JPH06322413A - Method for joining niti shape memory alloy - Google Patents

Method for joining niti shape memory alloy

Info

Publication number
JPH06322413A
JPH06322413A JP10021293A JP10021293A JPH06322413A JP H06322413 A JPH06322413 A JP H06322413A JP 10021293 A JP10021293 A JP 10021293A JP 10021293 A JP10021293 A JP 10021293A JP H06322413 A JPH06322413 A JP H06322413A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
joining
niti
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10021293A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Ueki
達彦 植木
Hiroshi Horikawa
宏 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10021293A priority Critical patent/JPH06322413A/en
Publication of JPH06322413A publication Critical patent/JPH06322413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To join Ni and Ti shape memory alloy members without deterioration in the strength of the joint part by arranging a powder compressed body of a metal mixture or alloy consisting of Ni and Ti between both members and alloying and connecting the members by a combustion synthesis method at the time of joining the Ni and Ti shape memory alloy members. CONSTITUTION:The compressed body 1 consisting of <=100mum powder of the metal mixture or alloy of the compsn. which consists of 49 to 52atm.% Ni and the balance Ti or in which a part of the Ni and Ti are substd. within one kind or >=2 kinds among Fe, Cr, Al, V, Pd, Mn, Co, Nb and Cu in a 0.01 to 2atm.% range is arranged between two pieces of the Ni and Ti shape memory alloy members 2, 2 at the time of joining these members 2, 2. The combined bodies are held by copper blocks 3, 3 for water cooling from above and below. The powder metal compressed body 1 is ignited to melt by electrical heating with a resistance heating wire 4 for ignition in a vacuum or inert gaseous atmosphere of Ar, N, etc., and is simultaneously cooled by the copper blocks 3 for water cooling to prevent melting of the shape memory alloy members 2, 2, by which both shape memory alloy members 2, 2 are easily joined in the joint part without having the degradation in the strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNiTi系形状記憶合金
および超弾性合金からなる部材の接合に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to joining members made of NiTi type shape memory alloy and superelastic alloy.

【0002】[0002]

【従来の技術】NiTi系形状記憶合金の形状記憶効果
および超弾性効果は、共に変態ヒステリシスの小さい、
いわゆる熱弾性型マルテンサイト変態に起因するもの
で、形状記憶効果とは、マルテンサイト温度領域で変形
されたものがマルテンサイト逆変態(オーステナイト変
態)温度以上に加熱すると元の形に戻る現象である。一
方、超弾性効果とはオーステナイト温度領域で変形した
材料が、変形に伴う応力誘起マルテンサイト変態によっ
て、上記のような加熱なしでも8%もの変形歪みがゴム
のように弾性的に元に戻る現象である。(以下形状記憶
合金、超弾性合金を単に形状記憶合金と言う)。
2. Description of the Related Art The shape memory effect and the superelastic effect of NiTi-based shape memory alloys both have a small transformation hysteresis.
This is due to the so-called thermoelastic martensitic transformation, and the shape memory effect is a phenomenon in which something deformed in the martensite temperature region returns to its original shape when heated above the martensite reverse transformation (austenite transformation) temperature. . On the other hand, the superelastic effect is a phenomenon in which a material deformed in the austenite temperature region elastically returns to its original deformation strain of 8% even without heating due to the stress-induced martensitic transformation accompanying deformation. Is. (Hereinafter, shape memory alloys and superelastic alloys are simply referred to as shape memory alloys).

【0003】このような形状記憶効果および超弾性効果
を示す材料の中で最も実用化が進んでいるものにNiT
i系合金がある。実際にこのNiTi系合金で形状記憶
効果を応用実用化したものとしてはエアコンの吹出し
口、炊飯ジャーの調圧弁、医療用ボーンプレート等があ
る。また、超弾性効果を応用実用化したものとしては歯
列矯正ワイヤー、ブラジャーのワイヤー、眼鏡フレー
ム、医療用ガイドワイヤー等がある。
Of the materials exhibiting such a shape memory effect and superelasticity effect, NiT is the most practically used material.
There are i-based alloys. Practical applications of this NiTi-based alloy that apply the shape memory effect include air outlets for air conditioners, pressure regulating valves for rice cookers, bone plates for medical use, and the like. In addition, there are orthodontic wires, brassieres wires, eyeglass frames, medical guide wires, etc. that have been put to practical use by applying the superelastic effect.

【0004】さらに現在は、このような実用化に伴い周
辺技術の開発も進められている。その中の一つに、Ni
Ti系合金の接合技術がある。接合技術の確立によって
もたらされるメリットとしては、まず、複雑な形状の素
子や部材を材料の歩留まりよく作製できることが挙げら
れる。特にNiTi系形状記憶合金は、機械加工性が良
好でなくまた高価格であるため、そのメリットは非常に
大きいと考えられる。また、異なる作動温度を有する形
状記憶合金同士の接合が可能になれば本合金の適用範囲
はさらに広がるものと考えられる。
Furthermore, at the present time, peripheral technologies are being developed along with such practical use. One of them is Ni
There is a Ti-based alloy joining technology. One of the merits brought about by the establishment of the joining technology is that elements and members having complicated shapes can be manufactured with a high material yield. In particular, the NiTi-based shape memory alloy is not very good in machinability and is expensive, so that the merit is considered to be very large. In addition, if shape memory alloys having different operating temperatures can be joined together, the range of application of the present alloy will be further expanded.

【0005】[0005]

【発明が解決しようとする課題】従来からNiTi系形
状記憶合金の接合については、レーザー溶接、TIG溶
接、電子ビーム溶接等の融接法もしくはフラッシュバッ
ト溶接、摩擦圧接等の圧接法によって接合が可能であ
る。しかしながら、融接法では柱状晶の鋳造組織を有す
る溶接金属が生じ、強度が低下したり、割れの原因にな
る。またNiTi2、Ni3Ti等のNiTi相以外の金
属間化合物相の析出および雰囲気や母材の酸化スケール
からの不純物の混入によって形状記憶効果が損なわれる
こともある。これに対し圧接法では溶融層がほとんど生
じないか、あるいは生じても加圧によって押出され接合
界面には溶融層が残らないようにすることが可能である
ため接合部の強度の低下は少なくできる。しかし、圧接
法では接合できる部材形状や継手形状が非常に限定さ
れ、複雑な形状の素子や部材を作製することはできな
い。
Conventionally, NiTi-based shape memory alloys can be joined by fusion welding such as laser welding, TIG welding, electron beam welding or pressure welding such as flash butt welding or friction welding. Is. However, in the fusion welding method, a weld metal having a cast structure of columnar crystals is produced, which causes a decrease in strength and a crack. In addition, the shape memory effect may be impaired by the precipitation of intermetallic compound phases other than the NiTi phase such as NiTi 2 and Ni 3 Ti and the inclusion of impurities from the atmosphere and the oxide scale of the base material. On the other hand, in the pressure welding method, almost no molten layer is generated, or even if it occurs, it is possible to extrude by pressure so that the molten layer does not remain at the bonding interface, so the decrease in the strength of the bonded portion can be reduced. . However, in the pressure welding method, the shapes of members and joints that can be joined are very limited, and it is not possible to fabricate elements or members having complicated shapes.

【0006】本発明は上記の問題について検討の結果、
簡便な方法で接合部の強度の低下が少なく、かつ複雑な
形状の接合部材にも適用できる接合方法を開発したもの
である。
According to the present invention, as a result of studying the above problems,
This is a joint method developed by a simple method that can be applied to a joint member having a complicated shape with little decrease in the strength of the joint.

【0007】[0007]

【課題を解決するための手段】本発明は接合すべき複数
のNiTi系形状記憶合金部材の間に、NiとTiを主
とする2種以上の金属またはNiとTiをそれぞれ主成
分とする合金からなる混合粉末圧縮体を配置し、燃焼合
成法によって合金化すると共に、接合を行うことを特徴
とするNiTi系形状記憶合金部材の接合方法を請求項
1とし、前記の混合粉末圧縮体の組成は、Ni49〜5
2at%、残りがTiからなる組成、または前記のNi
または/およびTiの一部をFe、Cr、Al、V、P
d、Mn、Co、Nb、Cuの内の1種または2種以上
で0.01〜2at%の範囲で置換した組成であること
を特徴とする請求項1記載のNiTi系形状記憶合金部
材の接合方法を請求項2とし、前記混合粉末圧縮体の粉
末の粒度が100μm以下であることを特徴とする請求
項1記載のNiTi系形状記憶合金部材の接合方法を請
求項3とし、前記の燃焼合成法は、真空中またはアルゴ
ン、窒素等の不活性ガス雰囲気中で接合を行うことを特
徴とする請求項1記載のNiTi系形状記憶合金部材の
接合方法を請求項4とし、前記の接合部に、熱伝導性の
良好な材料からなる冷却板を接触させ、冷却しながら接
合を行うことを特徴とする請求項1記載のNiTi系形
状記憶合金部材の接合方法を請求項5とするものであ
る。
According to the present invention, between a plurality of NiTi-based shape memory alloy members to be joined, two or more kinds of metals mainly containing Ni and Ti or an alloy containing Ni and Ti as main components, respectively. A mixed powder compressed body consisting of is arranged, alloyed by a combustion synthesis method, and joined together. A method for joining a NiTi-based shape memory alloy member according to claim 1, wherein the composition of the mixed powder compacted body is Is Ni49-5
2 at%, the balance consisting of Ti, or the above Ni
Or / and part of Ti is Fe, Cr, Al, V, P
The NiTi-based shape memory alloy member according to claim 1, which has a composition in which one or more of d, Mn, Co, Nb, and Cu are substituted in the range of 0.01 to 2 at%. The joining method is claim 2, and the particle size of the powder of the mixed powder compact is 100 μm or less. The joining method of the NiTi-based shape memory alloy member according to claim 1 is claim 3, and the combustion is performed. The method of synthesizing the NiTi-based shape memory alloy member according to claim 1, wherein the synthesizing is performed in a vacuum or in an atmosphere of an inert gas such as argon or nitrogen. The method for joining NiTi-based shape memory alloy members according to claim 1, wherein a cooling plate made of a material having a good thermal conductivity is brought into contact with and the joining is performed while cooling. is there.

【0008】[0008]

【作用】接合におにて部材形状の自由度を高くするため
には融接法もしくはそれに近い方法を取るのが有利なこ
とは明らかであるが、接合法の強度の低下を防ぐために
は融接時に生じる溶融層をできるだけ少なくすると共に
溶融層の組織を微細にすることが必要である。
It is clear that it is advantageous to use the fusion welding method or a method close to it in order to increase the degree of freedom of the member shape in the welding, but in order to prevent the decrease in the strength of the welding method, it is clear. It is necessary to minimize the molten layer produced during contact and to make the structure of the molten layer fine.

【0009】本発明は上記の考えに基づいてなされたも
ので、NiTi系形状記憶合金および超弾性合金を接合
する際に、接合すべき部材の間に、NiとTiを主とす
る2種以上の金属またはNiとTiをそれぞれ主成分と
する合金からなる混合粉末圧縮体を配置し、燃焼合成法
によって合金化すると共に接合を行うものである。さら
に母材の溶け込みを少なくし、かつ溶融層の微細な組織
を得るために熱伝導性の良好な材料からなる冷却板を接
合部に接触させ冷却するという方法をとるものである。
本発明はこのような方法によって融接法の特徴である接
合部材形状の高い自由度を有し、かつ溶融層を少なく、
組織を微細にすることができる。
The present invention has been made on the basis of the above-mentioned idea, and when joining a NiTi type shape memory alloy and a superelastic alloy, two or more kinds mainly containing Ni and Ti are provided between the members to be joined. The mixed powder compression body made of the above metal or an alloy containing Ni and Ti as the main components is arranged, and alloyed and joined by the combustion synthesis method. Further, in order to reduce the penetration of the base material and to obtain a fine structure of the molten layer, a cooling plate made of a material having good thermal conductivity is brought into contact with the joint portion to cool it.
The present invention by such a method has a high degree of freedom in the shape of the joining member, which is a feature of the fusion welding method, and reduces the molten layer,
The tissue can be made fine.

【0010】本発明によれば、NiとTiを主とする混
合粉末圧縮体を、接合すべきNiTi系形状記憶合金部
材の間に配置し、混合粉末圧縮体の一端に外部から入熱
すると、NiとTiが合成反応を起こしてNiTi金属
間化合物を生成し、この合成反応によって生じた反応熱
によって未反応の部分が加熱され、次々と反応が伝播し
最後には全体がNiTi金属間化合物となる燃焼合成法
を利用し、このとき生じる反応熱によって接合すべき部
材をわずかに溶解し、接合をすることができる。
According to the present invention, a mixed powder compact mainly composed of Ni and Ti is arranged between NiTi-based shape memory alloy members to be joined, and heat is applied to one end of the mixed powder compact from the outside. Ni and Ti undergo a synthetic reaction to form a NiTi intermetallic compound, the unreacted portion is heated by the reaction heat generated by this synthetic reaction, the reaction propagates one after another, and finally the whole becomes a NiTi intermetallic compound. By using the combustion synthesis method described above, the members to be joined can be slightly melted by the reaction heat generated at this time to join.

【0011】また本発明によれば、熱伝導性の良好な材
料からなる冷却板を接合部に接触させ冷却しつつ接合を
行うので、接合部材の溶け込みが最小限ら抑えられ、か
つ溶融した部分は急速に冷却されるので微細な組織とな
り、従来の融接法の短所である溶融層による接合部の強
度の低下が少なくなる。
Further, according to the present invention, since the cooling plate made of a material having a good thermal conductivity is brought into contact with the joint portion to perform the joint while cooling, the melting of the joint member is suppressed to a minimum and the melted portion is Since it is cooled rapidly, it has a fine structure, and the decrease in strength of the joint due to the molten layer, which is a disadvantage of the conventional fusion welding method, is reduced.

【0012】従来の融接法においては部材を溶融させる
熱はアーク、電子ビーム等により溶接部全体にわたって
外部から供給しなければならないので、本発明のように
溶接部全体を冷却板により冷却することは不可能であ
る。また仮に冷却板が使用できる形状であったとして
も、冷却板の使用によって供給した熱が奪われ、接合部
を加熱することが困難になる。
In the conventional fusion welding method, the heat for melting the member must be supplied from the outside over the entire welded portion by means of an arc, an electron beam, etc. Therefore, the entire welded portion should be cooled by a cooling plate as in the present invention. Is impossible. Even if the cooling plate has a shape that can be used, the heat supplied is lost by using the cooling plate, and it becomes difficult to heat the joint portion.

【0013】本発明においては接合部を融解させる熱は
合成反応によって内部より発生し、しかもその熱量は非
常に大きいため、冷却板によって冷却をしながら接合部
を加熱融解させることが容易である。さらに本発明の接
合方法においては、圧接法と違って接合作業時の接合部
材の保持は単純に支えるだけでよく、従来の融接法に近
いため、接合部材の形状の自由度が大きく、複雑な形状
の素子や部材を作製することが容易である。
In the present invention, the heat for melting the joint is generated internally from the synthesis reaction, and the amount of heat is very large. Therefore, it is easy to heat and melt the joint while cooling with the cooling plate. Further, in the joining method of the present invention, unlike the pressure welding method, the holding of the joining member at the time of joining work is simply supported, and since it is close to the conventional fusion welding method, the degree of freedom of the shape of the joining member is large and complicated. It is easy to fabricate elements and members of various shapes.

【0014】本発明において、前記の混合粉末圧縮体の
組成をNi49〜52at%としたのは、通常のNiT
i系形状記憶合金および超弾性合金の組成と同じ組成に
したものであり、この組成の範囲外ではそれぞれの特性
を発揮しないからである。また前記のNiまたは/およ
びTiの一部をFe、Cr、Al、V、Pd、Mn、C
o、Nb、Cuの内の1種または2種以上で0.01〜
2atの範囲で置換するのは、前記と同様に通常のNi
Ti系形状記憶合金や超弾性合金には、それぞれ前記の
Fe、Cr等の第三元素でNiやTiを置換して、機械
的性質や耐食性が改善されており、本発明においてもこ
れと同様の組成とするためである。
In the present invention, the composition of the above-mentioned compressed powder compact is set to 49 to 52 at% of Ni by the ordinary NiT.
This is because the composition is the same as that of the i-based shape memory alloy and the superelastic alloy, and the respective properties are not exhibited outside the range of this composition. Further, a part of the above Ni or / and Ti is Fe, Cr, Al, V, Pd, Mn, C.
One or more of o, Nb, and Cu is 0.01 to
Substitution within the range of 2 at is the same as in the case of ordinary Ni.
In Ti-based shape memory alloys and superelastic alloys, Ni and Ti are replaced by the above-mentioned third elements such as Fe and Cr to improve mechanical properties and corrosion resistance. This is because the composition is

【0015】また前記の混合粉末圧縮体の粉末の粒度を
100μm以下とするのは、100μmをこえる大きさ
では、反応性が悪くなり、反応後の組成のバラツキが大
きくなって均一性が損なわれるおそれがある。さらに前
記の燃焼合成法は、真空中またはアルゴン、窒素等の不
活性ガス雰囲気中で接合を行うことが望ましく、これに
より接合部の酸化が防止され良好な接合ができる。なお
前記したように本発明において、NiTi系形状記憶合
金とは、NiTi系超弾性合金を含むものである。
Further, the particle size of the powder of the above-mentioned compressed powder mixture is set to 100 μm or less. When the size exceeds 100 μm, the reactivity is deteriorated, and the dispersion of the composition after the reaction is increased to deteriorate the uniformity. There is a risk. Further, in the above combustion synthesis method, it is desirable to carry out the bonding in a vacuum or in an atmosphere of an inert gas such as argon or nitrogen, whereby oxidation of the bonded portion is prevented and good bonding can be achieved. As described above, in the present invention, the NiTi-based shape memory alloy includes a NiTi-based superelastic alloy.

【0016】[0016]

【実施例】以下に本発明の一実施例について説明する。
平均粒径30μmのTi粉末とNi粉末を原子比で4
9.0:51.0になるように配合し(51.0at%
Ni)、これをボールミルで混合した。この混合粉末約
10gを冷間プレスによって成形し、角棒状の混合粉末
圧縮体を作製した。一方、通常の溶解鋳造および熱間圧
延によって組成が51.0at%NiのNiTi形状記
憶合金の板を作製し、接合部材とした。部材表面の酸化
皮膜は研磨により取り除いた。次に図1に示すように、
前記混合粉末圧縮体1を間にはさむ形で、2枚のNiT
i系形状記憶合金部材2の板を突合わせ、冷却用の水冷
銅ブロック3で両面からはさんだ。これを10-5tor
rの真空中で、混合粉末圧縮体の一端に点火用抵抗加熱
線4の通電加熱により点火し、反応を生じさせた。混合
粉末圧縮体の一端に点火することで反応熱によって次々
と反応が伝播し、融解した。また部材板もわずかに融解
した。これらは水冷銅ブロックによる冷却でただちに凝
固した。このようにして容易に2枚の板を接合すること
ができた。
EXAMPLES An example of the present invention will be described below.
An atomic ratio of Ti powder and Ni powder having an average particle diameter of 30 μm is 4
Formulated to be 9.0: 51.0 (51.0 at%
Ni), which was mixed with a ball mill. About 10 g of this mixed powder was molded by cold pressing to prepare a rectangular rod-shaped compressed powder compact. On the other hand, a plate of a NiTi shape memory alloy having a composition of 51.0 at% Ni was produced by ordinary melt casting and hot rolling, and was used as a joining member. The oxide film on the surface of the member was removed by polishing. Next, as shown in FIG.
With the mixed powder compact 1 sandwiched between the two NiT
The plates of the i-based shape memory alloy member 2 are butted, and sandwiched from both sides with a water-cooled copper block 3 for cooling. This is 10 -5 torr
In the vacuum of r, one end of the mixed powder compact was ignited by energizing and heating the resistance heating wire 4 for ignition to cause a reaction. By igniting one end of the mixed powder compact, reactions were successively propagated by the heat of reaction and melted. The member plate also melted slightly. These solidified immediately upon cooling with a water-cooled copper block. In this way, the two plates could be easily joined.

【0017】反応後の接合部の断面の金属組織の模式図
を図2および図3に示す。図2は本発明方法によって接
合したもの、図3は従来の融接法によって接合したもの
である。図3の従来の融接法では熱流の方向に沿って上
方へ粗大な柱状晶として凝固が進行し、特に柱状晶に直
角方向の伸びや衝撃値が低下する。また柱状晶の先端や
間隙にはNi3Ti等の異相も生じやすい。これに対
し、本発明方法では図2のように接合部全体にわたって
微細かつ均質な組織になっており、またNiTi以外の
相は生じていなかった。また、組成の配合値からのずれ
は0.1at%以内におさまっていた。
2 and 3 are schematic diagrams of the metal structure of the cross section of the joint after the reaction. FIG. 2 shows the joint by the method of the present invention, and FIG. 3 shows the joint by the conventional fusion welding method. In the conventional fusion welding method of FIG. 3, solidification proceeds as coarse columnar crystals upward along the direction of heat flow, and in particular, the elongation in the direction perpendicular to the columnar crystals and the impact value decrease. Further, a heterogeneous phase such as Ni 3 Ti is likely to occur at the tips and gaps of the columnar crystals. On the other hand, in the method of the present invention, as shown in FIG. 2, the entire joint had a fine and uniform structure, and no phase other than NiTi was generated. Further, the deviation from the composition value of the composition was within 0.1 at%.

【0018】接合部の引張強度を調べるために試料から
ダンベル型の引張試験片を切り出して引張試験を行っ
た。試験片の形状を図4に示す。破断はいずれも接合部
で生じたが、接合部の引張強度は従来方法では部材の引
張強度の50%から60%であったのに対し、本発明方
法で接合したものでは部材の80%程度まで上昇した。
In order to examine the tensile strength of the joint, a dumbbell-shaped tensile test piece was cut out from the sample and a tensile test was conducted. The shape of the test piece is shown in FIG. All fractures occurred at the joint, but the tensile strength of the joint was 50% to 60% of the tensile strength of the member by the conventional method, whereas about 80% of the member by the method of the present invention was used. Rose to.

【0019】また前記と同様の粉末を用い、Ni50.
5at%、Fe0.2at%、残りTiになるように配
合し、前記と同様にして混合粉末圧縮体を作製し、前記
と同様に接合部の組織の観察、および引張り試験を行っ
た結果、前記の本発明方法の場合と略同様の結果を示し
た。
Further, using the same powder as described above, Ni50.
5 at%, Fe 0.2 at%, and remaining Ti were compounded, a mixed powder compact was prepared in the same manner as above, and the structure of the joint was observed and the tensile test was conducted in the same manner as described above. The result is almost the same as that of the method of the present invention.

【0020】[0020]

【発明の効果】以上に説明したように本発明によれば、
NiTi系形状記憶合金を接合する際に、接合部の柱状
晶の発生を抑えて微細かつ均一な組織にすることがで
き、またNiTi以外の異相の生成もなくなるので、従
来の融接法に比べて接合部の強度の低下が少なくなる。
また圧接法と違って接合部材の形状の自由度は大きく、
しかも加熱が抵抗線の通電加熱のみで良いため、簡便か
つ容易に接合ができるという効果がある。
As described above, according to the present invention,
When joining NiTi-based shape memory alloys, it is possible to suppress the formation of columnar crystals in the joint to form a fine and uniform structure, and to eliminate the formation of different phases other than NiTi. As a result, the decrease in the strength of the joint is reduced.
Also, unlike the pressure welding method, the degree of freedom of the shape of the joining member is great,
In addition, since heating can be performed only by conducting heating of the resistance wire, there is an effect that joining can be performed easily and easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るNiTi系形状記憶合
金部材の接合方法の概略図
FIG. 1 is a schematic view of a method for joining NiTi-based shape memory alloy members according to an embodiment of the present invention.

【図2】本発明の接合方法により接合したNiTi系形
状記憶合金部材の接合部断面の金属組織の模式図
FIG. 2 is a schematic diagram of a metallographic structure of a cross section of a joint portion of a NiTi-based shape memory alloy member joined by the joining method of the present invention.

【図3】従来の接合方法により接合したNiTi系形状
記憶合金部材の接合部断面の金属組織の模式図
FIG. 3 is a schematic diagram of a metal structure of a cross section of a joint portion of a NiTi-based shape memory alloy member joined by a conventional joining method.

【図4】本発明の一実施例に係る引張試験片の形状を示
す概略図
FIG. 4 is a schematic view showing the shape of a tensile test piece according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 混合粉末圧縮体 2 NiTi系形状記憶合金部材 3 水冷銅ブロック 4 点火用抵抗加熱線 5 接合部 1 Compressed Powder Mixture 2 NiTi Shape Memory Alloy Member 3 Water-Cooled Copper Block 4 Resistance Heating Wire for Ignition 5 Joint

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B23K 103:08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B23K 103: 08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 接合すべき複数のNiTi系形状記憶合
金部材の間に、NiとTiを主とする2種以上の金属ま
たはNiとTiをぞれぞれ主成分とする合金からなる混
合粉末圧縮体を配置し、燃焼合成法によって合金化する
と共に、接合を行うことを特徴とするNiTi系形状記
憶合金部材の接合方法。
1. A mixed powder comprising a plurality of NiTi-based shape memory alloy members to be joined and made of two or more kinds of metals mainly composed of Ni and Ti or an alloy mainly composed of Ni and Ti respectively. A method of joining a NiTi-based shape memory alloy member, comprising arranging a compressed body, alloying by a combustion synthesis method, and joining.
【請求項2】 前記の混合粉末圧縮体の組成は、Ni4
9〜52at%、残りがTiからなる組成、または前記
のNiまたは/およびTiの一部をFe、Cr、Al、
V、Pd、Mn、Co、Nb、Cuの内の1種または2
種以上で0.01〜2at%の範囲で置換した組成であ
ることを特徴とする請求項1記載のNiTi系形状記憶
合金部材の接合方法。
2. The composition of the mixed powder compact is Ni4
9 to 52 at%, the balance consisting of Ti, or a part of the above Ni or / and Ti is Fe, Cr, Al,
One or two of V, Pd, Mn, Co, Nb and Cu
The method for joining NiTi-based shape memory alloy members according to claim 1, wherein the composition is a composition in which at least one species is substituted in the range of 0.01 to 2 at%.
【請求項3】 前記混合粉末圧縮体の粉末の粒度が、1
00μm以下であることを特徴とする請求項1記載のN
iTi系形状記憶合金部材の接合方法。
3. The particle size of the powder of the compressed powder mixture is 1
The N according to claim 1, which is less than 00 μm.
A method for joining iTi-based shape memory alloy members.
【請求項4】 前記の燃焼合成法は、真空中またはアル
ゴン、窒素等の不活性ガス雰囲気中で接合を行うことを
特徴とする請求項1記載のNiTi系形状記憶合金部材
の接合方法。
4. The method for joining NiTi-based shape memory alloy members according to claim 1, wherein the combustion synthesis method is performed in vacuum or in an atmosphere of an inert gas such as argon or nitrogen.
【請求項5】 前記の接合部に、熱伝導性の良好な材料
からなる冷却板を接触させ、冷却しながら接合を行うこ
とを特徴とする請求項1記載のNiTi系形状記憶合金
部材の接合方法。
5. The joining of NiTi-based shape memory alloy members according to claim 1, wherein a cooling plate made of a material having a good thermal conductivity is brought into contact with the joining portion and the joining is performed while cooling. Method.
JP10021293A 1993-04-02 1993-04-02 Method for joining niti shape memory alloy Pending JPH06322413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10021293A JPH06322413A (en) 1993-04-02 1993-04-02 Method for joining niti shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10021293A JPH06322413A (en) 1993-04-02 1993-04-02 Method for joining niti shape memory alloy

Publications (1)

Publication Number Publication Date
JPH06322413A true JPH06322413A (en) 1994-11-22

Family

ID=14267999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10021293A Pending JPH06322413A (en) 1993-04-02 1993-04-02 Method for joining niti shape memory alloy

Country Status (1)

Country Link
JP (1) JPH06322413A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252563A (en) * 1994-03-11 1995-10-03 Natl Res Inst For Metals Ni-ti high specific strength heat resistant alloy
JP2004346389A (en) * 2003-05-23 2004-12-09 Yoshimi Seisakusho:Kk Casting member made of shape memory alloy, and its producing method
WO2008123402A1 (en) * 2007-03-29 2008-10-16 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
US7967182B2 (en) 2007-03-29 2011-06-28 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
CN103862161A (en) * 2014-03-18 2014-06-18 哈尔滨工业大学 Method for connecting aluminum matrix composite with titanium alloy
CN115261656A (en) * 2022-06-21 2022-11-01 中南大学 Preparation method of low-cost element mixed porous NiTi shape memory alloy through vacuum high-temperature sintering and aging treatment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252563A (en) * 1994-03-11 1995-10-03 Natl Res Inst For Metals Ni-ti high specific strength heat resistant alloy
JP2847177B2 (en) * 1994-03-11 1999-01-13 科学技術庁金属材料技術研究所長 NiTi-based high specific strength heat resistant alloy
JP2004346389A (en) * 2003-05-23 2004-12-09 Yoshimi Seisakusho:Kk Casting member made of shape memory alloy, and its producing method
WO2008123402A1 (en) * 2007-03-29 2008-10-16 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
US7967182B2 (en) 2007-03-29 2011-06-28 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
CN103862161A (en) * 2014-03-18 2014-06-18 哈尔滨工业大学 Method for connecting aluminum matrix composite with titanium alloy
CN103862161B (en) * 2014-03-18 2015-08-19 哈尔滨工业大学 A kind of method connecting aluminum matrix composite and titanium alloy
CN115261656A (en) * 2022-06-21 2022-11-01 中南大学 Preparation method of low-cost element mixed porous NiTi shape memory alloy through vacuum high-temperature sintering and aging treatment

Similar Documents

Publication Publication Date Title
EP0508414B1 (en) Joined parts of Ni-Ti alloys with different metals and joining method therefor
KR101004909B1 (en) Alloy for liquid-phase diffusion bonding
JP3243184B2 (en) Alloy foil for liquid phase diffusion bonding that can be bonded in oxidizing atmosphere
JP2820613B2 (en) Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
JP2733016B2 (en) Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
WO1997046347A1 (en) Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere
JPS62227597A (en) Thin two-phase stainless steel strip for solid phase joining
JPH06322413A (en) Method for joining niti shape memory alloy
US3070875A (en) Novel brazing alloy and structures produced therewith
JP3434128B2 (en) Liquid phase diffusion bonding alloy foil that can be bonded in oxidizing atmosphere
US5370092A (en) Engine valve and method for producing the same
US4405391A (en) Homogeneous, ductile nickel-palladium brazing foils
US5158229A (en) Low temperature, high strength, nickel, base brazing alloys
JPH0788674A (en) Method for joining ni-ti based shape memory alloy member
JP3434126B2 (en) Liquid phase diffusion bonding alloy foil that can be bonded in oxidizing atmosphere
JPH02151377A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JPH0788673A (en) Method for joining ni-ti based shape memory alloy member
JPH069748B2 (en) Alloy foil for liquid phase diffusion bonding of Cr-containing materials that can be bonded in an oxidizing atmosphere
JP2737817B2 (en) Joint between Ni-Ti alloy and dissimilar metal and joining method thereof
JP2002248597A (en) High thermal conductive composite material and metallic mold
EP0100919B1 (en) Low temperature, high strength nickel based brazing alloys
KR930007666B1 (en) Melting induced diffusion bonding
JP2576507B2 (en) Ti alloy brazing material suitable for brazing of Ti and Ti alloy
JPH05293641A (en) Method for joining titanium carbide sintered alloy and stainless steel
JP3434129B2 (en) Liquid phase diffusion bonding alloy foil that can be bonded in oxidizing atmosphere