means. The modes of these temperature adjustments are generally the following three modes.

【0012】すなわち、 閉鎖系空間に自然的、必然的に温度変化が生じる。例
えば、人工衛星では昼夜の温度変化により必然的に衛星
内部(閉鎖系空間)に温度変化が生じる。また地球上に
ある例でも、移動する潜水装置や火山調査機などでは、
装置が行う熱源との相対的運動により装置内部に必然的
に温度変化が生じる。 加温及び/又は冷却装置を設けて人為的、強制的に温
度を変化させる。 自然的、必然的に生じる温度変化を助長あるいは緩和
するため人為的手段を併用する。 である。
That is, a temperature change naturally and inevitably occurs in the closed system space. For example, in an artificial satellite, temperature changes inevitably occur inside the satellite (closed system space) due to temperature changes day and night. In addition, even in the example on the earth, with a moving diving system or a volcano researcher,
The relative movement of the device with respect to the heat source necessarily causes a temperature change inside the device. A heating and / or cooling device is provided to artificially and forcibly change the temperature. Use artificial means together to promote or mitigate natural and inevitable temperature changes. Is.

【0013】本発明に使用する調整装置は、装置に収納
した高吸湿感熱性高分子ゲル中に光線を透過させない材
質又は紫外線吸収剤などの紫外線劣化防止材とする必要
がある。それは本発明の高吸湿感熱性高分子ゲルが紫外
線などの光線によって性能が劣化するからである。
The adjusting device used in the present invention must be made of a material which does not allow light rays to pass through the highly hygroscopic heat-sensitive polymer gel contained in the device, or an ultraviolet deterioration preventing material such as an ultraviolet absorber. This is because the highly hygroscopic heat-sensitive polymer gel of the present invention deteriorates in performance due to light rays such as ultraviolet rays.

【0014】本発明は閉鎖系空間で生命体を維持する維
持装置内或いは準閉鎖系空間内において、高吸湿感熱性
高分子ゲルにより、それを低温に維持して気相中に存在
する水蒸気を水和し、次の段階で高温に維持してゲル外
に液体の水として取り出し、水を気体→液体→気体に相
転換することにより循環せしめて、生命体に水を有効に
利用せしめる閉鎖系空間における水循環利用システムで
ある。本発明では、高吸湿感熱性高分子ゲルに与える温
度差、すなわち相転移温度以下の温度に維持して水蒸気
を液体の水に相転移し、相転移温度以上の温度に維持し
てゲル内に保持した水をゲル外に液体の水として放出せ
しめる作用を該高分子ゲルに行わせるための温度差を特
に温度較差と呼ぶことにする。
In the present invention, a highly hygroscopic heat-sensitive polymer gel is used to maintain a living body in a closed system space or a quasi-closed system space, so that the water vapor existing in the gas phase is maintained at a low temperature. Hydrated, kept at high temperature in the next step, taken out of the gel as liquid water, and circulated by phase-converting water into gas → liquid → gas to effectively use water for living organisms It is a water circulation utilization system in space. In the present invention, the temperature difference given to the highly hygroscopic heat-sensitive polymer gel, that is, the phase transition temperature is maintained at a temperature below the phase transition of water vapor to liquid water, and the temperature above the phase transition temperature is maintained within the gel. The temperature difference for causing the polymer gel to perform the action of releasing the retained water as liquid water outside the gel will be referred to as a temperature difference.

【0015】本発明に使用する高吸湿感熱性高分子ゲル
を具体的に説明する。本発明の高吸湿感熱性高分子ゲル
を製造するにあたって、それぞれ官能基をもつ感熱性高
分子ゲル構成モノマーを共重合する際に添加する水蒸気
の吸収を助長する物質の内、 1)水蒸気の緩徐な無機吸収物は、Zn、Ca、Mg、
Al、Cu、Feなど金属の酸化物及び硫酸塩などの
内、水に不溶解性の粉末であり、それらを重量として5
0%を越えない範囲でモノマーと混合し、好ましくは均
一に混合する。 2)有機物としての高吸水性高分子ゲルは、例えば市販
のサンウエットIMI1000(三洋化成工業製スター
チポリアクリル酸)、イゲタゲルP(住友化学工業製ビ
ニルアルコールポリアクリル酸ソーダ)或いはアラソー
プG・KR713(荒川化学工業製ポリアクリル酸)な
どの粉末、あるいは顆粒状のものであり、それらを適当
に選択し、前記モノマーの合計重量の50%を越えない
範囲でモノマーと混合し、好ましくは均一に混合する。 ここで、上記1)の無機物と2)の有機物は各々単独で
も、両者を混合してでも添加することができる。混合し
た場合でも添加物の総量は重量として50%を越えな
い。
The highly hygroscopic heat-sensitive polymer gel used in the present invention will be specifically described. In producing the highly hygroscopic heat-sensitive polymer gel of the present invention, among substances that promote absorption of water vapor added when copolymerizing the thermosensitive polymer gel-constituting monomers each having a functional group, 1) Slow water vapor Inorganic absorbents are Zn, Ca, Mg,
Among the metal oxides such as Al, Cu and Fe and the sulfates, these are powders which are insoluble in water and their weight is 5
It is mixed with the monomer in a range not exceeding 0%, preferably homogeneously mixed. 2) Superabsorbent polymer gel as an organic substance is, for example, commercially available Sunwet IMI1000 (Sanyo Chemical Co., Ltd. Starch polyacrylic acid), Igetagel P (Sumitomo Chemical Co., Ltd. vinyl alcohol polyacrylic acid sodium) or ALASORP G / KR713 ( Powder such as polyacrylic acid manufactured by Arakawa Chemical Industry Co., Ltd.) or a granular form, which are appropriately selected and mixed with the monomer in a range not exceeding 50% of the total weight of the monomers, and preferably homogeneously mixed. To do. Here, the inorganic substance of 1) and the organic substance of 2) can be added individually or as a mixture of both. Even when mixed, the total amount of additives does not exceed 50% by weight.

【0016】感熱性高分子ゲル構成モノマーの共重合組
成は希望する相転移温度に対応させる。モノマー中に前
記水蒸気の吸収を助長する物質を混合し、モノマーの共
重合が完了した時点で、ポリマーにγ線或いは電子線を
照射し、ポリマー同士を架橋せしめて最終的に高吸湿感
熱性高分子ゲルを得る。さらに、前記水蒸気の吸収を助
長する物質である無機吸収剤、吸着剤あるいは高吸水性
高分子ゲルを従来の感熱性高分子ゲルの表面に一定の厚
さで添着することにより水蒸気の吸収、吸着能力を強化
することができ、この種のゲルも本発明の意図するもの
であり、その適用を妨げるものではない。
The copolymer composition of the thermosensitive polymer gel-constituting monomer is made to correspond to the desired phase transition temperature. A substance that promotes the absorption of water vapor is mixed in the monomer, and when the copolymerization of the monomer is completed, the polymer is irradiated with γ-rays or electron beams to cross-link the polymers with each other, and finally the high moisture absorption and high heat sensitivity are obtained. Obtain a molecular gel. Furthermore, the absorption of water vapor by adsorbing an inorganic absorbent, which is a substance that promotes the absorption of water vapor, an adsorbent or a superabsorbent polymer gel with a constant thickness on the surface of a conventional heat-sensitive polymer gel, by adsorption. The capacity can be enhanced and gels of this kind are also contemplated by the invention and do not preclude their application.

【0017】一方、高吸湿感熱性高分子ゲル(以下、強
化ゲルと略記する)の基材となる、所謂感熱性高分子ゲ
ル(以下、従来ゲルと略記する)は、例えばアクリルア
ミド系モノマーを希望する相転移温度に対応してその種
類を選択し、共重合の量的比率を適切に設定し、これに
メチレンビスアクリルアミドのような2官能基を持つモ
ノマーを加えることにより従来ゲルが生成する。またこ
れらアクリルアミド系モノマーと2官能基性モノマーの
混合物に水蒸気の吸収を助長する物質を加えて共重合し
て強化ゲルが生成する。また、2官能基モノマーを含ま
ない鎖状高分子も、これにγ線或いは電子線を照射する
ことにより強化ゲルを製造することができる。さらにポ
リビニルメチルエーテル系の従来ゲルおよび強化ゲルの
製造も前記に準拠して行われる。
On the other hand, the so-called heat-sensitive polymer gel (hereinafter abbreviated as conventional gel), which is a base material of the highly hygroscopic heat-sensitive polymer gel (hereinafter abbreviated as reinforced gel), is desired to be an acrylamide monomer, for example. The conventional gel is formed by selecting the type corresponding to the phase transition temperature to be set, appropriately setting the quantitative ratio of the copolymerization, and adding a monomer having a bifunctional group such as methylenebisacrylamide thereto. Further, a substance that promotes absorption of water vapor is added to a mixture of these acrylamide-based monomers and bifunctional monomers and copolymerized to form a reinforced gel. Further, a chain polymer containing no bifunctional group monomer can also be produced as a reinforced gel by irradiating it with γ-rays or electron beams. Furthermore, conventional polyvinyl methyl ether type gels and reinforced gels are manufactured in accordance with the above.

【0018】強化ゲルの合成法を要約するとつぎの通り
となる。ただし説明をわかり易くするため水蒸気の吸収
を助長する物質の添加のことは省略した。 1.ホモポリマー相転移温度が異なる複数のモノマーを
共重合することにより強化ゲルの相転移温度を設定す
る。架橋剤としてのメチレンビスアクリルアミドを感熱
性高分子ゲル基材モノマーの1%程度添加することによ
り感熱性高分子ゲルとなる。 2.また、共重合により合成した強化ゲル基材高分子を
所定の形にしてγ線あるいは電子線を照射、架橋し、強
化ゲルを合成する。
The synthesis method of the reinforced gel is summarized as follows. However, in order to make the explanation easy to understand, the addition of a substance that promotes the absorption of water vapor was omitted. 1. The phase transition temperature of the reinforced gel is set by copolymerizing a plurality of monomers having different homopolymer phase transition temperatures. A thermosensitive polymer gel is obtained by adding methylenebisacrylamide as a crosslinking agent to about 1% of the thermosensitive polymer gel base monomer. 2. Further, the reinforced gel base polymer synthesized by copolymerization is formed into a predetermined shape and irradiated with γ-rays or electron beams to be crosslinked to synthesize a reinforced gel.

【0019】本発明の高吸湿感熱性高分子ゲルの形状は
無定形塊状であってもよいが、繊維状、ビーズ状、角型
状、円柱状など種々の形状にしたり、或いはカプセル内
に包蔵するなど適当に適宜自由に選択できるが、ゲルの
水和機能をさらに助長、促進するためには複合材料を使
用することが好ましい。本発明による強化ゲルによって
十分に気相中の水蒸気は捕捉できるが、例えば、課題解
決の手段にも記載した通り、気相部の水蒸気が強化ゲル
に接触する以前に細孔を有する多孔板、表面が毛状の微
細構造となっている繊維束或いはスポンジ構造をもつプ
ラスチック成形物に高吸湿感熱性高分子ゲルを接触せし
めた複合材料的形状あるいは該多孔板、表面が微細繊維
によって毛羽立っており、大なる表面積を有する織布或
いは不織布、さらにはスポンジ状の3次元構造をもつポ
リウレタン・フォーム(PUF)などプラスチック成形
物と強化ゲルを板状に接触せしめた複合材料を使用すれ
ば、その微細な表面にまず水蒸気が温度差により凝縮
し、液体の水が段階的に強化ゲルに水和される。
The highly hygroscopic heat-sensitive polymer gel of the present invention may be in the form of an amorphous lump, but it may be in various shapes such as fibrous, beaded, prismatic, cylindrical or encapsulated. However, it is preferable to use a composite material in order to further promote and accelerate the hydration function of the gel. Although the water vapor in the gas phase can be sufficiently captured by the reinforced gel according to the present invention, for example, as described in the means for solving the problems, a porous plate having pores before the water vapor in the gas phase portion contacts the reinforced gel, A composite material shape in which a highly hygroscopic heat-sensitive polymer gel is brought into contact with a plastic molded product having a fiber bundle or sponge structure whose surface has a hair-like fine structure, or the porous plate and the surface are fluffed by fine fibers. , A woven or non-woven fabric having a large surface area, or a composite material obtained by contacting a reinforced gel with a plastic molding such as a sponge-like three-dimensional structure polyurethane foam (PUF) in a plate shape First, water vapor condenses on the transparent surface due to the temperature difference, and liquid water is gradually hydrated into the reinforced gel.

【0020】複合材料の最も好ましい形状としては、強
化ゲルを架橋する前にスポンジ状の成形物を溶液中に浸
漬し架橋すれば、大なる表面積を有する部材と強化ゲル
を一体化できるだけでなく、水和効果も顕著である。ま
た、これらの繊維集合体又はプラスチック成形物に感熱
性モノマーをグラフト重合することによっても複合材料
が得られる。
As the most preferable shape of the composite material, if a sponge-like molded article is dipped in a solution and crosslinked before the reinforcing gel is crosslinked, not only a member having a large surface area but also the reinforcing gel can be integrated. The hydration effect is also remarkable. A composite material can also be obtained by graft-polymerizing a heat-sensitive monomer on these fiber aggregates or plastic molded products.

【0021】本発明のシステムを自然の環境で適用する
場合には、気象条件(温度)が不可抗力的に変動し、本
システムで中枢的役割を演じている強化ゲルが極端に乾
燥或いは湿潤した状態に曝されることが危惧される。従
って、本発明のシステムでは補助的に加温及び/又は冷
却のための装置、手段を具備しており、本システムが常
に定常状態を維持することが望ましい。
When the system of the present invention is applied in a natural environment, the weather conditions (temperature) fluctuate inevitably, and the reinforced gel that plays a central role in the system is extremely dry or wet. Feared to be exposed to. Therefore, it is desirable that the system of the present invention is supplementarily provided with a device and means for heating and / or cooling, and that the present system always maintains a steady state.

【0022】さらに、本システムの閉鎖系空間内で植物
を栽培する場合には、植物の栄養物質の選択吸着性によ
る栄養物質の選択的吸収により特定の元素が培養基(主
に土壌中或いは水)に偏差、蓄積すると植物の健全な成
長が阻害されるだけでなく、枯死することも懸念され
る。この種の障害を排除するために、本発明では閉鎖系
培養基内から特定元素(塩類)を除去する手段を設ける
ことが望ましい。
Further, when a plant is cultivated in the closed system space of the present system, a specific element is added to a culture medium (mainly in soil or water) by selective absorption of the nutrient substance by selective adsorption of the nutrient substance of the plant. Deviation and accumulation in the plant not only hinder the healthy growth of the plant, but also cause death. In order to eliminate this kind of obstacle, in the present invention, it is desirable to provide means for removing a specific element (salt) from the closed culture medium.

【0023】(作用)本発明の作用について説明する。
本発明は、強化ゲルを各種の水蒸気発散体を有する閉鎖
系空間内に、その空間容積、存在水分量に対応して設置
し、空間内の温度較差、例えば昼夜の温度差を利用して
空間内に存在する水を相の変化、すなわち気体→液体→
気体の転換によって宇宙カプセルなどの閉鎖系空間内で
水を繰り返し循環することを可能にした水循環システム
である。さらに、植物工場などにおいてもハウス内の植
物体から発散された水蒸気を昼夜の温度差を利用するこ
とにより強化ゲルを媒介として回収し、効率的に植物に
供給することができる。
(Operation) The operation of the present invention will be described.
The present invention installs a reinforced gel in a closed system space having various water vapor emissive bodies in accordance with the space volume and the amount of water present, and utilizes the temperature difference in the space, for example, the temperature difference between day and night to create a space. The phase of the water existing inside is changed, that is, gas → liquid →
It is a water circulation system that makes it possible to repeatedly circulate water in a closed space such as a space capsule by converting gas. Further, even in a plant factory or the like, water vapor emitted from the plants in the house can be efficiently collected by using the temperature difference between day and night through the reinforced gel and efficiently supplied to the plants.

【0024】即ち、本発明は刺激応答性高分子ゲルの一
種である従来ゲルに、各種の水蒸気吸収能力の強い無機
物、有機物をゲル内部に混練又は表面に添着して、新た
な水蒸気吸収能力の優れた強化ゲルを開発したものであ
る。
That is, according to the present invention, a conventional gel, which is a kind of stimuli-responsive polymer gel, is kneaded or affixed to the surface with various inorganic and organic substances having a strong water vapor absorption capacity to give a new water vapor absorption capacity. This is the development of an excellent reinforced gel.

【0025】次に、本発明の作用を図1及び図2を例と
して説明する。ただし、本発明はこれらの例に限定され
ない。まず、図1において例えばバイオスフェア、バイ
オスペース、バイオカプセルなど、人間、動物、植物な
どの生命体の生命を維持する閉鎖系空間1を想定する。
この閉鎖系空間1には生命体を維持する基盤7となる土
壌、水5などが存在し、水蒸気4の発散体6として人
間、動物、植物や微生物などが生活或いは棲息し、また
排水、廃棄物処理装置が存在する。さらにこの閉鎖系空
間1においては食料生産、排水処理、廃棄物の再資源化
などの生活、生産活動が行われる。これらの活動の結果
として、閉鎖系空間1の気相部に発散体から水蒸気4が
発散される。
Next, the operation of the present invention will be described with reference to FIGS. 1 and 2. However, the present invention is not limited to these examples. First, in FIG. 1, a closed system space 1 for maintaining the life of an organism such as a human, an animal, or a plant, such as a biosphere, a biospace, or a biocapsule, is assumed.
In this closed system space 1, there is a soil 7 that serves as a base 7 for maintaining life forms, water 5 and the like, and humans, animals, plants and microorganisms live or inhabit as diffusers 6 of water vapor 4, and drainage and disposal. There is a material processing device. Further, in this closed system space 1, life and production activities such as food production, wastewater treatment, and waste recycling are performed. As a result of these activities, water vapor 4 is emitted from the emissive body to the gas phase portion of the closed system space 1.

【0026】夜間に外部の気温が低下し、強化ゲルの相
転移温度以下になると、水蒸気4は強化ゲル3に水和・
包蔵される。この強化ゲル3の保水能力は、通常30〜
100gH2 O/gゲルの範囲に調整することが好まし
く、大量の水蒸気4を液体の水5として貯留することが
出来る。次に、昼間に至り外気温が上昇し、閉鎖系空間
1の気相部の温度が強化ゲル3の相転移温度以上になる
と、強化ゲル3に保持されていた水は液体の水5となっ
て強化ゲル3から相分離するので、この分離水5を適当
な輸送手段、例えば重力により自然に、又は遠心あるい
は吸引ポンプを援用して土壌7や水蒸気発散体6に供給
され生活や生産活動に利用される。
At night, when the outside temperature decreases and the temperature falls below the phase transition temperature of the reinforced gel, water vapor 4 hydrates the reinforced gel 3.
It is included. The water retention capacity of this reinforced gel 3 is usually 30-
It is preferable to adjust to a range of 100 gH 2 O / g gel, and a large amount of water vapor 4 can be stored as liquid water 5. Next, when the outside air temperature rises in the daytime and the temperature of the gas phase portion of the closed system space 1 becomes equal to or higher than the phase transition temperature of the reinforced gel 3, the water retained in the reinforced gel 3 becomes liquid water 5. Phase separation from the reinforced gel 3, the separated water 5 is supplied to the soil 7 and the water vapor diffuser 6 naturally by an appropriate transportation means such as gravity, or with the aid of a centrifugal or suction pump for life and production activities. Used.

【0027】水蒸気発散体6と強化ゲル3との間に水蒸
気4あるいは液体の水5が連続した一体システムをなす
よう構築され、強化ゲル3の調整装置2に例えば昼夜の
温度較差が存在する限り、このシステム内の水5は気体
→液体→気体と相転換して半永久的に反復循環し、本発
明のシステムは外部から水を運搬、供給しなくても生命
の維持のために有効に利用することが出来る。また、閉
鎖系空間1において昼夜の温度較差が十分に確保されな
い場合の温度調整のためや強化ゲル3の機能が低下する
のを防ぐために、さらに本発明の水循環システムが常に
正常に機能し、定常状態を維持するために閉鎖系空間1
外に温度調節器8を設置し、強化ゲル3の調整装置2内
の温度を補助的に加温或いは冷却する機能を付加するこ
とが好ましい。
As long as there is a continuous system of water vapor 4 or liquid water 5 between the water vapor diffuser 6 and the reinforced gel 3 and the adjusting device 2 for the reinforced gel 3 has a temperature difference between day and night, for example. , The water 5 in this system is phase-converted from gas → liquid → gas and circulates semi-permanently and repeatedly, and the system of the present invention is effectively utilized for the maintenance of life even if water is not transported or supplied from the outside. You can do it. In addition, in order to adjust the temperature when the temperature difference between the night and day is not sufficiently secured in the closed system space 1 and to prevent the function of the reinforced gel 3 from deteriorating, the water circulation system of the present invention always functions normally and becomes steady. Closed space 1 to maintain the condition
It is preferable to install a temperature controller 8 outside and add a function of supplementarily heating or cooling the temperature in the adjusting device 2 of the reinforced gel 3.

【0028】また強化ゲル3は、通常、太陽光線中の紫
外線、赤外線に対する抵抗性が弱いため、強化ゲル3の
調整装置2はこれらの波長の光線を吸収或いは反射する
保護体で被覆することが望ましい。
Further, since the reinforced gel 3 usually has weak resistance to ultraviolet rays and infrared rays in sunlight, the adjusting device 2 of the reinforced gel 3 may be covered with a protective body that absorbs or reflects rays of these wavelengths. desirable.

【0029】図2は、本発明の別の実施態様を図示した
ものである。自然界における昼夜の温度格差は閉鎖系あ
るいは準閉鎖系空間の例えば太陽からの位置などにより
かなり相違する。図2に図示した改善方式は、閉鎖系空
間1がどのような条件に位置しても適当な温度較差を確
実に維持するために、強化ゲル3の調整装置2の一部或
いは全部を閉鎖系空間1の外に設置し、必要な強化ゲル
3の作用温度較差を保持するためのものである。図2に
おいて、左側の図は調整装置2の部分が低温になる夜間
の状態で、水蒸気発散体6からの水蒸気4が強化ゲル3
に吸収される状態を示し、右側の図は調整装置2の部分
が高温になる昼間の状態で、強化ゲル3に吸収されてい
た液体の水5が強化ゲル3より土壌7に供給される状態
を示している。
FIG. 2 illustrates another embodiment of the present invention. The temperature difference between day and night in nature varies considerably depending on, for example, the position from the sun in a closed or quasi-closed space. In the improved system shown in FIG. 2, a part or all of the adjusting device 2 for the reinforced gel 3 is closed in order to maintain a proper temperature difference regardless of the conditions of the closed system space 1. It is provided outside the space 1 to maintain the required working temperature range of the reinforced gel 3. In FIG. 2, the diagram on the left side is a night state in which the temperature of the adjusting device 2 becomes low, and the water vapor 4 from the water vapor diffuser 6 reinforces the reinforced gel 3
The state on the right side shows a state in which the temperature of the adjusting device 2 is high, and the liquid water 5 absorbed by the reinforcing gel 3 is supplied from the reinforcing gel 3 to the soil 7. Is shown.

【0030】本発明でいう閉鎖系空間としては、地上に
おける無菌室、植物工場やバイオスペースのような生命
維持装置などに限定されることなく、宇宙カプセルや将
来的に実現されるであろう宇宙ステーションまでも適用
範囲に含む。例えば宇宙カプセルのように地球の自転や
公転にともなって太陽からの熱線を周期的変動して受け
る場合には太陽との相対的な位置関係によって、その片
面は高温、反対面は低温となり、この関係が繰り返され
ている。 このように、必然的に作り出される宇宙カプ
セルの両面の温度較差は、強化ゲルを介在せしめた閉鎖
系空間での水循環利用システムを適用するには格好の条
件である。この場合、温度調整手段は特に必要としな
い。また、例えば月に設けたシェルターや無菌室などの
場合には高吸湿感熱性高分子ゲルの収納領域の温度は補
助加温、補助冷却により確実に制御することもできる。
The closed system space referred to in the present invention is not limited to a sterile room on the ground, a life support device such as a plant factory or a bio space, and a space capsule or a space that will be realized in the future. Includes stations as well. For example, when a heat ray from the sun is periodically fluctuated due to the rotation and revolution of the earth like a space capsule, one side becomes hot and the other side becomes cold depending on the relative positional relationship with the sun. Relationships are repeated. As described above, the temperature difference between the two surfaces of the space capsule that is inevitably created is a suitable condition for applying the water circulation utilization system in the closed space in which the reinforced gel is interposed. In this case, the temperature adjusting means is not necessary. Further, for example, in the case of a shelter or a sterile room provided on the moon, the temperature of the storage area of the highly hygroscopic heat-sensitive polymer gel can be surely controlled by auxiliary heating and auxiliary cooling.

【0031】従来、宇宙カプセル内で用水を確保するに
は太陽電池により太陽エネルギーを電気エネルギーに変
換し、この電気エネルギーにより水を電気分解して酸素
と水素を確保し、さらに空気と水素を燃料電池で反応さ
せて再度電気エネルギーに変換し、反応の結果生成され
る水を飲料水、生活用水に使用している。しかしなが
ら、この機構は極めて高度、かつ複雑であり、高度の維
持管理技術が要求されるが、本発明を適用することによ
り完全閉鎖系空間で水を確実に確保するシステムは著し
く簡略化される。なお、宇宙空間などの無重力域では、
ゲルが相転移を起こしても水分の分離が困難なことが考
えられる。この際には補助的に遠心分離や吸引などの手
段を併用できる。
Conventionally, in order to secure water for use in the space capsule, solar energy is converted into electric energy by a solar cell, and this electric energy electrolyzes water to secure oxygen and hydrogen, and further air and hydrogen are used as fuel. Water is produced by reacting with a battery and converting it to electric energy again, and is used as drinking water and domestic water. However, this mechanism is extremely sophisticated and complicated, and a high level of maintenance and management technology is required. However, by applying the present invention, the system for ensuring water in the completely closed system space is significantly simplified. In weightless areas such as outer space,
Even if the gel undergoes a phase transition, it may be difficult to separate water. In this case, a means such as centrifugal separation or suction can be used as an auxiliary.

【0032】[0032]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 (実施例1)高吸湿感熱性高分子ゲルの製造法。 (1)N−nプロピルアクリルアミドモノマーに水蒸気
の吸収剤である酸化鉄(Fe2 3 )、もしくは酸化ア
ルミニウム(Al2 3 )をモノマー重量の50%を越
えない範囲で添加し、両者を均一に混合した。次に、そ
れに重合開始剤としてアゾビスイソブチロニトリルを加
え、それらを重合リアクターで反応させ、N−nプロピ
ルメタアクリルアミドの前駆体を生成させた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. (Example 1) A method for producing a highly hygroscopic heat-sensitive polymer gel. (1) iron oxide is absorbent of water vapor in the N-n-propyl acrylamide monomer (Fe 2 O 3), or aluminum oxide (Al 2 O 3) is added in a range not exceeding 50% of the monomer weight, both Mix evenly. Next, azobisisobutyronitrile was added to it as a polymerization initiator, and they were reacted in a polymerization reactor to generate a precursor of Nn propyl methacrylamide.

【0033】さらに、その前駆体に、架橋剤であるメチ
レンビスアクリルアミドモノマーを1%加え、3次元状
に架橋させ、以下に示す高吸湿感熱性高分子ゲルを得
た。 酸化鉄強化の高吸湿感熱性高分子ゲル 酸化アルミニウム強化の高吸湿感熱性高分子ゲル この高吸湿感熱性高分子ゲルの相転移温度は、27〜2
8℃、保水能力は30〜100gH2 O/gゲルであっ
た。
Further, 1% of a methylenebisacrylamide monomer, which is a cross-linking agent, was added to the precursor and cross-linked three-dimensionally to obtain a highly hygroscopic heat-sensitive polymer gel shown below. Iron oxide reinforced highly hygroscopic heat-sensitive polymer gel Aluminum oxide reinforced highly hygroscopic heat-sensitive polymer gel This highly hygroscopic heat-sensitive polymer gel has a phase transition temperature of 27 to 2
The water retention capacity at 8 ° C. was 30 to 100 g H 2 O / g gel.

【0034】(2)ポリビニールメチルエーテルの30
%水溶液に酸化鉄(Fe2 3 )もしくは酸化アルミニ
ウム(Al2 3 )又は酸化マグネシウム(MgO)を
ポリマー重量の50%を越えない範囲で添加し、両者を
均一に混合した。次に、その混合物を一定の形状の容器
に入れ、38〜40℃の温度に保った状態でγ線を10
0〜150kGy照射して、ポリマーを架橋させ、酸化
金属含有のポリビニールメチルエーテルゲルを生成させ
た。このゲルの相転移温度は38〜40℃、保水能力は
30〜100gH2 O/gゲルであった。
(2) Polyvinyl methyl ether 30
% Aqueous solution, iron oxide (Fe 2 O 3 ) or aluminum oxide (Al 2 O 3 ) or magnesium oxide (MgO) was added within a range not exceeding 50% of the polymer weight, and both were uniformly mixed. Next, the mixture was placed in a container of a certain shape, and gamma rays were applied to the container at a temperature of 38 to 40 ° C. for 10 times.
The polymer was cross-linked by irradiation with 0 to 150 kGy to generate a metal oxide-containing polyvinyl methyl ether gel. The gel had a phase transition temperature of 38 to 40 ° C. and a water retention capacity of 30 to 100 gH 2 O / g gel.

【0035】(3)感熱性高分子のその他の種類である
N−iプロピルメタアクリルアミドモノマーとN−iプ
ロピルアクリルアミドモノマーを容器に等重量ずつ取
り、それに重合開始剤であるペルオキソ二硫酸アンモニ
ウムを加えて反応させ、N−iプロピルメタアクリルア
ミドモノマーとN−iプロピルアクリルアミドモノマー
の共重合体を形成させた。そこに市販の高吸水性高分子
ポリマーであるサンウエットIMI−1000(スター
チポリアクリル酸・・・三洋化成工業製)を両モノマー
の合計重量の50%を越えない範囲で添加し、両者を均
一に混合した。この混合物に架橋剤であるメチレンビス
アクリルアミドモノマーを約1%加え、共重合体とスタ
ーチポリアクリル酸を3次元状に架橋させ、高吸湿感熱
性高分子ゲルを得た。この高吸湿感熱性高分子ゲルの相
転移温度は、37〜38℃、保水能力は80gH2 O/
gゲルであった。
(3) Ni-propyl methacrylamide monomer and N-i propyl acrylamide monomer, which are other types of heat-sensitive polymer, are weighed in equal amounts in a container, and ammonium peroxodisulfate as a polymerization initiator is added thereto. The reaction was carried out to form a copolymer of N-i propyl methacrylamide monomer and N-i propyl acrylamide monomer. A commercially available super absorbent polymer, Sunwet IMI-1000 (starch polyacrylic acid ... manufactured by Sanyo Kasei Co., Ltd.) was added thereto within a range not exceeding 50% of the total weight of both monomers, and both were uniformly mixed. Mixed in. About 1% of a methylenebisacrylamide monomer as a cross-linking agent was added to this mixture, and the copolymer and starch polyacrylic acid were three-dimensionally cross-linked to obtain a highly hygroscopic heat-sensitive polymer gel. This highly hygroscopic heat-sensitive polymer gel has a phase transition temperature of 37 to 38 ° C. and a water retention capacity of 80 gH 2 O /
It was a g-gel.

【0036】(実施例2)本発明システムを適用して閉
鎖系空間内で植物を栽培することを想定し、模擬的に恒
温室内にアクリル製の1m3 の密閉閉鎖系空間を造り、
底面に約20cmの深さに細粒の砂を堆積した。この砂
の堆積層に適量の水を散布して、実験中に想定した気相
部の湿度が常に維持されるように配慮した。昼夜の温度
はそれぞれ40℃、10℃に設定した。この密閉空間内
に、本発明の強化ゲルに、スポンジ状に成形したポリウ
レタンフォーム100gを添着し、これを密閉閉鎖系空
間の上部に固定した受皿構造を持つ支持体にセットし、
支持体の底部には脱水和した水が滴下できるように複数
個の孔を開けた。
(Example 2) Assuming that the system of the present invention is applied to cultivate plants in a closed space, a 1 m 3 closed closed space made of acrylic is simulated in a temperature-controlled room.
Fine-grained sand was deposited on the bottom surface to a depth of about 20 cm. An appropriate amount of water was sprayed on this sand sedimentary layer to ensure that the humidity in the gas phase assumed during the experiment was maintained at all times. The day and night temperatures were set to 40 ° C and 10 ° C, respectively. In this closed space, 100 g of polyurethane foam formed into a sponge shape was attached to the reinforced gel of the present invention, and this was set on a support having a saucer structure fixed to the upper part of the closed closed space,
A plurality of holes were formed in the bottom of the support so that dehydrated water could be dripped.

【0037】実験は、低温時間帯を2時間、高温時間帯
を1時間に設定して、製造した各種の高吸湿感熱性高分
子ゲルの水蒸気の吸収、脱水の状態を観察した。高吸湿
感熱性高分子ゲルの水和、脱水和の機能は、供試したそ
れぞれのゲルの重量増加を測定することにより判定した
(従来の感熱性高分子ゲルとの比較)。 供試感熱性高分子ゲル 従来の感熱性高分子ゲル 酸化鉄強化の高吸湿性高分子ゲル 酸化アルミニウム強化の高吸湿感熱性高分子ゲル 高吸水性高分子ゲル強化の高吸湿性高分子ゲル
In the experiment, the low-temperature time zone was set to 2 hours and the high-temperature time zone was set to 1 hour, and the state of water vapor absorption and dehydration of the various highly hygroscopic heat-sensitive polymer gels produced was observed. The hydration and dehydration functions of the highly hygroscopic heat-sensitive polymer gel were determined by measuring the weight increase of each tested gel (compared with the conventional heat-sensitive polymer gel). Test heat-sensitive polymer gel Conventional heat-sensitive polymer gel Iron oxide reinforced highly hygroscopic polymer gel Aluminum oxide reinforced highly hygroscopic heat-sensitive polymer gel Super absorbent polymer gel reinforced highly hygroscopic polymer gel

【0038】この実験での昼夜の各条件を整理すると表
1の通りである。
Table 1 summarizes the conditions of day and night in this experiment.

【0039】[0039]

【表1】 [Table 1]

【0040】対象を従来の感熱性高分子ゲルとし、本発
明の高吸湿感熱性高分子ゲルの3種類について、想定し
た昼夜の温度差によるそれぞれの試料の重量増加をチェ
ックし、このテストを反復することによって、閉鎖系空
間における水循環利用の可能性を検証した。検証実験の
結果を図3及び図4に示した。図3は昼夜における閉鎖
系空間の温度変化を示す図である。図4において、11
で示す線は従来の感熱性高分子ゲルを用いた場合のゲル
の重量変化を示し、12で示す線は酸化鉄強化の高吸湿
性高分子ゲルを用いた場合のゲルの重量変化を示し、1
3で示す線は酸化アルミニウム強化の高吸湿感熱性高分
子ゲルを用いた場合のゲルの重量変化を示し、14で示
す線は高吸水性高分子ゲル強化の高吸湿性高分子ゲルを
用いた場合のゲルの重量変化をそれぞれ示している。
The object was a conventional thermosensitive polymer gel, and the weight increase of each sample due to the assumed temperature difference between day and night was checked for three types of the highly hygroscopic thermosensitive polymer gel of the present invention, and this test was repeated. By doing so, the possibility of water circulation use in the closed space was verified. The results of the verification experiment are shown in FIGS. 3 and 4. FIG. 3 is a diagram showing a temperature change in the closed system space at day and night. In FIG. 4, 11
The line indicated by indicates the weight change of the gel when the conventional thermosensitive polymer gel is used, and the line indicated by 12 indicates the weight change of the gel when the iron oxide reinforced highly hygroscopic polymer gel is used, 1
The line indicated by 3 shows the weight change of the gel when the aluminum oxide reinforced highly hygroscopic heat-sensitive polymer gel was used, and the line indicated by 14 used the highly hygroscopic polymer gel reinforced by the superabsorbent polymer gel. The weight change of the gel in each case is shown.

【0041】以上、(実施例2)により本発明の高吸湿
感熱性高分子ゲルは、従来の感熱性高分子ゲルに比較し
て気体状の水、すなわち水蒸気を相転移温度以下におい
て急速に水和し、また相転移温度以上において吸収した
水を急速に脱水和して液体の水に変換する能力があるこ
とが証明された。また、本発明の高吸湿感熱性高分子ゲ
ルを媒体として、閉鎖系空間内の水を気体→液体→気体
の変換により反復循環することにより、系内の水は生命
体に限りなく利用されることが証明された。なお、(実
施例2)の実験に供した強化ゲルの基材は、N−プロピ
ルアクリルアミド:N−アクリロイルピペリジン=8.
5:1.5の割合に混合し、共重合した高分子ゲルであ
り、相転移温度は約16℃であった。
As described above, according to (Example 2), the highly hygroscopic heat-sensitive polymer gel of the present invention rapidly changes the gaseous water, that is, water vapor, at a temperature below the phase transition temperature as compared with the conventional heat-sensitive polymer gel. It has been demonstrated that it has the ability to rapidly dehydrate and convert absorbed water above the phase transition temperature to liquid water. Further, by using the highly hygroscopic and heat-sensitive polymer gel of the present invention as a medium, water in the closed system space is repeatedly circulated by conversion of gas → liquid → gas, so that the water in the system can be utilized for life without limit. It was proved. The base material of the reinforced gel used in the experiment of (Example 2) was N-propylacrylamide: N-acryloylpiperidine = 8.
It was a polymer gel obtained by mixing and copolymerizing at a ratio of 5: 1.5, and the phase transition temperature was about 16 ° C.

【0042】[0042]

【発明の効果】本発明は、詳述したように従来技術とは
発想の次元を全く異にする発明であり、本発明により次
のような効果を奏する事ができる。 (1)従来の感熱性高分子ゲルに比較して、相転移温度
以下において気相中の水蒸気を、急速かつ短時間に水和
することが可能であり、また、相転移温度以上において
急速に脱水和がおこなわれる。 (2)この新規の発明による高吸湿感熱性高分子ゲルを
媒体として、閉鎖系および準閉鎖系空間内において、従
来全く捕捉、回収できなかった気相中の水蒸気を確実に
捕捉することが可能であり、気相内の温度差によりこれ
を脱水和して貴重な水を系内で、理論的には無限に利用
することができる。 (3)このシステムを適用することにより、系外からの
水の供給が無くても、完全閉鎖系空間で人間、動物の生
命を維持できる。
As described in detail, the present invention is an invention whose idea dimension is completely different from that of the prior art, and the present invention has the following effects. (1) Compared with conventional thermosensitive polymer gels, it is possible to hydrate water vapor in the gas phase at a temperature below the phase transition temperature rapidly and in a short time, and rapidly at a temperature above the phase transition temperature. Dehydration is performed. (2) Using the highly hygroscopic heat-sensitive polymer gel according to the new invention as a medium, it is possible to reliably capture water vapor in the gas phase, which could not be captured or collected in the conventional closed space and semi-closed space. Therefore, valuable water can theoretically be used infinitely in the system by dehydrating it due to the temperature difference in the gas phase. (3) By applying this system, the lives of humans and animals can be maintained in a completely closed system space without the supply of water from outside the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】閉鎖系空間における強化ゲルを媒体とした水の
循環図
FIG. 1 Diagram of water circulation using reinforced gel as medium in a closed system space

【図2】閉鎖系空間内の調整装置の一部を外界の露出さ
せた場合の強化ゲルを媒体とした昼間の水(右)及び夜
間(左)の水蒸気の移動図
FIG. 2 is a migration diagram of water vapor during daytime (right) and nighttime (left) using a reinforced gel as a medium when a part of the adjusting device in the closed system space is exposed to the outside.

【図3】閉鎖系空間の温度変化を示す図FIG. 3 is a diagram showing temperature changes in a closed system space.

【図4】閉鎖系空間においた各種の強化ゲルの温度変化
に伴う重量変化をを示す図
FIG. 4 is a diagram showing changes in weight of various reinforced gels in a closed space with temperature changes.

【符号の説明】[Explanation of symbols]

1 閉鎖系空間 2 調整装置 3 高吸湿感熱性高分子ゲル(強化ゲル) 4 水蒸気 5 水 6 水蒸気発散体 7 生命維持基盤(土壌など) 8 温度調節装置 9 脱塩装置 11 従来ゲルの重量変化 12、13、14 強化ゲルの重量変化 1 Closed system space 2 Regulator 3 Highly hygroscopic thermosensitive polymer gel (reinforced gel) 4 Water vapor 5 Water 6 Water vapor emissive body 7 Life support base (soil etc.) 8 Temperature control device 9 Desalination device 11 Weight change of conventional gel 12 , 13, 14 Weight change of reinforced gel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一条 久夫 茨城県つくば市東1丁目1番 工業技術院 物質工学工業技術研究所内 (72)発明者 遠矢 泰典 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 (72)発明者 小林 武司 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisao Ichijo 1-1, Higashi Tsukuba-shi, Ibaraki Institute of Industrial Science and Technology, Institute of Materials Technology (72) Inventor Yasunori Toya 6-27 Konan, Minato-ku, Tokyo Ebara In Infilco Co., Ltd. (72) Inventor Takeshi Kobayashi 1-6-27 Konan Minato-ku, Tokyo Ebara Infilco Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水蒸気の吸収を助長する物質を、感熱性
高分子ゲルの表面に添着及び/又は内部に混練し、固定
化して得た高吸湿感熱性高分子ゲルを用いて、前記高吸
湿感熱性高分子ゲルの温度を相転移温度以下として該高
吸湿感熱性高分子ゲル内に閉鎖系空間の気相中の水分を
液体として保持した後、該高吸湿感熱性高分子ゲルの温
度を前記相転移温度以上として該高吸湿感熱性高分子ゲ
ル外に液体の水として放出させ使用点に供給することを
特徴とする閉鎖系空間における水循環利用方法。
1. A highly hygroscopic thermosensitive polymer gel obtained by impregnating and immobilizing a substance which promotes absorption of water vapor on the surface of a thermosensitive polymer gel and / or kneading the mixture inside the thermosensitive polymer gel to obtain the above-mentioned high moisture absorption. After the temperature of the heat-sensitive polymer gel is kept below the phase transition temperature, the moisture in the gas phase of the closed system space is held as a liquid in the highly moisture-absorbent heat-sensitive polymer gel, and then the temperature of the highly moisture-absorbent heat-sensitive polymer gel is adjusted. A method for utilizing water circulation in a closed system space, characterized in that it is discharged as liquid water outside the highly hygroscopic heat-sensitive polymer gel at a temperature not lower than the phase transition temperature and supplied to a point of use.
【請求項2】 水蒸気の吸収を助長する物質を、感熱性
高分子ゲルの表面に添着及び/又は内部に混練し、固定
化して得た高吸湿感熱性高分子ゲルを保持する調整装置
と、該調整装置に閉鎖系空間の気相を導く送気装置と、
前記調整装置内の高吸湿感熱性高分子ゲルの温度を維持
又は変化させる温度調整手段と、高吸湿感熱性高分子ゲ
ルより放出された液体の水を使用点に供給する供給装置
を配備してなることを特徴とする閉鎖系空間における水
循環利用装置。
2. An adjusting device for holding a highly hygroscopic heat-sensitive polymer gel obtained by immobilizing a substance which promotes absorption of water vapor on the surface of and / or kneading the surface of the heat-sensitive polymer gel. An air supply device for guiding a gas phase in a closed system space to the adjustment device,
A temperature adjusting means for maintaining or changing the temperature of the highly hygroscopic heat-sensitive polymer gel in the adjusting device, and a supply device for supplying the liquid water released from the highly hygroscopic heat-sensitive polymer gel to the point of use are provided. A device for utilizing water circulation in a closed space, which is characterized by:
【請求項3】 前記水蒸気の吸収を助長する物質が、Z
n、Ca、Mg、Cu及びFeより選ばれた金属の酸化
物、又は硫酸塩であるか、又はアクリル酸ユニットを含
む架橋高分子であるか、又は該高分子と前記金属の酸化
物、又は硫酸塩の混合物であって、前記感熱性高分子ゲ
ルの基材が、アクリルアミド系樹脂又はポリビニルメチ
ルエーテル系樹脂の単独又は2官能性モノマーとの重合
物であることを特徴とする請求項1記載の閉鎖系空間に
おける水循環利用方法。
3. The substance that promotes absorption of water vapor is Z
An oxide or sulfate of a metal selected from n, Ca, Mg, Cu and Fe, or a crosslinked polymer containing an acrylic acid unit, or an oxide of the polymer and the metal, or 2. A mixture of sulfates, wherein the base material of the thermosensitive polymer gel is a polymer of an acrylamide resin or a polyvinyl methyl ether resin alone or with a bifunctional monomer. Of water circulation in closed space in Japan.
【請求項4】 前記水蒸気の吸収を助長する物質が、Z
n、Ca、Mg、Cu及びFeより選ばれた金属の酸化
物、又は硫酸塩であるか、又はアクリル酸ユニットを含
む架橋高分子であるか、又は該高分子と前記金属の酸化
物、又は硫酸塩の混合物であって、前記感熱性高分子ゲ
ルの基材が、アクリルアミド系樹脂又はポリビニルメチ
ルエーテル系樹脂の単独又は2官能性モノマーとの重合
物であることを特徴とする請求項2記載の閉鎖系空間に
おける水循環利用装置。
4. The substance which promotes absorption of water vapor is Z
An oxide or sulfate of a metal selected from n, Ca, Mg, Cu and Fe, or a crosslinked polymer containing an acrylic acid unit, or an oxide of the polymer and the metal, or 3. A mixture of sulfates, wherein the base material of the thermosensitive polymer gel is a polymer of an acrylamide resin or a polyvinyl methyl ether resin alone or with a bifunctional monomer. Device for water circulation in a closed system space.
JP13506093A 1993-05-14 1993-05-14 Method and apparatus for utilizing water circulation in a closed system space Expired - Lifetime JP3398715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13506093A JP3398715B2 (en) 1993-05-14 1993-05-14 Method and apparatus for utilizing water circulation in a closed system space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13506093A JP3398715B2 (en) 1993-05-14 1993-05-14 Method and apparatus for utilizing water circulation in a closed system space

Publications (2)

Publication Number Publication Date
JPH06322798A true JPH06322798A (en) 1994-11-22
JP3398715B2 JP3398715B2 (en) 2003-04-21

Family

ID=15142956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13506093A Expired - Lifetime JP3398715B2 (en) 1993-05-14 1993-05-14 Method and apparatus for utilizing water circulation in a closed system space

Country Status (1)

Country Link
JP (1) JP3398715B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047788A1 (en) * 2010-10-08 2012-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System for drinking water extraction by absorption of atmospheric moisture from environment using sorbent, has hydrogel provided as sorbent, where water discharge of hydrogel is switched by change in ambient temperature in condensed form
CN103215988A (en) * 2013-04-22 2013-07-24 胡明建 Method for obtaining water from air through temperature difference phase changes and using water for cultivation
CN104141327A (en) * 2014-07-23 2014-11-12 中国人民解放军第三军医大学军事预防医学院 Desert moisture acquisition device
EA024415B1 (en) * 2010-11-25 2016-09-30 Павел Леки Extraction of water from air
WO2016163159A1 (en) * 2015-04-08 2016-10-13 シャープ株式会社 Water collection device and water collection method
WO2016194407A1 (en) * 2015-05-29 2016-12-08 シャープ株式会社 Dehumidification device and dehumidification method
WO2020228920A1 (en) 2019-05-16 2020-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for temporarily storing and dispensing water
CN114034611A (en) * 2021-09-22 2022-02-11 赫海燕 Device and method for generating phase-change medium of heat escape micro particulate matters, detection equipment and application
CN115918411A (en) * 2023-02-02 2023-04-07 常州大学 Ecological greenhouse capable of self-adjusting water-carbon dioxide positive and negative dual cycle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104652531B (en) * 2015-02-09 2016-08-24 浙江大学 A kind of desert based on Peltier effect water intaking irrigation system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047788B4 (en) * 2010-10-08 2017-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System for obtaining water by absorbing atmospheric moisture from the environment
DE102010047788A1 (en) * 2010-10-08 2012-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System for drinking water extraction by absorption of atmospheric moisture from environment using sorbent, has hydrogel provided as sorbent, where water discharge of hydrogel is switched by change in ambient temperature in condensed form
EA024415B1 (en) * 2010-11-25 2016-09-30 Павел Леки Extraction of water from air
CN103215988A (en) * 2013-04-22 2013-07-24 胡明建 Method for obtaining water from air through temperature difference phase changes and using water for cultivation
CN103215988B (en) * 2013-04-22 2015-01-21 胡明建 Method for obtaining water from air through temperature difference phase changes and using water for cultivation
CN104141327A (en) * 2014-07-23 2014-11-12 中国人民解放军第三军医大学军事预防医学院 Desert moisture acquisition device
CN104141327B (en) * 2014-07-23 2015-09-30 中国人民解放军第三军医大学军事预防医学院 Sampler in the sand bed of a kind of desert
WO2016163159A1 (en) * 2015-04-08 2016-10-13 シャープ株式会社 Water collection device and water collection method
JP2016198705A (en) * 2015-04-08 2016-12-01 シャープ株式会社 Water accumulation device and water accumulation method
WO2016194407A1 (en) * 2015-05-29 2016-12-08 シャープ株式会社 Dehumidification device and dehumidification method
JP2016221445A (en) * 2015-05-29 2016-12-28 シャープ株式会社 Dehumidification apparatus and dehumidification method
WO2020228920A1 (en) 2019-05-16 2020-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for temporarily storing and dispensing water
CN114034611A (en) * 2021-09-22 2022-02-11 赫海燕 Device and method for generating phase-change medium of heat escape micro particulate matters, detection equipment and application
CN115918411A (en) * 2023-02-02 2023-04-07 常州大学 Ecological greenhouse capable of self-adjusting water-carbon dioxide positive and negative dual cycle

Also Published As

Publication number Publication date
JP3398715B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
Wang et al. Recent advances in atmosphere water harvesting: Design principle, materials, devices, and applications
JP3398715B2 (en) Method and apparatus for utilizing water circulation in a closed system space
Yu et al. Superabsorbent polymer properties and concentration effects on water retention under drying conditions
US20090163365A1 (en) Water-swellable hybrid material with inorganic additives and method of Producing same
CN108925309B (en) Self-water supply system for agricultural greenhouse
Sarkar et al. Synthesis and characterization of poly (CMC-g-cl-PAam/Zeolite) superabsorbent composites for controlled delivery of zinc micronutrient: swelling and release behavior
CN109037680A (en) A kind of porous Carbon anode energy storage material of the N doping of long circulating performance and preparation method thereof
Zekry et al. The Potential of super absorbent polymers from diaper wastes to enhance water retention properties of the soil.
CN104629692B (en) A kind of preparation method of Inorganic whisker phase-changing energy storage material for building
Sukriti et al. Controlled biofertilizer release kinetics and moisture retention in gum xanthan-based IPN
Lin et al. Hygroscopic and photothermal all-polymer foams for efficient atmospheric water harvesting, passive humidity management, and protective packaging
Chang et al. Marine biomass-derived, hygroscopic and temperature-responsive hydrogel beads for atmospheric water harvesting and solar-powered irrigation
Maity et al. Hydratable Core–Shell Polymer Networks for Atmospheric Water Harvesting Powered by Sunlight
CN102964763B (en) Preparation method of spherical composite humidity-controlling material
CN117659494A (en) Mineral-based heat storage aerogel and preparation method and application thereof
Fu et al. NTillandsia biomimetic design, sponge-gel layer: Rapid capture of water vapor from the atmosphere
US20120071609A1 (en) Dew and Rain Harvesting with Superabsorbent Polymers
Li et al. Self-assembling solid-state hydrogen source for drylands photocatalytic hydrogen production
CN114849708B (en) Three-dimensional macroporous carbon anchored monoatomic iron catalyst and preparation method and application thereof
CN109053320A (en) The bentonite of Sodium Polyacrylate intercalation modification assigns fertile water-retaining agent and preparation method thereof
CN109019865A (en) Three-dimensional artificial sewage purification floating island
JP3296450B2 (en) Soil conditioner using high moisture absorption thermosensitive polymer gel and soil improvement method using the same
Chatzoudis et al. Soil salts reduce hydration of polymeric gels and affect moisture characteristics of soil
CN107986557A (en) A kind of synchronous coupled biological treatment process for removing agricultural runoff nitrogen phosphorus
CN105645729A (en) Solar-power-based sludge low-shrinkage energy-saving drying method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term