JP2006070327A - High-strength low alloy steel with hydrogen intrusion suppressing effect - Google Patents

High-strength low alloy steel with hydrogen intrusion suppressing effect Download PDF

Info

Publication number
JP2006070327A
JP2006070327A JP2004255926A JP2004255926A JP2006070327A JP 2006070327 A JP2006070327 A JP 2006070327A JP 2004255926 A JP2004255926 A JP 2004255926A JP 2004255926 A JP2004255926 A JP 2004255926A JP 2006070327 A JP2006070327 A JP 2006070327A
Authority
JP
Japan
Prior art keywords
steel
hydrogen
strength
less
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004255926A
Other languages
Japanese (ja)
Other versions
JP4241552B2 (en
Inventor
Tomohiko Omura
朋彦 大村
Hitoshi Matsumoto
斉 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004255926A priority Critical patent/JP4241552B2/en
Publication of JP2006070327A publication Critical patent/JP2006070327A/en
Application granted granted Critical
Publication of JP4241552B2 publication Critical patent/JP4241552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel which has sufficient delayed fracture resistance in spite of its having a high strength of ≥1,350 MPa and is applicable to high strength parts/high strength bolts usable under severe environments, such as the seashore or the coastal region in its vicinity. <P>SOLUTION: The high-strength low alloy steel has a chemical composition consisting of, by mass, 0.35 to 0.55% C, ≤0.3% Si, ≤0.6% Mn, ≤0.025% P, ≤0.050% S, ≤0.10% Al, 0.5 to 1.5% Cr, 0.7 to 1.5% of (Mo+0.5W), ≤0.005 to 0.05% Nb, 0.005 to 0.20% of (Ti+0.5Zr), 0.15 to 0.3% V and the balance Fe with impurities and further containing, if necessary, either or both of 0.2 to 3% Ni and 0.05 to 1% Cu and/or either or both of ≤0.01% Ca and ≤0.01% Mg. Further, the composition of nonmetallic inclusions of ≥500 nm major axis contained in the steel is constituted so that it satisfies inequality (Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)×100≥30(mass%). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高強度低合金鋼、特に引張強さが1350MPa以上の耐遅れ破壊性に優れた自動車、産業機械、建築構造物に使用される高強度ボルト、およびその他の高強度部品に適用可能な高強度合金鋼に関する。   The present invention can be applied to high-strength low-alloy steels, especially high-strength bolts used in automobiles, industrial machines, building structures, and other high-strength parts with excellent delayed fracture resistance with a tensile strength of 1350 MPa or more. Related to high strength alloy steel.

自動車や産業機械の軽量化、建築構造物の大型化に伴い、高い締め付け力に耐える高強度ボルトへの要望が高まっている。従来、一般に使用されている高強度低合金鋼には、例えばJIS G 4105(1989)に規定された引張強度1000MPa級のSCM 440等がある。しかし、今日では強度レベルがより高い材質が求められているが、引張強さが1200MPaを超えるとボルトの破壊が発生し易くなることが知られており、ボルトの高強度化の最大の障害となっている。この破壊は遅れ破壊と呼ばれ、静荷重下に置かれた鋼が、一定時間経過後に脆性的に破断する現象であり、腐食により鋼中に侵入した水素による水素脆化の一種と考えられている。   With the reduction in weight of automobiles and industrial machinery and the increase in size of building structures, there is an increasing demand for high-strength bolts that can withstand high tightening forces. Conventionally, high strength low alloy steels generally used include, for example, SCM 440 having a tensile strength of 1000 MPa class defined in JIS G 4105 (1989). However, a material with a higher strength level is required today, but it is known that if the tensile strength exceeds 1200 MPa, it is easy to break the bolt, which is the biggest obstacle to increasing the strength of the bolt. It has become. This failure is called delayed fracture, and is a phenomenon in which a steel placed under static load breaks brittlely after a certain period of time, and is considered a kind of hydrogen embrittlement due to hydrogen that has penetrated into the steel due to corrosion. Yes.

引張強度が1200MPa以上の高強度鋼の耐遅れ破壊性の改善は、これまでに種々検討されてきた。例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8には、Cr、MoおよびVを含有させて焼入れ性と焼戻し軟化抵抗を向上させた高強度ボルト用鋼が開示されている。   Various studies have been made on improvement of delayed fracture resistance of high strength steel having a tensile strength of 1200 MPa or more. For example, Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6, Patent Literature 7, and Patent Literature 8 contain Cr, Mo, and V to contain hardenability and temper softening. A steel for high-strength bolts with improved resistance is disclosed.

特許文献9、特許文献10、特許文献11には、微量のB添加により粒界を清浄化し、粒界の結合力を高めて耐遅れ破壊性を改善した高強度ボルト用鋼が開示されている。
特許文献12、特許文献13、特許文献14、特許文献15には、微量のB添加に加えてTiを添加することにより微細なTi系析出物を生成させ、これを水素のトラップサイトとして耐遅れ破壊性を改善する技術が開示されている。
Patent Document 9, Patent Document 10, and Patent Document 11 disclose steels for high-strength bolts in which grain boundaries are cleaned by adding a small amount of B, and the bond strength of the grain boundaries is increased to improve delayed fracture resistance. .
In Patent Document 12, Patent Document 13, Patent Document 14, and Patent Document 15, fine Ti-based precipitates are generated by adding Ti in addition to a small amount of B, and this is used as a hydrogen trap site for delay resistance. Techniques for improving destructibility are disclosed.

これらの技術はいずれも、材質の組織改善(高温焼戻しや粒界清浄化等)、あるいは微細分散させた析出物への水素トラップ等、鋼中に水素が侵入した後に如何に遅れ破壊を防止するか、という思想に基づいている。これらの公報に示されている高強度ボルト用鋼は、従来鋼であるSCM 440等を単に高強度化した鋼に比べると耐遅れ破壊性が改善されている。しかし、高強度、特に引張強さが1350MPa以上の鋼を海からの塩分の飛来を受ける海岸あるいは沿岸地域などにみられる過酷な腐食環境で使用した場合には、腐食に伴う水素侵入量が多く、これに耐えることのできる鋼材は今までになかった。
特許第2670937号 特開平7−126799号公報 特開平8−278735号公報 特開平8−120408号公報 特開平8−225845号公報 特開2000−328191号公報 特開2001−32044号公報 特開2003−27186号公報 特開平5−171356号公報 特開平8−295979号公報 特開平9−111399号公報 特開平10−17985号公報、 特開平10−36940号公報 特開平11−293401号公報 特開2003−268495号公報
All of these technologies prevent delayed fracture after hydrogen has penetrated into the steel, such as improved material structure (high-temperature tempering, grain boundary cleaning, etc.) or hydrogen trapping in finely dispersed precipitates. It is based on the idea that. The steels for high-strength bolts disclosed in these publications have improved delayed fracture resistance compared to steels that are simply strengthened from the conventional steel SCM 440 and the like. However, when high strength steel, especially steel with a tensile strength of 1350 MPa or more, is used in the severe corrosive environment found in coastal areas or coastal areas that receive salt from the sea, the amount of hydrogen intrusion due to corrosion is large. No steel has ever been able to withstand this.
Japanese Patent No. 2670937 JP 7-126799 A JP-A-8-278735 JP-A-8-120408 JP-A-8-225845 JP 2000-328191 A JP 2001-32044 A JP 2003-27186 A JP-A-5-171356 Japanese Patent Application Laid-Open No. 8-29579 Japanese Patent Laid-Open No. 9-111399 JP-A-10-17985, JP 10-36940 A JP 11-293401 A JP 2003-268495 A

本発明が解決しようとする課題は、引張強さが1350MPa以上の高強度であっても十分な耐遅れ破壊性を有し、海岸あるいはそれに近い沿岸地域のような過酷な腐食環境下でも使用できる高強度部品あるいは高強度ボルトに適用できる鋼を提供することにある。   The problem to be solved by the present invention is that it has sufficient delayed fracture resistance even at a high tensile strength of 1350 MPa or more, and can be used even in a severe corrosive environment such as a coast or a coastal area close thereto. The object is to provide steel that can be applied to high-strength parts or high-strength bolts.

発明者らは、従来検討されてきた組織改質に基づく耐遅れ破壊性の向上には限界があると考え、本発明では腐食に伴う水素侵入を抑制し、遅れ破壊の発生を防ぐ材質設計ができないかどうかに着目した。   The inventors consider that there is a limit to the improvement in delayed fracture resistance based on the structural modification that has been studied in the past, and in the present invention, there is a material design that suppresses hydrogen intrusion due to corrosion and prevents the occurrence of delayed fracture. We focused on whether it was possible.

種々の検討の結果、水素侵入抑制には、硫化物の制御がもっとも効果的であり、さらに、必要により、Ni、Cuの活用、そして、さらにMo、W、Vの活用が有効であることを知り、本発明を完成した。    As a result of various studies, the control of sulfides is the most effective for suppressing hydrogen intrusion, and further, the use of Ni, Cu, and the use of Mo, W, V are more effective if necessary. Knowing and completing the present invention.

ここに、本発明は次の通りである。
(1) 質量%で、
C:0.35〜0.55%、Si:0.3%以下、Mn:0.6%以下、P:0.025%以下、S:0.050%以下、Al:0.10%以下、Cr:0.5〜1.5%、MoおよびWの1種または2種合計で(Mo+0.5W):0.7〜1.5%、Nb:0.005〜0.05%、TiおよびZrの1種または2種合計で(Ti+0.5Zr): 0.005〜0.20%、V:0.15〜0.3%
を含有し、残部がFeおよび不純物からなり、鋼中に含まれる長径500nm以上の非金属介在物の組成が下記式を満たすことを特徴とする、引張り強さが1350MPa以上の高強度低合金鋼。
Here, the present invention is as follows.
(1) By mass%
C: 0.35-0.55%, Si: 0.3% or less, Mn: 0.6% or less, P: 0.025% or less, S: 0.050% or less, Al: 0.10% or less, Cr: 0.5-1.5%, Mo and W Or in total of 2 types (Mo + 0.5W): 0.7-1.5%, Nb: 0.005-0.05%, 1 or 2 types of Ti and Zr in total (Ti + 0.5Zr): 0.005-0.20%, V: 0.15-0.3 %
A high-strength low-alloy steel with a tensile strength of 1350 MPa or more, wherein the balance consists of Fe and impurities, and the composition of nonmetallic inclusions with a major axis of 500 nm or more contained in the steel satisfies the following formula: .

(Ti+Zr)/(Ti+Zr+Mn)×100≧30 (質量%)
(2) 質量%で、さらに、Feの一部に代えてNi:0.2〜3%およびCu:0.05〜1%の1種または2種を含有する上記(1) に記載の高強度低合金鋼。
(Ti + Zr) / (Ti + Zr + Mn) × 100 ≧ 30 (mass%)
(2) The high-strength low-alloy steel as described in (1) above, containing 1% or 2% by mass of Ni: 0.2 to 3% and Cu: 0.05 to 1% instead of part of Fe .

(3) 質量%で、さらに、Feの一部に代えてCa:0.01%以下およびMg:0.01%以下の1種または2種を含み、鋼中に含まれる長径500nm以上の非金属介在物の組成が下記式を満たす上記(1) または(2) のいずれかに記載の高強度低合金鋼。   (3) By mass%, in addition to one or two of Ca: 0.01% or less and Mg: 0.01% or less, instead of a part of Fe, non-metallic inclusions having a major axis of 500 nm or more contained in steel The high-strength low-alloy steel according to any one of (1) and (2), wherein the composition satisfies the following formula.

(Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)×100≧30 (質量%)
なお、各項に記載の式は上記(4) 項に記載のように一般式として(Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)×100≧30と記述され、それぞれの元素が当該非金属介在物に含有されないときはゼロとして考えるのである。
(Ti + Zr) / (Ti + Zr + Mn + Ca + Mg) × 100 ≧ 30 (mass%)
In addition, the formula described in each item is described as (Ti + Zr) / (Ti + Zr + Mn + Ca + Mg) × 100 ≧ 30 as a general formula as described in the above item (4), and each element is not contained in the nonmetallic inclusion. Think of it as zero.

本発明によれば、引張強さが1350MPa以上という高強度でも耐遅れ破壊性の良好な鋼材を得ることが出来、たとえば高強度ボルトとして従来用いることができなかった
自動車、建築物や橋梁などの用途にも信頼性の高い部品として用いることができる。
According to the present invention, it is possible to obtain a steel material with good delayed fracture resistance even at a high strength of a tensile strength of 1350 MPa or more, and could not be conventionally used as a high-strength bolt, for example.
It can also be used as a highly reliable part for applications such as automobiles, buildings and bridges.

本発明において鋼組成および介在物の形態を上述のように規定した理由について説明する。なお、鋼組成および介在物組成を示す「%」表示は、いずれも「質量%」である。
まず、本発明に至った実験結果について具体的に説明する。
The reason why the steel composition and the form of inclusions are defined as described above in the present invention will be described. The “%” notation indicating the steel composition and the inclusion composition is “mass%”.
First, the experimental results that led to the present invention will be described in detail.

表1のA〜Gに示す化学組成を有する鋼を150 Kg真空溶製し、熱間鍛造により厚さ15mmの板材とした。その後、焼入れ焼戻し処理により強度を1500MPa級に調質した。
このようにして得られた板材から径70mm、厚さ0.5mmの円板試験片を採取し、酸浸漬法および温度湿度制御法の2種類の方法で水素透過試験を行い、鋼材への水素侵入特性を調査した。
150 kg of steel having the chemical compositions shown in Table 1 to AG was vacuum-melted and formed into a plate having a thickness of 15 mm by hot forging. Thereafter, the strength was tempered to 1500 MPa class by quenching and tempering treatment.
A specimen of 70 mm in diameter and 0.5 mm in thickness is collected from the plate material obtained in this way, and a hydrogen permeation test is conducted by two methods, an acid immersion method and a temperature / humidity control method. The characteristics were investigated.

酸浸漬法(以後、a法と呼ぶ)による測定装置の模式図を図1に示す。円板試験片10は600番エメリー紙で両面を研磨した後、片面12にNiめっきを施した。研磨面側の水素を侵入させるセル(カソードセル)14内には、25℃の1.64%酢酸ナトリウム水溶液中に塩酸を適量添加しpHを3.5に調整した水溶液を満たした。この試験浴を用いた理由は、大気腐食により生じた孔食底や隙間部では加水分解によりpHが3.5程度まで低下するという知見に基づいた。(櫛田隆弘他:鉄と鋼、82(1996)、297.)。   FIG. 1 shows a schematic diagram of a measuring apparatus using an acid immersion method (hereinafter referred to as “a method”). The disk test piece 10 was polished on both sides with 600-mm emery paper and then Ni-plated on one side 12. A cell (cathode cell) 14 into which hydrogen on the polishing surface side penetrates was filled with an aqueous solution adjusted to pH 3.5 by adding an appropriate amount of hydrochloric acid to a 1.64% sodium acetate aqueous solution at 25 ° C. The reason for using this test bath was based on the knowledge that the pH of pitting bottoms and gaps caused by atmospheric corrosion drops to about 3.5 due to hydrolysis. (Takhiro Kushida et al .: Iron and Steel, 82 (1996), 297.).

Niめっき面側のセル(アノードセル)16内には1規定のNaOH水溶液を満たし、試験片を参照電極の銀塩化銀電極18に対してゼロV(ボルト)に定電位保持した。カソードセル14側で発生した水素原子が試験片10を透過してアノードセル16側に放出された時点で、水素イオンに酸化してその電流値を水素透過電流値(μA/cm2)として測定した。水素透過電流値に試験片の厚さ(ここでは0.05cm)を乗じて、水素侵入特性を示す水素透過係数(μA/cm)が測定される。 The cell (anode cell) 16 on the Ni plating surface side was filled with 1N NaOH aqueous solution, and the test piece was held at a constant potential of zero V (volt) with respect to the silver-silver chloride electrode 18 as a reference electrode. When hydrogen atoms generated on the cathode cell 14 side pass through the test piece 10 and are released to the anode cell 16 side, they are oxidized to hydrogen ions and the current value is measured as a hydrogen permeation current value (μA / cm 2 ). did. The hydrogen permeation coefficient (μA / cm) indicating the hydrogen penetration characteristics is measured by multiplying the hydrogen permeation current value by the thickness of the test piece (here, 0.05 cm).

温度湿度制御法(以後、b法と呼ぶ)による測定装置の模式図を図2に示す。試験片10は浸漬法の場合と同様に準備し、水素侵入面は外部環境に曝す。Niめっき面12側のアノードセル16内には1規定のNaOH水溶液を満たし、試験片10を銀塩化銀電極18に対してゼロV(ボルト)に定電位保持した。外部環境曝露面に5 mg/cm2 となる量の人工海水を付着させ完全に乾燥した後、40℃の相対湿度を種々変化させた恒温恒湿槽内に設置して、水素透過係数の最大値を測定した。この方法は酸浸漬法に比べると実際の環境における曝露に近い評価となる。 FIG. 2 shows a schematic diagram of a measuring apparatus using a temperature / humidity control method (hereinafter referred to as b method). The test piece 10 is prepared in the same manner as in the immersion method, and the hydrogen intrusion surface is exposed to the external environment. The anode cell 16 on the Ni plating surface 12 side was filled with a 1N NaOH aqueous solution, and the test piece 10 was held at a constant potential of zero V (volt) with respect to the silver chloride electrode 18. Artificial seawater with an amount of 5 mg / cm 2 is attached to the exposed surface of the external environment and dried completely, and then placed in a constant temperature and humidity chamber with various relative humidity at 40 ° C to maximize the hydrogen permeability coefficient. The value was measured. This method is closer to exposure in the actual environment than the acid immersion method.

実験の結果、下記(1)〜(3)の因子が水素侵入抑制には重要であることが判明した。
(1) 硫化物制御
水素侵入に及ぼす介在物の影響は従来は明らかにされていなかったが、本発明者らは検討の結果、硫化物の形態が水素侵入に大きく影響することを見出した。
As a result of the experiment, it was found that the following factors (1) to (3) are important for suppressing hydrogen invasion.
(1) Sulfide control Although the influence of inclusions on hydrogen penetration has not been clarified in the past, the present inventors have found that the form of sulfide greatly affects hydrogen penetration.

酸浸漬法による測定結果の例を図3および表2に示す。比較鋼である鋼Aは、水素透過係数の最大値(以後、最大水素透過係数と呼ぶ)が0.15μA/cmである。高強度鋼の遅れ破壊は水素透過係数が0.1μA/cm程度の水素侵入で発生することが知られており、鋼Aでは水素侵入の抑制効果は十分でなく、遅れ破壊の可能性を有することをこの実験結果は示唆している。S(硫黄)の含有量が鋼Aよりもさらに多い、同じ比較鋼である鋼Bでは、水素透過係数がさらに大きい結果となった。   Examples of measurement results by the acid immersion method are shown in FIG. Steel A, which is a comparative steel, has a maximum hydrogen permeability coefficient (hereinafter referred to as a maximum hydrogen permeability coefficient) of 0.15 μA / cm. It is known that delayed fracture of high-strength steel is caused by hydrogen penetration with a hydrogen permeation coefficient of about 0.1 μA / cm. Steel A is not sufficiently effective in suppressing hydrogen penetration and has the potential for delayed fracture. This experimental result suggests. Steel B, which is the same comparative steel with a higher S (sulfur) content than steel A, resulted in a larger hydrogen permeation coefficient.

この理由は、図4(a)に模式図化したように、S含有量の多い鋼Bでは、Mn系硫化物が多く生成することに起因すると考えられる。Mn系硫化物は中性あるいは酸性水溶液中で容易に溶解し、硫化水素を発生する。硫化水素は水素侵入を促進する効果があるため、S含有量の高い鋼Bでは水素透過係数が極めて大きくなったと推定される。熱間加工性を改善する目的で添加される場合のあるCa、Mg、あるいは希土類元素(Pr、La、Nd等)も硫化物を形成するが、Mn系硫化物と同様に中性あるいは酸性の水溶液中で容易に溶解するため、同様の水素侵入促進効果を有すると推定される。   The reason for this is considered to be due to the fact that a large amount of Mn-based sulfide is produced in steel B with a high S content, as schematically illustrated in FIG. Mn-based sulfides are easily dissolved in neutral or acidic aqueous solutions to generate hydrogen sulfide. Since hydrogen sulfide has an effect of promoting hydrogen penetration, it is estimated that the steel B having a high S content has an extremely high hydrogen permeability coefficient. Ca, Mg, or rare earth elements (Pr, La, Nd, etc.) that may be added to improve hot workability also form sulfides, but they are neutral or acidic as with Mn sulfides. Since it dissolves easily in an aqueous solution, it is presumed to have the same effect of promoting hydrogen penetration.

また、Ti含有量を増した鋼Cおよび鋼Dでは、鋼Aや鋼Bに比べ水素透過係数は低減された。この理由は図4(b)に模式図化して示したように、Ti系硫化物が形成されることによると考えられる。TiはMnよりも硫化物の生成能が強く、かつTi系硫化物はMn系硫化物と異なり中性および酸性環境で溶出しない不溶性の介在物である。従って、TiはS(硫黄)を不溶性硫化物として固定することによりMn硫化物の生成を抑制し、水素侵入を抑制したと考えられた。Tiと同様に不溶性の硫化物を形成する元素としてZrが挙げられる。   Further, in Steel C and Steel D with increased Ti content, the hydrogen permeation coefficient was reduced as compared with Steel A and Steel B. The reason for this is considered to be due to the formation of Ti-based sulfides as schematically shown in FIG. Ti has a higher ability to form sulfides than Mn, and Ti-based sulfides, unlike Mn-based sulfides, are insoluble inclusions that do not elute in neutral and acidic environments. Therefore, it was considered that Ti suppressed S (sulfur) as an insoluble sulfide, thereby suppressing the formation of Mn sulfide and suppressing hydrogen intrusion. Similar to Ti, Zr is an element that forms an insoluble sulfide.

さらに、鋼Eは鋼Cとほぼ同様の化学組成を有するが、図3に示すように、鋼Cに比べると水素侵入抑制効果が強くなっている。この差を調査するため、鋼Cと鋼Eの介在物組成を測定した。介在物組成は、板材の断面の0.1mm×0.1mm×視野をSEM(走査型電子顕微鏡)により10視野観察し、長径500nm以上の非金属介在物の組成をEDX(エネルギー分散型X線回折)により測定した値をすべて平均した。まず、介在物の長径の求め方を図4に示す。介在物と母材間の界面の異なる2点を結ぶ直線の内、最大の径をここでは長径と定義した。介在物は図5(a)のように見かけ上単一組成の、ものと、図5(b)のように二種の介在物が隣接しているものとが観察されたが、いずれの場合も単体の介在物として考えて、長径と組成を測定した。図5(b)の場合には、Ti濃化領域およびMn濃化領域をすべて含める形で組成の平均値を面分析で算出した。非金属介在物としての硫化物の溶解性および不溶性に影響する元素として、介在物を構成するTi、Zr、Mn、Ca、MgおよびS(硫黄)の質量%を測定し、介在物中における(Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)(%)を比較した。   Further, steel E has substantially the same chemical composition as steel C, but as shown in FIG. In order to investigate this difference, the inclusion composition of Steel C and Steel E was measured. The composition of inclusions is 10 mm observation of 0.1 mm x 0.1 mm x field of view of the cross-section of the plate with SEM (scanning electron microscope), and the composition of nonmetallic inclusions with a major axis of 500 nm or more is EDX (energy dispersive X-ray diffraction) All values measured by were averaged. First, FIG. 4 shows how to determine the major axis of inclusions. Among the straight lines connecting two different points of the interface between the inclusion and the base material, the maximum diameter is defined as the long diameter here. Inclusions were apparently single composition as shown in FIG. 5 (a) and two types of inclusions were adjacent as shown in FIG. 5 (b). Was also considered as a single inclusion, and the major axis and the composition were measured. In the case of FIG. 5B, the average value of the composition was calculated by area analysis in such a manner that all of the Ti concentrated region and the Mn concentrated region were included. As elements affecting the solubility and insolubility of sulfides as non-metallic inclusions, the mass% of Ti, Zr, Mn, Ca, Mg and S (sulfur) constituting the inclusions was measured, and ( Ti + Zr) / (Ti + Zr + Mn + Ca + Mg) (%) were compared.

その結果も表2に示す。鋼Cと鋼Eを比べると、鋼Eの方が(Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)値が高い、言い換えると、硫化物中の(Ti+Zr)濃度が多い。従って、水素侵入抑制作用をより効果的に発現するには、Ti硫化物およびZr硫化物の生成の割合を増す必要があると言える。   The results are also shown in Table 2. Comparing Steel C and Steel E, Steel E has a higher (Ti + Zr) / (Ti + Zr + Mn + Ca + Mg) value, in other words, a higher concentration of (Ti + Zr) in the sulfide. Therefore, it can be said that it is necessary to increase the rate of formation of Ti sulfide and Zr sulfide in order to more effectively exhibit the hydrogen invasion suppressing action.

(2) Cu、 Ni
表1中の鋼FはCuおよびNiを含有させた鋼である。この鋼は図3に示したように、鋼A〜Eに比べて水素侵入の抑制効果が改善されている。Cu、Niは酸化されにくい元素であり、鋼材中に含有させた場合には、大気腐食に伴って鋼材が腐食されていくと、鋼材の表層に残留し堆積する。CuおよびNiそのものは水素透過能が小さいため、堆積物による水素侵入抑制効果が発現する。さらにこれらの元素はMn硫化物の溶出に伴って発生する硫化水素と結びつき、不溶性のCu系硫化物および不溶性のNi系硫化物を生成することにより、硫化水素による水素侵入を阻害する効果も有する。
(2) Cu, Ni
Steel F in Table 1 is steel containing Cu and Ni. As shown in FIG. 3, this steel has an improved hydrogen penetration inhibiting effect compared to steels A to E. Cu and Ni are elements that are difficult to oxidize. When they are contained in steel, when they are corroded due to atmospheric corrosion, they remain and accumulate on the surface of the steel. Since Cu and Ni itself have a small hydrogen permeability, the effect of suppressing hydrogen intrusion by deposits appears. Furthermore, these elements are combined with hydrogen sulfide generated with the elution of Mn sulfide, and insoluble Cu-based sulfides and insoluble Ni-based sulfides are produced, thereby inhibiting hydrogen intrusion by hydrogen sulfide. .

(3) Mo、W
表1中の鋼Gは、Wを含有する鋼である。MoやWは炭化物生成能の強い元素であり、鋼中に含有させると炭化物の形態で存在する。腐食により生じた水素原子は一旦鋼材表面に吸着し、その後、鋼中に侵入して遅れ破壊を起こすが、Mo系およびW系の炭化物は鋼表面に吸着した水素原子を速やかに水素分子に結合させ逃散させ、鋼材中への水素侵入を阻害する作用を有する。同様に炭化物生成能の強いVと組み合わせてこれらの元素を含有させた場合には、Mo−V系、W−V系、Mo−W−V系の微細な複合炭化物が鋼中に均一微細分散し、水素侵入抑制効果がさらに高まると推定される。
(3) Mo, W
Steel G in Table 1 is steel containing W. Mo and W are elements having a strong ability to generate carbides, and exist in the form of carbides when contained in steel. Hydrogen atoms generated by corrosion once adsorb on the steel surface and then penetrate into the steel, causing delayed fracture, but Mo and W carbides quickly bond hydrogen atoms adsorbed on the steel surface to hydrogen molecules. And has the effect of inhibiting hydrogen intrusion into the steel material. Similarly, when these elements are contained in combination with V, which has a strong ability to generate carbides, fine composite carbides of Mo-V, WV, and Mo-W-V are uniformly finely dispersed in the steel. Therefore, it is estimated that the effect of suppressing hydrogen penetration is further increased.

図6および表2に温度湿度制御法(b法)により、表1に示した鋼種の水素侵入特性を調査した結果を示す。いずれの鋼種も相対湿度が60〜70%で水素侵入が促進される結果となっているが、水素透過係数の大小は、酸浸漬法(a法)の場合と同じ順列となった。   FIG. 6 and Table 2 show the results of investigating the hydrogen penetration characteristics of the steel types shown in Table 1 by the temperature and humidity control method (method b). All the steel types showed a result that hydrogen intrusion was promoted at a relative humidity of 60 to 70%, but the magnitude of the hydrogen permeation coefficient was the same permutation as in the acid immersion method (a method).

Figure 2006070327
Figure 2006070327

Figure 2006070327
Figure 2006070327

次に、本発明において鋼組成を前述のように規定した理由を述べると次の通りである。本明細書において鋼組成および介在物組成を示す割合は特にことわりがない限り、質量%で示す。   Next, the reason why the steel composition is defined as described above in the present invention will be described as follows. In the present specification, the ratio indicating the steel composition and the inclusion composition is expressed in mass% unless otherwise specified.

C:0.35〜0.55%
Cは、焼入れ性を高めて強度を向上させるのに有効な元素である。その含有量が0.35%未満では、十分な焼入れ性を得るためには、0.35%以上含有させる必要がある。一方、0.55%を超えて含有させても上記の効果は飽和することから、上限は0.55%とした。望ましい範囲は0.38〜0.52%である。
C: 0.35-0.55%
C is an element effective for enhancing the hardenability and improving the strength. If the content is less than 0.35%, it is necessary to contain 0.35% or more in order to obtain sufficient hardenability. On the other hand, the above effect is saturated even if the content exceeds 0.55%, so the upper limit was made 0.55%. A desirable range is 0.38 to 0.52%.

Si:0.3%以下
Siは脱酸、焼入れ性および強度の向上に有効である。これらの効果を得るには0.05%以上含有させるのが望ましい。一方、0.3%を超えて含有させてもこれらの効果は飽和し、特に冷間鍛造する場合のボルトや部品への成形性が著しく低下する。従って、その上限を0.3%とした。
Si: 0.3% or less
Si is effective in improving deoxidation, hardenability and strength. In order to obtain these effects, 0.05% or more is desirable. On the other hand, even if the content exceeds 0.3%, these effects are saturated, and the formability to bolts and parts particularly when cold forging is significantly reduced. Therefore, the upper limit was made 0.3%.

Mn:0.6%以下、0.02Mn≦(Ti+0.5Zr)
Mnは粒界に偏析し、粒界割れ型の遅れ破壊を促進する。また、Mn系の硫化物を形成し水素侵入を促進する。0.6%を超えるとこれらの影響が顕著となることから、その上限を0.6%とした。また、本発明の好適態様にあってMn硫化物の生成を防止し、Ti−Zr系の不溶性硫化物を形成させるためには、0.02Mn≦(Ti+0.5Zr)を満足させることが好ましい。
Mn: 0.6% or less, 0.02Mn ≦ (Ti + 0.5Zr)
Mn segregates at the grain boundary and promotes delayed fracture of the grain boundary cracking type. It also forms Mn-based sulfides and promotes hydrogen penetration. Since these influences become remarkable when it exceeds 0.6%, the upper limit was made 0.6%. Further, in the preferred embodiment of the present invention, it is preferable to satisfy 0.02Mn ≦ (Ti + 0.5Zr) in order to prevent the formation of Mn sulfide and form a Ti—Zr-based insoluble sulfide.

P:0.025%以下
Pは粒界に偏析し、靱性や耐遅れ破壊性を低下させる。その含有量が0.025%を超えるとその影響が顕著になるため、上限を0.025%とした。Pの含有量は極力低い方が望ましい。
P: 0.025% or less P segregates at the grain boundaries and lowers toughness and delayed fracture resistance. If the content exceeds 0.025%, the effect becomes significant, so the upper limit was made 0.025%. The content of P is preferably as low as possible.

S:0.050%以下、2S≦(Ti+0.5Zr)
Sは通常はMn硫化物として鋼中に存在し、中性および酸性水溶液中で溶解することにより水素侵入を促進し、耐遅れ破壊性を低下させる。しかし、切削性を改善させる場合にはSは有効であり、意識的に含有させる場合もある。ただし、Sの含有量が0.050%を超えるとSを安定してTi−Zr系硫化物として固定できなくなるため、その上限を0.050%とした。本発明の好適態様にあってMn系硫化物の生成を防止しTi−Zr系の不溶性硫化物を生成させるためには、2S≦(Ti+0.5Zr)を満足させることが好ましい。
S: 0.050% or less, 2S ≦ (Ti + 0.5Zr)
S is usually present in steel as Mn sulfide and dissolves in neutral and acidic aqueous solutions to promote hydrogen penetration and reduce delayed fracture resistance. However, S is effective in improving the machinability and may be intentionally included. However, if the S content exceeds 0.050%, S cannot be stably fixed as a Ti-Zr sulfide, so the upper limit was made 0.050%. In a preferred embodiment of the present invention, it is preferable to satisfy 2S ≦ (Ti + 0.5Zr) in order to prevent formation of Mn-based sulfides and to generate Ti-Zr-based insoluble sulfides.

Al:0.10%以下
Alは鋼の脱酸に有効な元素である。この効果を十分に確保するためには、0.005%以上含有させることが好ましい。一方、0.10%を超えて含有させてもその効果は飽和するため、その上限を0.10%とした。なお、本発明のAl含有量とは酸可溶Al(所謂「sol.Al」)を指す。
Al: 0.10% or less
Al is an element effective for deoxidation of steel. In order to sufficiently secure this effect, the content is preferably 0.005% or more. On the other hand, even if the content exceeds 0.10%, the effect is saturated, so the upper limit was made 0.10%. The Al content of the present invention refers to acid-soluble Al (so-called “sol.Al”).

Cr:0.5〜1.5%
Crは、鋼の焼入れ性を高めるのに有効な元素であり、この効果を得るためには0.5%以上含有させる。しかし、その含有量が1.5%を超えて含有させてもその効果は飽和するため、その上限を1.5%とした。望ましい範囲は1.0〜1.5%である。
Cr: 0.5-1.5%
Cr is an element effective for enhancing the hardenability of steel, and in order to obtain this effect, 0.5% or more is contained. However, even if the content exceeds 1.5%, the effect is saturated, so the upper limit was made 1.5%. A desirable range is 1.0 to 1.5%.

Mo+0.5W:0.7〜1.5%
MoおよびWはいずれかを少なくとも1種配合する。
MoおよびWは鋼の焼入れ性を高めると共に、焼戻し時に微細炭化物を形成し、この微細炭化物が水素侵入抑制効果を発現する。この効果を得るためには、(Mo+0.5W)を0.7%以上とする。また、(Mo+0.5W)が1.5%を超えて存在しても効果は飽和するため、その上限を1.5%とした。望ましい範囲は0.7〜1.0%である。
Mo + 0.5W: 0.7-1.5%
At least one of Mo and W is blended.
Mo and W increase the hardenability of the steel and form fine carbides during tempering, and the fine carbides exhibit an effect of suppressing hydrogen intrusion. In order to obtain this effect, (Mo + 0.5 W) is set to 0.7% or more. Moreover, even if (Mo + 0.5W) exceeds 1.5%, the effect is saturated, so the upper limit was made 1.5%. A desirable range is 0.7 to 1.0%.

Nb:0.005〜0.05%
Nbは微細な炭化物を形成し組織を細粒化して、耐遅れ破壊性を改善する効果を有する。この効果を得るためには、0.005%以上含有させる。一方、0.05%を超えて含有させても上記の効果が飽和するため、その上限を0.05%とした。望ましい範囲は0.01〜0.04%である。
Nb: 0.005-0.05%
Nb has the effect of improving the resistance to delayed fracture by forming fine carbides and refining the structure. In order to acquire this effect, it contains 0.005% or more. On the other hand, even if the content exceeds 0.05%, the above effect is saturated, so the upper limit was made 0.05%. A desirable range is 0.01 to 0.04%.

V:0.15〜0.3%
VはMoと共に焼戻し時に微細なMo−V炭化物として析出し、炭化物の微細分散させ水素侵入の抑制に有効である。この効果を得るためには、0.15%以上含有させる。一方、0.3%を超えて含有させてもその効果は飽和するため、その上限を0.3%とした。好ましい範囲は0.2〜0.25%である。
V: 0.15-0.3%
V precipitates together with Mo as fine Mo-V carbide during tempering, and is finely dispersed in the carbide, which is effective in suppressing hydrogen intrusion. In order to acquire this effect, it contains 0.15% or more. On the other hand, even if the content exceeds 0.3%, the effect is saturated, so the upper limit was made 0.3%. A preferred range is 0.2-0.25%.

Ti+0.5Zr:0.005〜0.20%
TiおよびZrは本発明に於いて重要な元素であり、いずれかを少なくとも1種、合計で (Ti+0.5Zr):0.005〜0.20%含有させる。これらの元素は、鋼中の硫黄と結びついて不溶性のTi系硫化物、Zr系硫化物、Ti−Zr系硫化物を形成し、水素侵入抑制効果を発現する。この効果を得るためには、(Ti+0.5Zr)を0.005%以上とする。一方、過剰に含有させると靱性が低下する等の問題が生じ、特に(Ti+0.5Zr)が0.20%超の含有でこの影響が顕著となることから、その上限を0.20%とした。望ましくは0.10%以下である。より望ましい含有量は(Ti+0.5Zr)が0.01〜0.05%である。
Ti + 0.5Zr: 0.005-0.20%
Ti and Zr are important elements in the present invention, and at least one of them is contained in total (Ti + 0.5Zr): 0.005 to 0.20%. These elements combine with sulfur in the steel to form insoluble Ti-based sulfides, Zr-based sulfides, and Ti-Zr-based sulfides, and exert an effect of suppressing hydrogen penetration. In order to obtain this effect, (Ti + 0.5Zr) is made 0.005% or more. On the other hand, if it is excessively contained, problems such as a decrease in toughness occur. Particularly, when (Ti + 0.5Zr) exceeds 0.20%, this effect becomes significant, so the upper limit was made 0.20%. Desirably, it is 0.10% or less. A more desirable content is (Ti + 0.5Zr) 0.01 to 0.05%.

Ni:0.2〜3%、Cu:0.05〜1%
Ni、Cuは含有させなくても良いが、含有させると腐食生成物中に堆積し、または鋼中のSと結びついて不溶性のNi系硫化物、Cu系硫化物を生成することにより水素侵入を防止する。この効果を得るためには、Niは0.2%以上、Cuは0.05%以上含有させる必要がある。一方、Niは3%、Cuは1%を超えて含有させてもその効果は飽和することから、上限をNiは3%、Cuは1%とした。望ましい範囲は、Ni:0.2〜1%、Cu:0.05〜0.5%である。
Ni: 0.2-3%, Cu: 0.05-1%
Ni and Cu do not need to be included, but if they are included, they will accumulate in the corrosion products, or combine with S in the steel to generate insoluble Ni-based sulfides and Cu-based sulfides to prevent hydrogen penetration. To prevent. In order to obtain this effect, it is necessary to contain 0.2% or more of Ni and 0.05% or more of Cu. On the other hand, even if Ni is contained in 3% and Cu is contained in excess of 1%, the effect is saturated, so the upper limit was made 3% for Ni and 1% for Cu. Desirable ranges are Ni: 0.2-1% and Cu: 0.05-0.5%.

B:0.0005%未満
Bは希に不純物として鋼材中に混入する場合があるが、そのような場合にあっても本発明者らの知見によれば、粗大な炭ホウ化物を粒界に析出させ、耐遅れ破壊性を低下させる。従って、本発明にあっては、不純物として混入するBの含有量を0.0005%未満、望ましくは0.0003%未満に低減することが望ましい。
B: Less than 0.0005% B may rarely be mixed into the steel material as an impurity, but even in such a case, according to the knowledge of the present inventors, coarse carbon borides are precipitated at the grain boundaries. Reduces delayed fracture resistance. Therefore, in the present invention, it is desirable to reduce the content of B mixed as an impurity to less than 0.0005%, desirably less than 0.0003%.

Ca:0.01%以下、Mg:0.01%以下
Ca、Mgは含有させなくても良いが、少なくとも1種含有させれば鋼中のSと結合して硫化物を形成し、鋼の熱間加工性を改善させる。この効果を得るためには、少なくとも1種各々0.0003%以上含有させることが好ましい。一方、0.01%を超えて含有させてもその効果は飽和し、かつ粗大なCa系介在物やMg系介在物が生成し、酸性および中性水溶液中で溶解することにより水素侵入を促進するため、その上限を0.01%とした。望ましい範囲はそれぞれ0.0003〜0.003%である。
Ca: 0.01% or less, Mg: 0.01% or less
Ca and Mg may not be contained, but if at least one of them is contained, it combines with S in the steel to form a sulfide, thereby improving the hot workability of the steel. In order to obtain this effect, it is preferable to contain at least one 0.0003% or more of each. On the other hand, even if the content exceeds 0.01%, the effect is saturated, and coarse Ca inclusions and Mg inclusions are generated, which promotes hydrogen penetration by dissolving in acidic and neutral aqueous solutions. The upper limit was made 0.01%. A desirable range is 0.0003 to 0.003% respectively.

ここに、本発明によれば、鋼中に含まれる長径500mm以上の非金属介在物の組成を前述の式の値が30%以上になるように規定されるが、これはTi系およびZr系介在物を多量に含有することで水素侵入抑制を図ろうとするものである。好ましくは(Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)×100≧50%とするのが好ましい。   Here, according to the present invention, the composition of the non-metallic inclusions having a major axis of 500 mm or more contained in the steel is defined so that the value of the above formula is 30% or more, which is Ti-based and Zr-based It is intended to suppress hydrogen intrusion by containing a large amount of inclusions. Preferably, (Ti + Zr) / (Ti + Zr + Mn + Ca + Mg) × 100 ≧ 50% is preferable.

長径500mm以上でかつ、かかる組成の介在物を生成させるには、凝固時の冷却速度を調整したり、加工の際の減面率を大きくしたり、さらには鋼組成を予め調整するなどして、実現することができる。好適組成例としては前述のように0.02Mn≦(Ti+0.5Zr)さらには2S≦(Ti+0.5Zr)を満足するように鋼組成を調整してもよい。   In order to produce inclusions with a major axis of 500 mm or more and such composition, adjust the cooling rate during solidification, increase the area reduction ratio during processing, and further adjust the steel composition in advance. Can be realized. As a preferred composition example, the steel composition may be adjusted so as to satisfy 0.02Mn ≦ (Ti + 0.5Zr) and further 2S ≦ (Ti + 0.5Zr) as described above.

次に、実施例によって、本発明の作用効果についてさらに具体的に説明する。    Next, the effects of the present invention will be described more specifically with reference to examples.

表3に示す化学組成の鋼を溶製し、種々の寸法のビレットを鋳造し、熱間加工と焼鈍を施し外径30mmの線材とした。この際のビレットの冷却速度と加工度を種々変化させた。線材から冷間転造により、M22の寸法のボルトを作成した。その後、焼入れ焼戻し処理により引張り強さを1500MPa級に調質した。   Steels having the chemical composition shown in Table 3 were melted, billets of various dimensions were cast, and hot working and annealing were performed to obtain a wire rod having an outer diameter of 30 mm. The billet cooling rate and degree of processing were varied in this case. Bolts having a size of M22 were made from the wire by cold rolling. Thereafter, the tensile strength was tempered to 1500 MPa class by quenching and tempering treatment.

このようにして製造したボルトを用いて、以下の試験により水素侵入特性と耐遅れ破壊性を調査した。まず、ボルトから径20mm、厚さ0.5mmの円板試験片を採取し、前述した酸浸漬法(a法)および温度湿度制御法(b法)により水素侵入特性を評価した。また、ボルトを85%降伏応力で板材に締結した物を試験片に用いて、a法と同じ浴中に200時間浸漬し、破断の有無により耐遅れ破壊性を評価した。表4に、鋼の化学組成、製造条件、介在物組成、最大水素透過係数、遅れ破壊試験結果を示した。表中、遅れ破壊試験の結果は「○」は破断がみられなかった場合、「×」は破断がみられた場合をそれぞれ示す。   Using the bolts thus produced, the hydrogen penetration characteristics and delayed fracture resistance were investigated by the following tests. First, a disk specimen having a diameter of 20 mm and a thickness of 0.5 mm was taken from the bolt, and the hydrogen penetration characteristics were evaluated by the acid immersion method (a method) and the temperature and humidity control method (b method) described above. Moreover, the thing which fastened the bolt to the board | plate material with 85% yield stress was used for the test piece, it was immersed in the same bath as the a method for 200 hours, and delayed fracture resistance was evaluated by the presence or absence of a fracture | rupture. Table 4 shows the chemical composition, production conditions, inclusion composition, maximum hydrogen permeability coefficient, and delayed fracture test results of steel. In the table, the result of the delayed fracture test indicates that “◯” indicates that no fracture was observed, and “×” indicates that the fracture was observed.

鋼H〜17は最大水素透過係数がa法、b法とも0.1μA/cm以下となり、十分な水素侵入抑制効果を有していることが確認された。また、遅れ破壊試験でも破断せず、良好な耐遅れ破壊性を有していることも確認された。   Steels H-17 had a maximum hydrogen permeation coefficient of 0.1 μA / cm or less for both the method a and the method b, and it was confirmed that the steel H-17 had a sufficient hydrogen penetration inhibiting effect. Moreover, it was confirmed that it did not break even in the delayed fracture test and had good delayed fracture resistance.

鋼H〜17の介在物組成を調査すると、下式(1)で示す値がいずれも30%以上であり、不溶性のTi−Zr系硫化物が形成され、水素侵入抑制効果が発現していることが確認された。特に鋼U〜Zは下式(1)の値が50%以上と高く、不溶性のTi−Zr系硫化物が安定して形成され、最大水素透過係数がa法、b法とも0.04〜0.06μAと極めて低かった。ここで介在物中には以下に示す合金元素とSの他に、C、N、O(酸素)、Cr、Mo、W、V、Nb等を含有しても良い。   When the inclusion composition of the steels H to 17 is investigated, all of the values shown in the following formula (1) are 30% or more, insoluble Ti-Zr sulfide is formed, and the effect of suppressing hydrogen penetration is exhibited. It was confirmed. In particular, steels U to Z have a high value of 50% or more in the following formula (1), insoluble Ti-Zr sulfide is stably formed, and the maximum hydrogen permeation coefficient is 0.04 to 0.06 μA for both the a method and the b method. It was extremely low. Here, in addition to the alloy elements and S shown below, the inclusions may contain C, N, O (oxygen), Cr, Mo, W, V, Nb, and the like.

(Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)×100 (1)
また、鋼1〜10はCuおよび/またはNiを含有する鋼、鋼11〜13はWを含有する鋼、鋼14〜17はCu、Ni、Wを含有する鋼であり、鋼H〜Tに比べると水素侵入抑制効果がより改善されていた。
(Ti + Zr) / (Ti + Zr + Mn + Ca + Mg) × 100 (1)
Steels 1 to 10 are steels containing Cu and / or Ni, Steels 11 to 13 are steels containing W, Steels 14 to 17 are steels containing Cu, Ni and W, and steels H to T In comparison, the effect of suppressing hydrogen intrusion was further improved.

一方、鋼18〜34は遅れ破壊試験で破断し、耐遅れ破壊性は不芳であった。
鋼18〜25は化学成分は鋼H〜Zとほぼ同様だが、介在物中の(Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)値が30%未満と鋼H〜Zよりも低く、Ti−Zr系硫化物が形成されておらず、溶解性のMn主体の硫化物が形成され、水素侵入抑制効果が発現しなかった。表3には、ビレットの製造条件も併記した。ここで、冷却速度とは、ビレットの凝固直後から1000℃間の冷却速度(℃/分)を示す。また、減面率とは、凝固直後のビレットの断面積をA、ボルトの素材となる最終伸線後の線材の断面積をBとした時に、下式で示される値を指し、材料に及ぼす総加工度を図る目安として記載した。
On the other hand, Steels 18 to 34 broke in the delayed fracture test, and the delayed fracture resistance was unsatisfactory.
Steels 18 to 25 have almost the same chemical composition as steels H to Z, but the (Ti + Zr) / (Ti + Zr + Mn + Ca + Mg) value in inclusions is less than 30%, which is lower than steels H to Z, and Ti-Zr sulfide is formed. As a result, a soluble Mn-based sulfide was formed, and the effect of suppressing hydrogen penetration was not exhibited. Table 3 also shows the billet production conditions. Here, the cooling rate indicates a cooling rate (° C./min) between 1000 ° C. immediately after the billet is solidified. Further, the area reduction ratio refers to a value represented by the following formula, where A is the cross-sectional area of the billet immediately after solidification and B is the cross-sectional area of the wire after the final wire drawing, which is the material of the bolt, and affects the material. It described as a standard aiming at the total processing degree.

(A/B)×100 (2)
鋼H〜17と鋼18〜25の製造方法を比較すると、鋼18〜25の方が冷却速度が小さいか、または減面率が小さい。すなわち、不溶性のTi−Zr系硫化物を安定して生成させるには、鋼の化学組成のみならず製造条件の最適化も必要であることがここから示唆される。冷却速度が小さい場合には、冷却過程で粗大なMn硫化物が成長し、水素侵入を促進したと推定される。また、減面率が小さい場合にも同様に粗大なMn硫化物が破砕されずに残存し、水素侵入を促進したと推定される。
(A / B) × 100 (2)
Comparing the production methods of Steel H-17 and Steel 18-25, Steel 18-25 has a lower cooling rate or a smaller area reduction rate. That is, it is suggested here that not only the chemical composition of steel but also the production conditions need to be optimized in order to stably produce insoluble Ti—Zr-based sulfides. When the cooling rate is low, it is estimated that coarse Mn sulfide grew during the cooling process and promoted hydrogen intrusion. It is also presumed that when the area reduction rate is small, coarse Mn sulfide remains without being crushed and promotes hydrogen intrusion.

鋼26は、Cの含有量が少ないため、十分な焼入れ性が得られず耐遅れ破壊性が不芳であった。
鋼27〜28は、Mnの含有量がTiおよびZrに比べて多いため、Mn硫化物が多く生成し水素侵入量が極めて多かった。すなわち、Ti−Zr系硫化物を安定して生成させ水素侵入を抑制するためにはMnに比較して十分な量のTiおよびZrを含有させることが好ましく、このときの臨界値は下式(3)で表すことができる。
Steel 26 had a low C content, so that sufficient hardenability was not obtained and delayed fracture resistance was unsatisfactory.
In Steels 27 to 28, the Mn content was higher than that of Ti and Zr, so a large amount of Mn sulfide was generated and the amount of hydrogen intrusion was extremely large. That is, it is preferable to contain a sufficient amount of Ti and Zr compared to Mn in order to stably generate Ti-Zr sulfide and suppress hydrogen intrusion, and the critical value at this time is expressed by the following formula ( 3).

Ti+0.5Zr≧0.02Mn (3)
鋼29〜30は、Ti+0.5Zrに比べS含有量が多く、鋼27〜28と同様にMn硫化物が多く生成し水素侵入量が極めて多かった。すなわち、Ti−Zr系硫化物を安定して生成させ水素侵入を抑制するためにはS量に比べて十分な量のTiおよびZrを含有させることが好ましく、このときの臨界値は下式(4)で表すことができる。
Ti + 0.5Zr ≧ 0.02Mn (3)
Steels 29 to 30 had a larger S content than Ti + 0.5Zr, and a large amount of Mn sulfide was produced and the amount of hydrogen intrusion was extremely large as in Steels 27 to 28. That is, it is preferable to contain Ti and Zr in a sufficient amount as compared with the S amount in order to stably generate Ti-Zr sulfide and suppress hydrogen intrusion. 4).

Ti+0.5Zr≧2S (4)
鋼31はCr含有量が少なく、焼入れ性が十分でなく耐遅れ破壊性が不芳であった。鋼32はMo含有量が少なく、水素侵入抑制効果が不十分であり耐遅れ破壊性が不芳であった。鋼33はV含有量が少なく、水素侵入抑制効果を発現する微細炭化物の析出量が不十分であり、耐遅れ破壊性は不芳であった。鋼34はBを含有する鋼であり、Bを含有する粗大な炭ホウ化物が粒界に析出し、耐遅れ破壊性が不芳であった。
Ti + 0.5Zr ≧ 2S (4)
Steel 31 had a low Cr content, insufficient hardenability, and poor delayed fracture resistance. Steel 32 had a low Mo content, an insufficient hydrogen penetration inhibiting effect, and poor delayed fracture resistance. Steel 33 had a low V content, an insufficient precipitation amount of fine carbides that exhibited a hydrogen penetration inhibiting effect, and the delayed fracture resistance was unsatisfactory. Steel 34 is a steel containing B, and a coarse carbon boride containing B was precipitated at the grain boundaries, and the delayed fracture resistance was unsatisfactory.

図7、図8は本例におけるそれぞれ前述の式(1) の値と冷却速度、減面率との関係を示すグラフであり、それぞれの因子を制御することで介在物組成を変えることができることが分かる。   7 and 8 are graphs showing the relationship between the value of the formula (1), the cooling rate, and the area reduction rate in this example, respectively, and the inclusion composition can be changed by controlling the respective factors. I understand.

Figure 2006070327
Figure 2006070327

Figure 2006070327
Figure 2006070327

水素透過試験(酸浸漬法)の概要を示す模式的説明図である。It is typical explanatory drawing which shows the outline | summary of a hydrogen permeation test (acid immersion method). 水素透過試験(温度湿度制御法)の概要を示す模式的説明図である。It is typical explanatory drawing which shows the outline | summary of a hydrogen permeation test (temperature humidity control method). 酸浸漬法により測定した水素透過係数を示すグラフである。It is a graph which shows the hydrogen permeability coefficient measured by the acid immersion method. Mn系硫化物とTi系硫化物の作用の違いを示した模式的説明図である。It is the typical explanatory view showing the difference in the action of Mn system sulfide and Ti system sulfide. 介在物の寸法の測定方法を示した模式的説明図である。It is typical explanatory drawing which showed the measuring method of the dimension of an inclusion. 温度湿度制御法により測定した最大水素透過係数を示すグラフである。It is a graph which shows the maximum hydrogen permeability coefficient measured by the temperature / humidity control method. 鋳造ビレットの冷却速度と介在物組成の相関を示すグラフである。It is a graph which shows the correlation of the cooling rate of a casting billet, and an inclusion composition. 鋳造ビレットの減面率と介在物組成の相関を示すグラフである。It is a graph which shows the correlation of the area reduction rate of a casting billet, and an inclusion composition.

Claims (3)

質量%で、
C:0.35〜0.55%、Si:0.3%以下、Mn:0.6%以下、P:0.025%以下、S:0.050%以下、Al:0.10%以下、Cr:0.5〜1.5%、MoおよびWの1種または2種合計で(Mo+0.5W):0.7〜1.5%、Nb:0.005〜0.05%、TiおよびZrの1種または2種合計で(Ti+0.5Zr): 0.005〜0.20%、V:0.15〜0.3%
を含有し、残部がFeおよび不純物からなり、鋼中に含まれる長径500nm以上の非金属介在物の組成が下記式を満たすことを特徴とする、引張り強さが1350MPa以上の高強度低合金鋼。
(Ti+Zr)/(Ti+Zr+Mn)×100≧30 (質量%)
% By mass
C: 0.35-0.55%, Si: 0.3% or less, Mn: 0.6% or less, P: 0.025% or less, S: 0.050% or less, Al: 0.10% or less, Cr: 0.5-1.5%, Mo and W Or in total of 2 types (Mo + 0.5W): 0.7 to 1.5%, Nb: 0.005 to 0.05%, 1 or 2 types of Ti and Zr in total (Ti + 0.5Zr): 0.005 to 0.20%, V: 0.15 to 0.3 %
A high-strength low-alloy steel with a tensile strength of 1350 MPa or more, wherein the balance consists of Fe and impurities, and the composition of nonmetallic inclusions with a major axis of 500 nm or more contained in the steel satisfies the following formula: .
(Ti + Zr) / (Ti + Zr + Mn) × 100 ≧ 30 (mass%)
質量%で、さらに、Feの一部に代えてNi:0.2〜3%およびCu:0.05〜1%の1種または2種を含有する請求項1に記載の高強度低合金鋼。   The high-strength low-alloy steel according to claim 1, further comprising, in mass%, one or two of Ni: 0.2 to 3% and Cu: 0.05 to 1% instead of part of Fe. 質量%で、さらに、Feの一部に代えてCa:0.01%以下およびMg:0.01%以下の1種または2種を含み、鋼中に含まれる長径500nm以上の非金属介在物の組成が下記式を満たす請求項1または2のいずれかに記載の高強度低合金鋼。
(Ti+Zr)/(Ti+Zr+Mn+Ca+Mg)×100≧30 (質量%)
The composition of non-metallic inclusions having a major axis of 500 nm or more contained in steel is included in the steel, including one or two of Ca: 0.01% or less and Mg: 0.01% or less instead of part of Fe. The high-strength low-alloy steel according to claim 1 or 2, satisfying the formula.
(Ti + Zr) / (Ti + Zr + Mn + Ca + Mg) × 100 ≧ 30 (mass%)
JP2004255926A 2004-09-02 2004-09-02 High-strength low-alloy steel with hydrogen penetration inhibition effect Expired - Fee Related JP4241552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004255926A JP4241552B2 (en) 2004-09-02 2004-09-02 High-strength low-alloy steel with hydrogen penetration inhibition effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004255926A JP4241552B2 (en) 2004-09-02 2004-09-02 High-strength low-alloy steel with hydrogen penetration inhibition effect

Publications (2)

Publication Number Publication Date
JP2006070327A true JP2006070327A (en) 2006-03-16
JP4241552B2 JP4241552B2 (en) 2009-03-18

Family

ID=36151258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004255926A Expired - Fee Related JP4241552B2 (en) 2004-09-02 2004-09-02 High-strength low-alloy steel with hydrogen penetration inhibition effect

Country Status (1)

Country Link
JP (1) JP4241552B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150306A1 (en) * 2006-10-06 2008-12-11 Philos Jongho Ko Improved process for diffusing titanium and nitride into a steel or steel alloy by altering the content of such
EP2192204A4 (en) * 2007-09-19 2014-12-03 Nippon Steel & Sumitomo Metal Corp Low alloy steel for high-pressure hydrogen gas environment, and container for high-pressure hydrogen
CN104630644A (en) * 2015-01-27 2015-05-20 安徽同盛环件股份有限公司 Alloy steel for high negative pressure
JP2016060933A (en) * 2014-09-17 2016-04-25 新日鐵住金株式会社 Steel for high strength bolt
JP2016180658A (en) * 2015-03-24 2016-10-13 Jfeスチール株式会社 Method for evaluating delayed fracture property of metal material and metal material
CN110819890A (en) * 2019-10-10 2020-02-21 江阴兴澄特种钢铁有限公司 X100 ultrahigh-steel-grade pipeline steel plate with stable long-time high-temperature tempering performance and manufacturing method thereof
CN111961975A (en) * 2020-08-24 2020-11-20 青岛汽车零部件有限公司 Micro-alloyed steel applied to U-shaped bolt and preparation method thereof
CN115198190A (en) * 2022-07-22 2022-10-18 上海大学 Ultrahigh-strength alloy steel, 17.8-grade threaded fastener and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150306A1 (en) * 2006-10-06 2008-12-11 Philos Jongho Ko Improved process for diffusing titanium and nitride into a steel or steel alloy by altering the content of such
EP2192204A4 (en) * 2007-09-19 2014-12-03 Nippon Steel & Sumitomo Metal Corp Low alloy steel for high-pressure hydrogen gas environment, and container for high-pressure hydrogen
JP2016060933A (en) * 2014-09-17 2016-04-25 新日鐵住金株式会社 Steel for high strength bolt
CN104630644A (en) * 2015-01-27 2015-05-20 安徽同盛环件股份有限公司 Alloy steel for high negative pressure
JP2016180658A (en) * 2015-03-24 2016-10-13 Jfeスチール株式会社 Method for evaluating delayed fracture property of metal material and metal material
CN110819890A (en) * 2019-10-10 2020-02-21 江阴兴澄特种钢铁有限公司 X100 ultrahigh-steel-grade pipeline steel plate with stable long-time high-temperature tempering performance and manufacturing method thereof
CN111961975A (en) * 2020-08-24 2020-11-20 青岛汽车零部件有限公司 Micro-alloyed steel applied to U-shaped bolt and preparation method thereof
CN115198190A (en) * 2022-07-22 2022-10-18 上海大学 Ultrahigh-strength alloy steel, 17.8-grade threaded fastener and preparation method thereof

Also Published As

Publication number Publication date
JP4241552B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4135691B2 (en) Nitride inclusion control steel
KR102309644B1 (en) High mn steel sheet and method for producing same
JP2016060933A (en) Steel for high strength bolt
JP2007031734A (en) High strength bolt having excellent delayed fracture resistance, and method for producing the same
JP2008274361A (en) Ferritic free-cutting stainless steel
JP5053213B2 (en) High-strength steel with excellent corrosion resistance during painting in the coastal area and its manufacturing method
JPWO2020162616A1 (en) Bolts and steel materials for bolts
JP2011047010A (en) High strength bolt having improved delayed fracture resistance, and method for producing the same
JP2014043616A (en) Duplex stainless steel, and manufacturing method thereof
JP5347925B2 (en) Steel for high strength bolts
JP4241552B2 (en) High-strength low-alloy steel with hydrogen penetration inhibition effect
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP6760476B2 (en) Steel plate and its manufacturing method
JP2012017484A (en) Steel for bolt, bolt, and method for production of the bolt
JP5233307B2 (en) High-strength steel and metal bolts with excellent corrosion resistance and cold forgeability that prevent hydrogen from entering the environment
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP5282451B2 (en) Steel for high strength bolts
JP7457234B2 (en) Bolts and bolt manufacturing methods
KR102497359B1 (en) Steel plate and method of producing same
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
JP7273295B2 (en) Steel for bolts, bolts, and method for manufacturing bolts
RU2346074C2 (en) Stainless high-strength steel
JP6601140B2 (en) High strength bolt and steel for high strength bolt
KR102599767B1 (en) Bolts and steel materials for bolts
JP6972722B2 (en) Low alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees