JPH06322490A - Stainless steel for high purity gas excellent in workability and machinability - Google Patents

Stainless steel for high purity gas excellent in workability and machinability

Info

Publication number
JPH06322490A
JPH06322490A JP15664593A JP15664593A JPH06322490A JP H06322490 A JPH06322490 A JP H06322490A JP 15664593 A JP15664593 A JP 15664593A JP 15664593 A JP15664593 A JP 15664593A JP H06322490 A JPH06322490 A JP H06322490A
Authority
JP
Japan
Prior art keywords
less
machinability
workability
stainless steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15664593A
Other languages
Japanese (ja)
Inventor
Shigeki Azuma
茂樹 東
Kazuo Yamanaka
和夫 山中
Masahiro Honchi
雅宏 本地
Yoji Yamaguchi
洋治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15664593A priority Critical patent/JPH06322490A/en
Publication of JPH06322490A publication Critical patent/JPH06322490A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide stainless steel for high purity gas excellent in workability and machinability. CONSTITUTION:This stainless steel for high purity gas excellent in workability and machinability is, one having a compsn. contg. 10 to 25% Ni, 15 to 30% Cr, 2 to 7% Mo and 0.10 to 0.30% N and in which the content of C in impurities is regulated to <=0.03%, Si to <=0.5%, Mn to <=0.5%, P to <=0.01% S to <=0.003%, O to <=0.005%, Ti to <=0.02% and Al to less than (0.01/N(%)) and Ni-bal. value given by the following formula is regulated to O to <3: Ni-bal. = Nieq. -1. lCreq. +8.2; where Nieq.=Ni(%)+0.5Mn(%)+30(C(%)+N(%)) and Creq.=Cr(%)+1.5Si(%)+Mo(%). The steel may furthermore be incorporated with 0.20 to 0.80% Cu. This steel combines excellent particle generating properties (cleanliness), corrosion resistance, hot and cold workability and machinability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造プロセスな
どで使用される高純度ガス用ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to stainless steel for high-purity gas used in semiconductor manufacturing processes and the like.

【0002】[0002]

【従来の技術】半導体製造分野においては近年、高集積
化が進み、超LSIと称されるディバイスの製造では、
1μm 以下の微細パターンの加工が必要とされている。
このような超LSI製造プロセスでは、微少な塵や微量
不純物ガスが配線パターンに付着、吸着されて回路不良
の原因となるため、使用する反応ガスおよびキャリアー
ガスは共に高純度であること、すなわちガス中の微粒子
および不純物ガスが少ないことが必要である。したがっ
て、高純度ガス用配管および部材においては、その内面
から放出される汚染物としての微粒子(パーティクル)
およびガスが極力少ないことが要求される。
2. Description of the Related Art In the field of semiconductor manufacturing, high integration has progressed in recent years, and in the manufacture of devices called VLSI,
It is necessary to process a fine pattern of 1 μm or less.
In such a VLSI manufacturing process, since minute dust and trace impurity gas adheres to and is adsorbed on the wiring pattern and causes a circuit failure, both the reaction gas and the carrier gas used are of high purity, that is, gas. It is necessary that the amount of fine particles and impurity gas in the inside is small. Therefore, in high-purity gas pipes and members, fine particles (particles) as contaminants emitted from the inner surface of the pipes and members.
And it is required that the amount of gas is as small as possible.

【0003】また、半導体製造用ガスとしては、窒素、
アルゴンなどの不活性ガス以外に塩素、クロロシラン類
などの腐食性のガスも使用されるので、これらの腐食性
ガスに接する部材には当然、高い耐食性も必要となる。
Further, as a semiconductor manufacturing gas, nitrogen,
In addition to an inert gas such as argon, a corrosive gas such as chlorine or chlorosilanes is also used. Therefore, a member in contact with such a corrosive gas is naturally required to have high corrosion resistance.

【0004】従来、このような半導体製造用ガス配管お
よび継手などの部材は、塵や水分などの付着および吸着
を低減するため、その内面粗さがRmax として1μm 以
下となるまで平滑化されている。この内面平滑化の方法
として電解研磨が適用され、その後、高純度水による洗
浄、高純度ガスによる乾燥が施されて製品となる。
Conventionally, such members as semiconductor manufacturing gas pipes and joints have been smoothed to have an inner surface roughness Rmax of 1 μm or less in order to reduce adhesion and adsorption of dust and water. . Electropolishing is applied as a method for smoothing the inner surface, followed by washing with high-purity water and drying with high-purity gas to obtain a product.

【0005】半導体製造用ガス配管および継手などの部
材の材質としては通常、オーステナイト系ステンレス
鋼、中でもSUS316Lが主流となっており、配管には継
目無し鋼管が、継手などの部材には棒鋼などからの「切
削加工」ないしは「熱間鍛造+切削加工」仕上品が、そ
れぞれ使用されている。
Austenitic stainless steels, especially SUS316L, are generally the main materials for materials such as gas pipes and joints for semiconductor production. Seamless steel pipes are used for pipes and bar steel is used for members such as joints. "Cutting" or "hot forging + cutting" finish products are used respectively.

【0006】上記の規格鋼以外では、特開昭63-161145
号公報に、前述のような管内面からのパーティクル発生
を低減することを目的として、Mn、Si、Al、O( 酸素 )
などの含有量を規制することにより非金属介在物を低減
したクリーンルーム用鋼管が開示されている。
Other than the standard steels mentioned above, JP-A-63-161145
In order to reduce the generation of particles from the inner surface of the tube as described above, Japanese Patent Laid-Open Publication No. Mn, Si, Al, O (oxygen)
Disclosed is a steel pipe for a clean room in which the content of non-metallic inclusions is reduced by controlling the content of such substances.

【0007】[0007]

【発明が解決しようとする課題】高純度ガス配管用ステ
ンレス鋼管などの性能として不可欠なパーティクル発生
低減の有効な対策としては、管内面の平滑化、さらに前
記の特開昭63−161145号公報に示されるような非金属介
在物の低減がある。配管用ステンレス鋼管の性能として
は、前述したパーティクル発生特性と耐食性のほか、溶
接性、ガス放出特性が重視される。ガス配管系には、溶
接継手、バルブ、流量計等の配管部品が不可欠であり、
これら配管部品も高純度ガス用としての高清浄性が必要
であることから、鋼管の素材と同様のパーティクル発生
が低減されたステンレス鋼から製造されることとなる。
As an effective measure for reducing the generation of particles, which is indispensable for the performance of stainless steel pipes for high-purity gas pipes, etc., smoothing of the inner surface of the pipes and further Japanese Patent Laid-Open No. 63-161145 have been described. There is a reduction in non-metallic inclusions as shown. As the performance of the stainless steel pipe for piping, in addition to the above-mentioned particle generation characteristics and corrosion resistance, weldability and gas release characteristics are important. Welding joints, valves, flowmeters, and other piping components are indispensable for gas piping systems.
Since these pipe parts also require high cleanliness for high-purity gas, they are manufactured from stainless steel in which generation of particles is reduced, similar to the material of steel pipes.

【0008】配管部品の製造は、主として棒鋼を素材と
し、旋盤、ドリルなどを用いる機械加工により行われる
ため、その素材となるステンレス鋼では、被削性も特に
重要な性能である。従来の一般用途での快削ステンレス
鋼では、P、S、Se、Pb、Biなどを添加し、これらの元
素がステンレス鋼組織中に形成する非金属介在物あるい
は析出物により被削性を付与する。しかし、高純度ガス
用ステンレス鋼では、前記の必要性能上これらの介在物
などを極力低減せざるを得ないため、被削性が著しく劣
り、配管部品の機械加工が困難であるという問題があ
る。
Manufacture of piping parts is mainly carried out by using bar steel as a raw material and machining using a lathe, a drill, etc. Therefore, machinability is also a particularly important performance for the stainless steel as the raw material. In conventional free-cutting stainless steels for general use, P, S, Se, Pb, Bi, etc. are added and machinability is given by the non-metallic inclusions or precipitates formed by these elements in the stainless steel structure. To do. However, in the case of stainless steel for high-purity gas, these inclusions and the like have to be reduced as much as possible in view of the above-mentioned required performance, so that the machinability is extremely poor and the machining of piping parts is difficult. .

【0009】したがって、上記配管部品の製造にあたっ
ては、切削加工の度合いを極力少なくすることが重要で
あり、熱間もしくは冷間鍛造を導入することが望まし
い。しかし、熱間鍛造と冷間鍛造を比べると、冷間鍛造
の方が切削工数の削減度合い、寸法精度、表面品質およ
び材料歩留り、作業コストなどで総合評価して有利であ
るので、「冷間鍛造+切削加工」方式の導入が可能な高
純度ガス用ステンレス鋼素材の開発が待望されている。
Therefore, in manufacturing the above-mentioned piping parts, it is important to reduce the degree of cutting as much as possible, and it is desirable to introduce hot or cold forging. However, comparing hot forging and cold forging, cold forging is more comprehensively evaluated in terms of reduction of cutting man-hours, dimensional accuracy, surface quality and material yield, work cost, etc. The development of stainless steel materials for high-purity gas that can be introduced with the "forging + cutting" method is highly anticipated.

【0010】さらに、素材となる棒鋼や鋼管を製造する
ためには当然、良好な熱間加工性を備えたステンレス鋼
であることも必要である。
Further, in order to manufacture a steel bar or a steel pipe which is a raw material, naturally, it is necessary to use stainless steel having good hot workability.

【0011】本発明は上記の課題を解決するためになさ
れたものであり、本発明の目的は、高純度ガス用ステン
レス鋼として不可欠な低パーティクル発生特性(清浄
性)と耐食性を有し、さらに優れた熱間または熱間およ
び冷間での加工性と被削性を併せ持つステンレス鋼を提
供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to have low particle generation characteristics (cleanability) and corrosion resistance, which are essential as stainless steel for high-purity gas. An object of the present invention is to provide a stainless steel having both excellent hot workability or hot and cold workability and machinability.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、次の
(1) 、(2) の加工性および被削性に優れた高純度ガス用
ステンレス鋼にある。
The summary of the present invention is as follows.
The stainless steel for high-purity gas has excellent workability and machinability of (1) and (2).

【0013】(1)重量%で、Ni:10〜25%、Cr:15〜30
%、Mo:2〜7%およびN:0.10〜0.30%を含有し、残
部はFeおよび不可避的不純物からなり、不純物中のCが
0.03%以下、Siが 0.5%以下、Mnが 0.5%以下、Pが0.
01%以下、Sが 0.003%以下、O( 酸素 )が 0.005%以
下、Tiが0.02%以下およびAlが〔 0.01 /N(%) 〕未満
で、かつ下記式で与えられるNi−bal.値が0以上、3
未満であることを特徴とする加工性および被削性に優れ
た高純度ガス用ステンレス鋼。
(1)% by weight, Ni: 10 to 25%, Cr: 15 to 30
%, Mo: 2 to 7% and N: 0.10 to 0.30%, the balance consisting of Fe and unavoidable impurities, and C in the impurities.
0.03% or less, Si 0.5% or less, Mn 0.5% or less, P 0.
01% or less, S is 0.003% or less, O (oxygen) is 0.005% or less, Ti is 0.02% or less, Al is less than [0.01 / N (%)], and the Ni-bal. Value given by the following formula is 0 or more, 3
High-purity gas stainless steel with excellent workability and machinability, which is characterized by being less than

【0014】 Ni-bal. = Ni eq. − 1.1Cr eq.+8.2 ・・・・・・・・・ ただし、 Ni eq. =Ni(%) + 0.5Mn(%) +30〔C(%) +
N(%) 〕 Cr eq. =Cr(%) + 1.5Si(%) +Mo(%) (2)上記(1) に記載の化学組成に加えてさらに、Cu:0.2
0〜0.80%を含有する上記(1) の加工性および被削性に
優れた高純度ガス用ステンレス鋼。
Ni-bal. = Ni eq.-1.1Cr eq. + 8.2 ..... However, Ni eq. = Ni (%) + 0.5Mn (%) + 30 [C (%) +
N (%)] Cr eq. = Cr (%) + 1.5Si (%) + Mo (%) (2) In addition to the chemical composition described in (1) above, Cu: 0.2
A stainless steel for high-purity gas containing 0 to 0.80%, which is excellent in workability and machinability according to the above (1).

【0015】本発明者らは、前記の課題を解決するた
め、種々の化学組成を有するステンレス鋼を用いて、高
純度ガス用配管としての代表的性能であるパーティクル
発生特性、ならびに素材鋼としての性能を表す熱間、冷
間での加工性および被削性を調査した。その結果、パー
ティクル発生特性を劣化させることなく熱間、冷間加工
性および被削性を向上させるには、次の〜が有効で
あるとの知見を得た。
In order to solve the above-mentioned problems, the present inventors have used stainless steels having various chemical compositions, and have a particle generation characteristic which is a typical performance as a pipe for high purity gas, and a material steel. The hot and cold workability and machinability, which represent the performance, were investigated. As a result, it was found that the following are effective in improving hot workability, cold workability and machinability without deteriorating particle generation characteristics.

【0016】パーティクル発生特性を向上させるため
に、不純物元素の含有量を一定値以下に抑制する。
In order to improve the particle generation characteristics, the content of the impurity element is suppressed below a certain value.

【0017】被削性を向上させるために、Nを適量で
含有させ、さらにこのNと窒化物を形成しやすいAl含有
量を調整する(オーステナイトステンレス鋼の場合、N
は低C鋼の強度低下を補うための固溶強化元素として知
られているが、被削性改善効果についてはこれまで検討
されていない。)。
In order to improve the machinability, N is contained in an appropriate amount, and the Al content that easily forms a nitride with N is adjusted (in the case of austenitic stainless steel, N is included).
Is known as a solid solution strengthening element for compensating for the strength reduction of low C steel, but the machinability improving effect has not been studied so far. ).

【0018】冷間鍛造時の加工性を向上させるため
に、Cuを適量で含有させる。
Cu is contained in an appropriate amount in order to improve the workability during cold forging.

【0019】熱間加工性を向上させるために、Ni-ba
l. 値を一定の範囲に調整する。
In order to improve hot workability, Ni-ba
l. Adjust the value within a certain range.

【0020】[0020]

【作用】本発明のステンレス鋼の化学組成を上述のよう
に定めた理由を述べる。以下、%は重量%を意味する。
The reason for defining the chemical composition of the stainless steel of the present invention as described above will be described. Hereinafter,% means% by weight.

【0021】Ni、Cr、Mo:Ni、Cr、Moはいずれも、鋼の
耐食性および組織調整に重要な元素である。オーステナ
イトステンレス鋼としての組織と、さらに高い耐食性と
を維持させるために、Niは10〜25%、Crは15〜30%、Mo
は2〜7%とした。これらの範囲を外れると、望ましい
耐食性や金属組織が得られない。
Ni, Cr, Mo: Ni, Cr and Mo are all important elements for the corrosion resistance and structural adjustment of steel. In order to maintain the structure as austenitic stainless steel and higher corrosion resistance, Ni is 10 to 25%, Cr is 15 to 30%, and Mo is
Was 2 to 7%. Outside of these ranges, the desired corrosion resistance and metallic structure cannot be obtained.

【0022】Cu:Cuは本発明の目的の一つである冷間加
工性を改善する重要な合金元素であり、必要に応じて含
有させる。すなわち、Cuはオーステナイト相を安定化さ
せ、加工硬化率を低下させる作用を有する。さらに、被
削性に対しても改善効果を有する元素である。Cu含有量
が0.20%未満では良好な冷間加工性と被削性が得られな
い。一方、0.80%を超えるとCuの固溶化作用により脆化
が著しくなり、熱間加工性を劣化させるため、鋼管およ
び棒鋼などの製造が困難となる。よって、Cuを含有させ
る場合の含有量の範囲は0.20〜0.80%とした。
Cu: Cu is an important alloying element that improves cold workability, which is one of the objects of the present invention, and is contained if necessary. That is, Cu has the function of stabilizing the austenite phase and reducing the work hardening rate. Furthermore, it is an element that also has an effect of improving machinability. If the Cu content is less than 0.20%, good cold workability and machinability cannot be obtained. On the other hand, when it exceeds 0.80%, embrittlement becomes remarkable due to the solid solution action of Cu and the hot workability is deteriorated, which makes it difficult to manufacture steel pipes and steel bars. Therefore, when Cu is contained, the content range is 0.20 to 0.80%.

【0023】N:Nは本発明の目的の一つである被削性
を改善する重要な合金元素である。被削性が向上するの
は、ドリル穿孔の場合、高N化によって切削時の切り屑
が破断しやすくなり、穿孔時に孔外へ容易に排出される
ためであると考えられる。
N: N is an important alloying element that improves machinability, which is one of the objects of the present invention. It is considered that the machinability is improved because, in the case of drill drilling, the increase in N makes chips more likely to break during cutting and is easily discharged out of the hole during drilling.

【0024】N含有量が0.10%未満の場合には、上記の
効果が少なく良好な被削性が得られない。一方、0.30%
を超えると熱間加工性が劣化し、鋼管および棒鋼などの
製造が困難となる。よって、Nの含有量の範囲は0.10〜
0.30%とした。
When the N content is less than 0.10%, the above effects are small and good machinability cannot be obtained. On the other hand, 0.30%
If it exceeds, hot workability deteriorates, and it becomes difficult to manufacture steel pipes and steel bars. Therefore, the N content range is 0.10 to
It was set to 0.30%.

【0025】C:Cは、Cr炭化物の析出により耐食性を
低下させるため、その含有量は低いことが望ましい。本
発明鋼の強い腐食性ガスに対する用途も考慮して、0.03
%以下とした。
C: Since C deteriorates the corrosion resistance due to the precipitation of Cr carbide, its content is preferably low. In consideration of the use of the steel of the present invention for strong corrosive gas, 0.03
% Or less.

【0026】Si、Mn:Si、Mnは脱酸効果を有し、ステン
レス鋼の高清浄化に有効な元素である。しかし、Si、Mn
とも鋼中のO、Sと化合して非金属介在物を形成しやす
く、高純度ガス用ステンレス鋼としては、これらの含有
量はともに低いことが望ましい。よって、SiとMnの含有
量は、いずれも0.5 %以下とした。
Si, Mn: Si, Mn have a deoxidizing effect and are effective elements for highly cleaning stainless steel. However, Si, Mn
In both cases, it is easy to combine with O and S in the steel to form non-metallic inclusions, and it is desirable that the content of both of them is low in the high-purity gas stainless steel. Therefore, the contents of Si and Mn are both set to 0.5% or less.

【0027】P、S:Pの含有量が0.01%を、Sの含有
量が 0.003%を、それぞれ超えると、ともに耐食性およ
び熱間加工性に対して有害である。特にSは極微量でも
MnS を生成し、耐食性に極めて有害である。よって、P
の含有量は0.01%以下、Sの含有量は0.003 %以下とし
た。
P, S: If the content of P exceeds 0.01% and the content of S exceeds 0.003%, both are harmful to corrosion resistance and hot workability. Especially when S is very small
It produces MnS and is extremely harmful to corrosion resistance. Therefore, P
Content was 0.01% or less, and S content was 0.003% or less.

【0028】Al:AlもSi、Mnと同様に脱酸効果を有し、
かつ非金属介在物を形成しやすい元素である。また、N
を前記範囲で含有させた場合、過剰のAlが存在するとAl
窒化物を生成し、鋼の清浄度を悪化させパーティクル発
生特性が劣化する。
Al: Al also has a deoxidizing effect like Si and Mn,
In addition, it is an element that easily forms nonmetallic inclusions. Also, N
In the above range, if excessive Al is present, Al
Nitride is generated, the cleanliness of the steel is deteriorated, and the particle generation characteristics are deteriorated.

【0029】Al窒化物の生成の有無は、NとAlとの含有
量から予測できる。本発明者らがその窒化物析出の関係
を系統的に調査したところ、NとAlとの含有量の関係
を、〔N(%) ×Al(%) 〕で0.01未満に維持すれば、高N
含有ステンレス鋼でもAl窒化物は析出しないことが判明
した。よって、Al含有量は〔 0.01 /N(%) 〕未満とし
た。
Whether or not Al nitrides are formed can be predicted from the contents of N and Al. The present inventors systematically investigated the relationship of the precipitation of nitrides, and found that if the relationship of the contents of N and Al is maintained at [N (%) × Al (%)] of less than 0.01, the result is high. N
It was found that Al-nitride did not precipitate even in the contained stainless steel. Therefore, the Al content is set to less than [0.01 / N (%)].

【0030】O:O(酸素)はSと並んで非金属介在物
を形成する元素であり、極力少なくする必要がある。耐
食性に悪影響を及ぼさない範囲として、O含有量は 0.0
05%以下とした。
O: O (oxygen) is an element that forms non-metallic inclusions along with S, and it is necessary to reduce it as much as possible. As a range that does not adversely affect the corrosion resistance, the O content is 0.0
It was less than 05%.

【0031】Ti:Tiは窒化物を極めて生成しやすい元素
であり、前記の高N含有量の範囲では極微量でも有害で
ある。よって、Ti含有量は0.02%以下とした。
Ti: Ti is an element that easily forms a nitride, and even a trace amount is harmful in the above high N content range. Therefore, the Ti content is set to 0.02% or less.

【0032】Ni−bal.値:Ni−bal.値が0未満になる
と、フェライト相を含む不安定なオーステナイト組織し
か得られないため、機械的性質、耐食性が劣化する。一
方、3以上では熱間加工性が低下し、実験室での小規模
な鋼塊等の製造では支障はないものの、商用レベルの大
量製造では、鋼塊の熱間鍛造、熱間圧延時に割れが起こ
りやすい。よって、本発明鋼の合金元素含有量から計算
されるNi−bal.値を、0以上、3未満と定めた。
Ni-bal. Value: When the Ni-bal. Value is less than 0, only an unstable austenite structure containing a ferrite phase can be obtained, and mechanical properties and corrosion resistance are deteriorated. On the other hand, when it is 3 or more, the hot workability is deteriorated, and although there is no problem in the production of small-scale steel ingots in the laboratory, in commercial-scale mass production, cracking occurs during hot forging and hot rolling of steel ingots. Is likely to occur. Therefore, the Ni-bal. Value calculated from the alloy element content of the steel of the present invention was set to 0 or more and less than 3.

【0033】本発明鋼では、さらに3%以下のWを含有
させると耐食性が向上し、また0.01%以下のB、Ca、希
土類元素をそれぞれ含有させると熱間加工性が向上す
る。
In the steel of the present invention, if W is contained in an amount of 3% or less, corrosion resistance is improved, and if B, Ca, or a rare earth element is contained in an amount of 0.01% or less, hot workability is improved.

【0034】[0034]

【実施例】表1、表2に示す化学組成を有するステンレ
ス鋼を溶製し、肉厚10mmの板材、外径 6.4mm、肉厚1m
m、長さ4m の継目無鋼管および外径20mmの棒鋼を熱間
加工により成形後、1100℃→水冷の固溶化処理を施し、
板材は被削性試験と熱間加工後の硬度測定試験に、管材
はパーティクル発生特性試験に、棒鋼は冷間加工性試験
に、それぞれ供した。
[Example] A stainless steel having the chemical composition shown in Tables 1 and 2 was melted, and a plate material having a wall thickness of 10 mm, an outer diameter of 6.4 mm, and a wall thickness of 1 m
m, 4 m long seamless steel pipe and 20 mm outer diameter steel bar were formed by hot working and then subjected to 1100 ° C → water cooling solution treatment,
The plate material was subjected to a machinability test and a hardness measurement test after hot working, the tube material to a particle generation characteristic test, and the steel bar to a cold workability test.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】鋼管は、内面を電解研磨によってRmax が
0.7μm となるように平滑化した後、高純度水によって
洗浄し、80℃で99.999%Arガスを通して乾燥した。パー
ティクル発生特性は、図1に示す装置を用い、上記の電
解研磨管にプラスチックハンマーによる打撃を与えた
後、高純度窒素ガスを通して 0.1μm 以上のパーティク
ル発生数を測定し、パーティクル発生がなくなる測定回
数で評価した。
The inner surface of the steel pipe has an Rmax by electrolytic polishing.
After smoothing to 0.7 μm, it was washed with high-purity water and dried at 80 ° C. by passing 99.999% Ar gas. For particle generation characteristics, using the device shown in Fig. 1, after hitting the electrolytic polishing tube with a plastic hammer, measure the number of particles generated at 0.1 μm or more through high-purity nitrogen gas, and measure the number of times that particle generation disappears. It was evaluated by.

【0038】被削性は、上記の板材をそれぞれ2枚用意
して表3に示す工具と穿孔条件でドリル穿孔試験を行う
ことにより、各板材毎に新品の1本のドリルで穿孔可能
であった孔個数と切屑性状で評価した。
For the machinability, by preparing two of the above plate materials and performing a drilling test with the tools and the drilling conditions shown in Table 3, each plate material can be drilled with one new drill. The number of holes and the chip properties were evaluated.

【0039】[0039]

【表3】 [Table 3]

【0040】熱間加工性は、 800〜1200℃で厚さ30mm、
幅80mmの素材を厚さ5mmに圧延し、板材のへり部に生じ
る割れの有無で評価した。
Hot workability is as follows: 800-1200 ° C, thickness 30 mm,
A material having a width of 80 mm was rolled to a thickness of 5 mm, and the presence or absence of cracks at the edges of the plate was evaluated.

【0041】冷間加工性は、上記の棒鋼から外径6mm、
長さ11.5mmの試験片を切り出し、冷間アプセット加工時
の割れ発生限界歪み(対数歪み)を、試料:12の場合を
100とした相対値で評価した。
The cold workability is 6 mm in outer diameter from the above steel bar,
A 11.5 mm long test piece was cut out and the cracking limit strain (logarithmic strain) during cold upset processing was measured using the sample: 12 case.
It evaluated by the relative value set to 100.

【0042】熱間加工性、冷間加工性、パーティクル発
生特性および被削性の評価結果をまとめて表4および表
5に示す。
Tables 4 and 5 summarize the evaluation results of hot workability, cold workability, particle generation characteristics and machinability.

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】表4からわかるように、本発明で定める範
囲内の化学組成を有するステンレス鋼では、熱間加工性
が良好で、しかも優れたパーティクル発生特性と被削性
を示した。
As can be seen from Table 4, the stainless steel having the chemical composition within the range defined by the present invention had good hot workability and excellent particle generation characteristics and machinability.

【0046】表5からわかるように、本発明で定める範
囲内の化学組成を有するステンレス鋼では、熱間加工
性、冷間加工性が良好で、しかも優れたパーティクル発
生特性と被削性を示した。
As can be seen from Table 5, the stainless steel having the chemical composition within the range defined by the present invention has good hot workability and cold workability, and exhibits excellent particle generation characteristics and machinability. It was

【0047】[0047]

【発明の効果】本発明鋼は、高純度ガス用として不可欠
な低パーティクル発生特性(清浄性)、耐食性、優れた
熱間、冷間での加工性および被削性を併せ持つステンレ
ス鋼である。この鋼を素材鋼として用いれば、棒鋼から
「冷間加工+切削加工」仕上により、継手などの高純度
ガス配管用部材も製造することができる。
INDUSTRIAL APPLICABILITY The steel of the present invention is a stainless steel which has low particle generation characteristics (cleanability), corrosion resistance, excellent hot and cold workability and machinability, which are indispensable for high-purity gas. If this steel is used as a raw material steel, high-purity gas pipe members such as joints can also be manufactured from a steel bar by "cold working + cutting" finish.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼管内面のパーティクル発生特性を評価する装
置を模式的に示す概略図である。
FIG. 1 is a schematic view schematically showing an apparatus for evaluating particle generation characteristics on the inner surface of a steel pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 洋治 北九州市小倉北区許斐町1番地住友金属工 業株式会社小倉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoji Yamaguchi Sumitomo Metal Industry Co., Ltd. Kokura Steel Works, No. 1, Konomi-cho, Kokurakita-ku, Kitakyushu

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Ni:10〜25%、Cr:15〜30%、
Mo:2〜7%およびN:0.10〜0.30%を含有し、残部は
Feおよび不可避的不純物からなり、不純物中のCが0.03
%以下、Siが 0.5%以下、Mnが 0.5%以下、Pが0.01%
以下、Sが 0.003%以下、O( 酸素 )が 0.005%以下、
Tiが0.02%以下およびAlが〔 0.01 /N(%) 〕未満で、
かつ下記式で与えられるNi−bal.値が0以上、3未満
であることを特徴とする加工性および被削性に優れた高
純度ガス用ステンレス鋼。 Ni-bal. = Ni eq. − 1.1Cr eq.+8.2 ・・・・・・・・・ ただし、 Ni eq. =Ni(%) + 0.5Mn(%) +30〔C(%) +
N(%) 〕 Cr eq. =Cr(%) + 1.5Si(%) +Mo(%)
1. By weight%, Ni: 10 to 25%, Cr: 15 to 30%,
Mo: 2 to 7% and N: 0.10 to 0.30%, the balance is
Consists of Fe and inevitable impurities, and C in the impurities is 0.03
% Or less, Si 0.5% or less, Mn 0.5% or less, P 0.01%
Below, S is 0.003% or less, O (oxygen) is 0.005% or less,
If Ti is 0.02% or less and Al is less than [0.01 / N (%)],
And, the Ni-bal. Value given by the following formula is 0 or more and less than 3, high-purity gas stainless steel excellent in workability and machinability. Ni-bal. = Ni eq.-1.1Cr eq. +8.2 ..... However, Ni eq. = Ni (%) + 0.5Mn (%) + 30 [C (%) +
N (%)] Cr eq. = Cr (%) + 1.5Si (%) + Mo (%)
【請求項2】重量%で、Ni:10〜25%、Cr:15〜30%、
Mo:2〜7%、Cu:0.20〜0.80%およびN:0.10〜0.30
%を含有し、残部はFeおよび不可避的不純物からなり、
不純物中のCが0.03%以下、Siが 0.5%以下、Mnが 0.5
%以下、Pが0.01%以下、Sが 0.003%以下、O( 酸素
)が 0.005%以下、Tiが0.02%以下およびAlが〔 0.01
/N(%) 〕未満で、かつ下記式で与えられるNi−bal.
値が0以上、3未満であることを特徴とする加工性およ
び被削性に優れた高純度ガス用ステンレス鋼。 Ni-bal. = Ni eq. − 1.1Cr eq.+8.2 ・・・・・・・・・ ただし、 Ni eq. =Ni(%) + 0.5Mn(%) +30〔C(%) +
N(%) 〕 Cr eq. =Cr(%) + 1.5Si(%) +Mo(%)
2. By weight, Ni: 10-25%, Cr: 15-30%,
Mo: 2 to 7%, Cu: 0.20 to 0.80% and N: 0.10 to 0.30
%, The balance consists of Fe and unavoidable impurities,
Impurity C is 0.03% or less, Si is 0.5% or less, Mn is 0.5
% Or less, P 0.01% or less, S 0.003% or less, O (oxygen
) Is 0.005% or less, Ti is 0.02% or less, and Al is [0.01
/ N (%)] and given by the following formula: Ni-bal.
A stainless steel for high-purity gas having excellent workability and machinability, which is characterized by a value of 0 or more and less than 3. Ni-bal. = Ni eq.-1.1Cr eq. +8.2 ..... However, Ni eq. = Ni (%) + 0.5Mn (%) + 30 [C (%) +
N (%)] Cr eq. = Cr (%) + 1.5Si (%) + Mo (%)
JP15664593A 1993-03-19 1993-06-28 Stainless steel for high purity gas excellent in workability and machinability Pending JPH06322490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15664593A JPH06322490A (en) 1993-03-19 1993-06-28 Stainless steel for high purity gas excellent in workability and machinability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6005393 1993-03-19
JP5-60053 1993-03-19
JP15664593A JPH06322490A (en) 1993-03-19 1993-06-28 Stainless steel for high purity gas excellent in workability and machinability

Publications (1)

Publication Number Publication Date
JPH06322490A true JPH06322490A (en) 1994-11-22

Family

ID=26401114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15664593A Pending JPH06322490A (en) 1993-03-19 1993-06-28 Stainless steel for high purity gas excellent in workability and machinability

Country Status (1)

Country Link
JP (1) JPH06322490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319546A (en) * 1995-05-23 1996-12-03 Aichi Steel Works Ltd Stainless steel for cold forging
WO2004005571A1 (en) * 2002-07-02 2004-01-15 Firth Ag Steel alloys
WO2004005777A1 (en) * 2002-07-09 2004-01-15 Fujikin Incorporated Fluid controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319546A (en) * 1995-05-23 1996-12-03 Aichi Steel Works Ltd Stainless steel for cold forging
WO2004005571A1 (en) * 2002-07-02 2004-01-15 Firth Ag Steel alloys
WO2004005777A1 (en) * 2002-07-09 2004-01-15 Fujikin Incorporated Fluid controller

Similar Documents

Publication Publication Date Title
WO1995011321A1 (en) Stainless steel for high-purity gas
AU2004315176B2 (en) Steel product for line pipe excellent in resistance to HIC and line pipe produced by using the steel product
KR20060127107A (en) Austenitic-ferritic stainless steel
MXPA04006735A (en) High chromium-nitrogen bearing castable alloy.
EA024902B1 (en) Duplex stainless steel
JP5307729B2 (en) Lead free free cutting steel
CN111041358A (en) Duplex ferritic austenitic stainless steel
KR102560819B1 (en) High-strength hot-rolled steel with excellent scale adhesion and manufacturing method thereof
JP3022746B2 (en) Welding material for high corrosion resistance and high toughness duplex stainless steel welding
WO2005014873A1 (en) Work-hardened material from stainless steel
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
JPH06322490A (en) Stainless steel for high purity gas excellent in workability and machinability
JP2000087187A (en) Non-magnetic stainless steel with excellent corrosion resistance and high strength, and its production
JP3357863B2 (en) Precipitation hardening stainless steel and method for producing the product
JP4178670B2 (en) Manganese alloy steel and shaft, screw member
JPH10310845A (en) High strength low thermal expansion alloy
JPH03291358A (en) Duplex stainless steel excellent in toughness and hot workability and its production
JP2002038241A (en) Free cutting stainless steel
JP2006070327A (en) High-strength low alloy steel with hydrogen intrusion suppressing effect
JP2663859B2 (en) Stainless steel for high-purity gas with excellent dust resistance during welding
JPH0726349A (en) Stainless steel for high purity gas, excellent in machinability
JP3227805B2 (en) High corrosion resistance stainless steel for high purity gas
JPS59159974A (en) Ferritic chromium stainless steel
JP6191783B2 (en) Stainless steel
WO2021220912A1 (en) Austenitic heat-resistant steel