JPH0788674A - Method for joining ni-ti based shape memory alloy member - Google Patents

Method for joining ni-ti based shape memory alloy member

Info

Publication number
JPH0788674A
JPH0788674A JP25483193A JP25483193A JPH0788674A JP H0788674 A JPH0788674 A JP H0788674A JP 25483193 A JP25483193 A JP 25483193A JP 25483193 A JP25483193 A JP 25483193A JP H0788674 A JPH0788674 A JP H0788674A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
joining
niti
based shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25483193A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Ueki
達彦 植木
Hiroshi Horikawa
宏 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP25483193A priority Critical patent/JPH0788674A/en
Publication of JPH0788674A publication Critical patent/JPH0788674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prevent the degradation in the strength in a joint part by the simple method and enable the adaptation to intricate shapes by arranging a multilayered thin-film composite material consisting of >=2 kinds of metals mainly composed of Ni-Ti, etc., between plural Ni-Ti based shape memory alloy members to be joined and alloying and joining these members by a combustion synthesis method. CONSTITUTION:The multilayered thin-film composite material 1 mainly composed of Ni and TI is arranged between the Ni-Ti based shape memory alloy members 2 to be joined and these members to be joined are dissolved slightly and joined by the reaction heat generated by utilizing the combustion synthesis method, which is as follows: The Ni and the Ti induce a synthesis reaction and an Ni-TI intermetallic compd. is formed when the thin-film composite material 1 consisting essentially of Ni and Ti is stored between Ni-Ti based shape memory alloy members to be jointed and heat is inputted at one end of the multilayered thin-film composite material 1 from outside. The unreacted part is heated by the reaction heat generated by this synthesis reaction and the reactions propagate one after another until finally the entire part constitutes the Ni-Ti intermetallic compd. In addition, there is no more formation of different phases exclusive of the Ni-Ti and, therefore, the degradation in the strength of the joint part is lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNiTi系形状記憶合金
および超弾性合金からなる部材の接合に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to joining members made of NiTi type shape memory alloy and superelastic alloy.

【0002】[0002]

【従来の技術】NiTi系形状記憶合金の形状記憶効果
および超弾性効果は、共に変態ヒステリシスの小さい、
いわゆる熱弾性型マルテンサイト変態に起因するもの
で、形状記憶効果とは、マルテンサイト温度領域で変形
されたものがマルテンサイト逆変態(オーステナイト変
態)温度以上に加熱すると元の形に戻る現象である。一
方、超弾性効果とはオーステナイト温度領域で変形した
材料が、変形に伴う応力誘起マルテンサイト変態によっ
て、上記のような加熱なしでも8%もの変形歪みがゴム
のように弾性的に元に戻る現象である。(以下形状記憶
合金、超弾性合金を単に形状記憶合金と言う)。
2. Description of the Related Art The shape memory effect and the superelastic effect of NiTi-based shape memory alloys both have a small transformation hysteresis.
This is due to the so-called thermoelastic martensitic transformation, and the shape memory effect is a phenomenon in which a material deformed in the martensite temperature region returns to its original shape when heated above the martensite reverse transformation (austenite transformation) temperature. . On the other hand, the superelastic effect is a phenomenon in which a material deformed in the austenite temperature region elastically returns to its original deformation strain of 8% even without heating due to the stress-induced martensitic transformation accompanying deformation. Is. (Hereinafter, shape memory alloys and superelastic alloys are simply referred to as shape memory alloys).

【0003】このような形状記憶効果および超弾性効果
を示す材料の中で最も実用化が進んでいるものにNiT
i系合金がある。実際にこのNiTi系合金で形状記憶
効果を応用実用化したものとしてはエアコンの吹出し
口、炊飯ジャーの調圧弁、医療用ボーンプレート等があ
る。また、超弾性効果を応用実用化したものとしては歯
列矯正ワイヤー、ブラジャーのワイヤー、眼鏡フレー
ム、医療用ガイドワイヤー等がある。
Of the materials exhibiting such a shape memory effect and superelasticity effect, NiT is the most practically used material.
There are i-based alloys. Practical applications of this NiTi-based alloy that apply the shape memory effect include air outlets for air conditioners, pressure regulating valves for rice cookers, bone plates for medical use, and the like. In addition, there are orthodontic wires, brassieres wires, eyeglass frames, medical guide wires, etc. that have been put to practical use by applying the superelastic effect.

【0004】さらに現在は、このような実用化に伴い周
辺技術の開発も進められている。その中の一つに、Ni
Ti系合金の接合技術がある。接合技術の確立によって
もたらされるメリットとしては、まず、複雑な形状の素
子や部材を材料の歩留まりよく作製できることが挙げら
れる。特にNiTi系形状記憶合金は、機械加工性が良
好でなくまた高価格であるため、そのメリットは非常に
大きいと考えられる。また、異なる作動温度を有する形
状記憶合金同士の接合が可能になれば本合金の適用範囲
はさらに広がるものと考えられる。
Furthermore, at the present time, peripheral technologies are being developed along with such practical use. One of them is Ni
There is a Ti-based alloy joining technology. One of the merits brought about by the establishment of the joining technology is that elements and members having complicated shapes can be manufactured with a high material yield. In particular, the NiTi-based shape memory alloy is not very good in machinability and is expensive, so that the merit is considered to be very large. In addition, if shape memory alloys having different operating temperatures can be joined together, the range of application of the present alloy will be further expanded.

【0005】[0005]

【発明が解決しようとする課題】従来からNiTi系形
状記憶合金の接合については、レーザー溶接、TIG溶
接、電子ビーム溶接等の融接法もしくはフラッシュバッ
ト溶接、摩擦圧接等の圧接法によって接合が可能であ
る。しかしながら、融接法では柱状晶の鋳造組織を有す
る溶接金属が生じ、強度が低下したり、割れの原因にな
る。またNiTi2 、Ni3 Ti等のNiTi相以外の
金属間化合物相の析出および雰囲気や母材の酸化スケー
ルからの不純物の混入によって形状記憶効果が損なわれ
ることもある。また、接合部分であるビードの形状は1
次元的であり、板を2次元的に重ねて広い面積にたって
接合することはシーム溶接以外の方法ではほとんど不可
能である。これに対し圧接法では溶融層がほとんど生じ
ないか、あるいは生じても加圧によって押出され接合界
面には溶融層が残らないようにすることが可能であるた
め接合部の強度の低下は少なくできる。また2次元的な
接合も可能である。しかし、圧接法では接合できる部材
形状や継手形状が非常に限定され、複雑な形状の素子や
部材を作製することはできない。
Conventionally, NiTi-based shape memory alloys can be joined by fusion welding such as laser welding, TIG welding, electron beam welding or pressure welding such as flash butt welding or friction welding. Is. However, in the fusion welding method, a weld metal having a cast structure of columnar crystals is produced, which causes a decrease in strength and a crack. In addition, the shape memory effect may be impaired by the precipitation of intermetallic compound phases other than the NiTi phase such as NiTi 2 and Ni 3 Ti and the inclusion of impurities from the atmosphere and the oxide scale of the base material. Also, the shape of the bead, which is the joint, is 1
It is dimensional, and it is almost impossible to overlap the plates in a two-dimensional manner and join them over a large area by a method other than seam welding. On the other hand, in the pressure welding method, almost no molten layer is generated, or even if it occurs, it is possible to extrude by pressure so that the molten layer does not remain at the bonding interface, so the decrease in the strength of the bonded portion can be reduced. . Two-dimensional joining is also possible. However, in the pressure welding method, the shapes of members and joints that can be joined are very limited, and it is not possible to fabricate elements or members having complicated shapes.

【0006】本発明は上記の問題について検討の結果、
簡便な方法で接合部の強度の低下が少なく、かつ複雑な
形状の接合部材にも適用できる接合方法を開発したもの
である。
According to the present invention, as a result of studying the above problems,
This is a joint method developed by a simple method that can be applied to a joint member having a complicated shape with little decrease in the strength of the joint.

【0007】[0007]

【課題を解決するための手段】本発明は接合すべき複数
のNiTi系形状記憶合金部材の間に、NiとTiを主
とする2種以上の金属またはNiとTiをそれぞれ主成
分とする合金からなる薄膜多層複合材を配置し、燃焼合
成法によって合金化すると共に、接合を行うことを特徴
とするNiTi系形状記憶合金部材の接合方法を請求項
1とし、前記の薄膜多層複合材の接合後の組成は、Ni
49〜52at%、残りがTiからなる組成、または前
記のNiまたは/およびTiの一部をFe、Cr、A
l、V、Pd、Mn、Co、Nb、Cuの内の1種また
は2種以上で0.01〜2at%の範囲で置換した組成
になるように調整することを特徴とする請求項1記載の
NiTi系形状記憶合金部材の接合方法を請求項2と
し、前記薄膜多層複合材の薄膜の一層の厚さが、100
μm以下であることを特徴とする請求項1記載のNiT
i系形状記憶合金部材の接合方法を請求項3とし、前記
の燃焼合成法は、真空中またはアルゴン、窒素等の不活
性ガス雰囲気中で接合を行うことを特徴とする請求項1
記載のNiTi系形状記憶合金部材の接合方法を請求項
4とし、前記の接合すべき複数のNiTi系形状記憶合
金部材に、熱伝導性の良好な材料からなる冷却板を接触
させ、冷却しながら接合を行うことを特徴とする請求項
1記載のNiTi系形状記憶合金部材の接合方法を請求
項5とするものである。
According to the present invention, between a plurality of NiTi-based shape memory alloy members to be joined, two or more kinds of metals mainly containing Ni and Ti or an alloy containing Ni and Ti as main components, respectively. A thin-film multi-layer composite material is placed, alloyed by a combustion synthesis method, and joined together. A method of joining a NiTi-based shape memory alloy member is defined in claim 1, wherein the thin-film multi-layer composite material is joined. Later composition is Ni
49 to 52 at%, the composition consisting of the balance Ti, or a part of the above Ni or / and Ti is Fe, Cr, A
2. The composition is adjusted so as to have a composition in which one or more of 1, V, Pd, Mn, Co, Nb, and Cu are substituted in the range of 0.01 to 2 at%. The method for joining NiTi-based shape memory alloy members according to claim 2, wherein the thickness of one thin film of the thin-film multilayer composite is 100.
NiT according to claim 1, wherein the NiT is less than or equal to μm.
The method for joining an i-based shape memory alloy member is claim 3, and the combustion synthesis method is performed in a vacuum or in an atmosphere of an inert gas such as argon or nitrogen.
A method of joining NiTi-based shape memory alloy members according to claim 4, wherein a cooling plate made of a material having good thermal conductivity is brought into contact with the plurality of NiTi-based shape memory alloy members to be joined, and the cooling plate is cooled. A method of joining NiTi-based shape memory alloy members according to claim 1 is characterized in that joining is performed.

【0008】[0008]

【作用】接合において部材形状の自由度を高くするため
には融接法もしくはそれに近い方法を取るのが有利なこ
とは明らかであるが、接合部の強度の低下を防ぐために
は融接時に生じる溶融層をできるだけ少なくすると共に
溶融層の組織を微細にすることが必要である。
It is clear that it is advantageous to use the fusion welding method or a method close to it in order to increase the degree of freedom in the shape of members in joining, but in order to prevent the decrease in the strength of the joint, it occurs during fusion welding. It is necessary to minimize the molten layer and make the structure of the molten layer fine.

【0009】本発明は上記の考えに基づいてなされたも
ので、NiTi系形状記憶合金および超弾性合金を接合
する際に、接合すべき部材の間に、NiとTiを主とす
る2種以上の金属またはNiとTiをそれぞれ主成分と
する合金からなる薄膜多層複合材を配置し、燃焼合成法
によって合金化すると共に接合を行うものである。さら
に母材の溶け込みを少なくし、かつ溶融層の微細な組織
を得るために熱伝導性の良好な材料からなる冷却板を接
合部に接触させ冷却するという方法をとるものである。
本発明はこのような方法によって融接法の特徴である接
合部材形状の高い自由度を有し、かつ溶融層を少なく、
組織を微細にすることができ、また2次元的な接合を可
能としたものである。
The present invention has been made on the basis of the above-mentioned idea, and when joining a NiTi type shape memory alloy and a superelastic alloy, two or more kinds mainly containing Ni and Ti are provided between the members to be joined. The thin-film multi-layer composite material made of the above-mentioned metal or an alloy containing Ni and Ti as the main components is arranged and alloyed and joined by the combustion synthesis method. Further, in order to reduce the penetration of the base material and to obtain a fine structure of the molten layer, a cooling plate made of a material having good thermal conductivity is brought into contact with the joint portion to cool it.
The present invention by such a method has a high degree of freedom in the shape of the joining member, which is a feature of the fusion welding method, and reduces the molten layer,
The structure can be made fine and two-dimensional bonding is possible.

【0010】本発明によれば、NiとTiを主とする薄
膜多層複合材を、接合すべきNiTi系形状記憶合金部
材の間に配置し、薄膜多層複合材の一端に外部から入熱
すると、NiとTiが合成反応を起こしてNiTi金属
間化合物を生成し、この合成反応によって生じた反応熱
によって未反応の部分が加熱され、次々と反応が伝播し
最後には全体がNiTi金属間化合物となる燃焼合成法
を利用し、このとき生じる反応熱によって接合すべき部
材をわずかに溶解し、接合をすることができる。
According to the present invention, when a thin film multi-layer composite material mainly composed of Ni and Ti is arranged between NiTi type shape memory alloy members to be joined and heat is externally applied to one end of the thin film multi-layer composite material, Ni and Ti undergo a synthetic reaction to form a NiTi intermetallic compound, the unreacted portion is heated by the reaction heat generated by this synthetic reaction, the reaction propagates one after another, and finally the whole becomes a NiTi intermetallic compound. By using the combustion synthesis method described above, the members to be joined can be slightly melted by the reaction heat generated at this time to join.

【0011】また本発明によれば、熱伝導性の良好な材
料からなる冷却板を接合部に接触させ冷却しつつ接合を
行うので、接合部材の溶け込みが最小限に抑えられ、か
つ溶融した部分は急速に冷却されるので微細な組織とな
り、従来の融接法の短所である溶融層による接合部の強
度の低下が少なくなる。
Further, according to the present invention, since the cooling plate made of a material having a good thermal conductivity is brought into contact with the joint portion to perform the joint while cooling, the melting of the joint member is suppressed to the minimum and the melted portion is suppressed. Is cooled rapidly and has a fine structure, and the decrease in strength of the joint due to the molten layer, which is a disadvantage of the conventional fusion welding method, is reduced.

【0012】従来の融接法においては部材を溶融させる
熱はアーク、電子ビーム等により溶接部全体にわたって
外部から供給しなければならないので、本発明のように
溶接部全体を冷却板により冷却することは不可能であ
る。また仮に冷却板が使用できる形状であったとして
も、冷却板の使用によって供給した熱が奪われ、接合部
を加熱することが困難になる。
In the conventional fusion welding method, the heat for melting the member must be supplied from the outside over the entire welded portion by means of an arc, an electron beam, etc. Therefore, the entire welded portion should be cooled by a cooling plate as in the present invention. Is impossible. Even if the cooling plate has a shape that can be used, the heat supplied is lost by using the cooling plate, and it becomes difficult to heat the joint portion.

【0013】本発明においては接合部を融解させる熱は
合成反応によって内部より発生し、しかもその熱量は非
常に大きいため、冷却板によって冷却をしながら接合部
を加熱融解させることが容易である。さらに本発明の接
合方法においては、圧接法やシーム溶接法と違って接合
作業時の接合部材の保持は単純に支えるだけでよく、従
来の融接法に近い。また、この薄膜多層複合材はそれ自
体の形状が金属薄板状であるため、接合部の形状に合わ
せて自由に切ったり曲げたりできる。本発明の接合方法
はこれらの点で接合部材の形状の自由度が大きく、複雑
な形状の素子や部材を作製することが容易である。また
接合作業自体が極めて簡便に行える。
In the present invention, the heat for melting the joint is generated internally from the synthesis reaction, and the amount of heat is very large. Therefore, it is easy to heat and melt the joint while cooling with the cooling plate. Further, in the joining method of the present invention, unlike the pressure welding method and the seam welding method, the holding of the joining member at the time of joining work may be simply supported, which is similar to the conventional fusion welding method. Further, since the thin-film multi-layer composite material itself has a thin metal plate shape, it can be freely cut or bent according to the shape of the joint. In these respects, the joining method of the present invention has a large degree of freedom in the shape of the joining member, and it is easy to manufacture an element or member having a complicated shape. Further, the joining work itself can be performed very easily.

【0014】本発明において、前記の薄膜多層複合材の
接合後の組成をNi49〜52at%に調整するのは、
接合部を通常のNiTi系形状記憶合金および超弾性合
金の組成と同じ組成にするためであり、この組成の範囲
外ではそれぞれの特性を発揮しないからである。また前
記のNiまたは/およびTiの一部をFe、Cr、A
l、V、Pd、Mn、Co、Nb、Cuの内の1種また
は2種以上で0.01〜2atの範囲で置換するのは、
前記と同様に通常のNiTi系形状記憶合金や超弾性合
金には、それぞれ前記のFe、Cr等の第三元素でNi
やTiを置換して、形状記憶特性や機械的性質が改善さ
れており、本発明においてもこれと同様の組成とするた
めである。
In the present invention, the composition of the thin film multi-layer composite material after bonding is adjusted to Ni 49 to 52 at%.
This is because the joint portion has the same composition as the composition of the usual NiTi-based shape memory alloy and the superelastic alloy, and the respective properties are not exhibited outside the range of this composition. Further, a part of the above Ni or / and Ti may be Fe, Cr, A
Substituting one or more of 1, V, Pd, Mn, Co, Nb, and Cu in the range of 0.01 to 2 at
Similar to the above, the usual NiTi-based shape memory alloys and superelastic alloys contain the above-mentioned third elements such as Fe and Cr as Ni.
This is because, by substituting Ti and Ti, the shape memory characteristics and mechanical properties are improved, and the same composition is used in the present invention.

【0015】上記の薄膜多層複合材の組成を調整するに
は、NiとTiの素板を交互にかさね合わせ、圧延によ
り複合するか、またはNiまたは/およびTiに第3元
素、例えばFeおよびCuを添加してNi−FeとTi
−Cuとした素板を用いて複合し、組成を調整するもの
である。この場合は燃焼合成法により反応するが、素板
にNi−Tiの合金板、またはこれに第3元素を添加し
たNi−Ti系合金板を用いた場合は、素板自体がすで
に合金化されているため燃焼合成法によっても反応しな
いか、または反応が不十分となり、良好な接合が得られ
ない。また組成を調整する方法としては、NiおよびT
iと第3元素の夫々の素板を用いて、それぞれの素板の
大きさや枚数を変えて複合してもよい。このようにし
て、圧延、複合された薄膜多層複合材の薄膜の一層の厚
さは100μm以下とすることが望ましい。100μm
をこえる厚さでは、反応性が悪くなり、反応後の組成の
バラツキが大きくなって均一性が損なわれるおそれがあ
る。さらに前記の燃焼合成法は、真空中またはアルゴ
ン、窒素等の不活性ガス雰囲気中で接合を行うことが望
ましく、これにより接合部の酸化が防止され良好な接合
ができる。なお前記したように本発明において、NiT
i系形状記憶合金とは、NiTi系超弾性合金を含むも
のである。
In order to adjust the composition of the above-mentioned thin film multi-layer composite material, Ni and Ti blanks are alternately laminated and compounded by rolling, or Ni or / and Ti are mixed with a third element such as Fe and Cu. Added Ni-Fe and Ti
The composition is adjusted by compounding using a base plate made of -Cu. In this case, the reaction is performed by the combustion synthesis method, but when a Ni-Ti alloy plate or a Ni-Ti alloy plate in which a third element is added to the base plate is used, the base plate itself has already been alloyed. Therefore, the reaction does not occur or the reaction becomes insufficient even by the combustion synthesis method, and good joining cannot be obtained. As a method for adjusting the composition, Ni and T
It is also possible to use the respective raw plates of i and the third element, and change the size and the number of the respective raw plates to form a composite. In this way, it is desirable that the thickness of the thin film of the thin film multilayer composite material that is rolled and composited is 100 μm or less. 100 μm
If the thickness exceeds the above range, the reactivity may be deteriorated and the composition after the reaction may be greatly varied to deteriorate the uniformity. Further, in the above combustion synthesis method, it is desirable to carry out the bonding in a vacuum or in an atmosphere of an inert gas such as argon or nitrogen, whereby oxidation of the bonded portion is prevented and good bonding can be achieved. As described above, in the present invention, NiT
The i-based shape memory alloy includes a NiTi-based superelastic alloy.

【0016】[0016]

【実施例】以下に本発明の一実施例について説明する。
厚さ0.81mmのTi板10枚と厚さ0.53mmのNi
板10枚を交互に重ね合わせ、圧下率95%まで冷間圧
延を行い、Ni51.0at%、残部Tiからなる厚さ
0.7mmの薄膜多層複合材を作製した。一方、通常の溶
解鋳造および熱間圧延によって組成が51.0at%N
iのNiTi系形状記憶合金の板を作製し、母材とし
た。母材板表面の酸化皮膜は研磨により取り除いた。次
に図1に示すようにL字型に曲げた板の前記NiTi系
形状記憶合金母材2の板を合わせ、合わせ目に同じ大き
さの前記薄膜多層複合材1をはさみこみ、冷却用の水冷
銅ブロック3で母材で両側からはさんだ。これを10-5
torrの真空中で、薄膜多層複合材1の一端に点火用抵抗
加熱線4の通電加熱により点火し、反応を生じさせた。
薄膜多層複合材1の一端に点火することで反応熱によっ
て次々と反応が伝播し、融解した。また母材板もわずか
に融解した。これらは水冷銅ブロック3による冷却でた
だちに凝固した。このようにして2枚のL字型板に接合
することができた。一方、比較のため、従来のシーム溶
接法により、同様にL字型のNiTi系形状記憶合金を
溶接した。
EXAMPLES An example of the present invention will be described below.
Ten Ti plates with a thickness of 0.81 mm and Ni with a thickness of 0.53 mm
Ten plates were alternately stacked and cold-rolled to a rolling reduction of 95% to produce a thin-film multilayer composite material having a thickness of 0.7 mm consisting of Ni of 51.0 at% and the balance of Ti. On the other hand, the composition was 51.0 at% N by ordinary melt casting and hot rolling.
A NiTi shape memory alloy plate of i was prepared and used as a base material. The oxide film on the surface of the base material plate was removed by polishing. Next, as shown in FIG. 1, L-shaped bent plates of the NiTi-based shape memory alloy base material 2 are put together, the thin-film multilayer composite material 1 of the same size is sandwiched between the seams, and water-cooled for cooling. It is a base material with copper block 3 and is sandwiched from both sides. This is 10 -5
In a vacuum of torr, one end of the thin-film multilayer composite material 1 was ignited by energizing and heating the resistance heating wire 4 for ignition to cause a reaction.
By igniting one end of the thin film multilayer composite material 1, the reaction heat was successively propagated by the heat of reaction and melted. The base material plate also melted slightly. These were immediately solidified by cooling with the water-cooled copper block 3. In this way, it was possible to join the two L-shaped plates. On the other hand, for comparison, an L-shaped NiTi-based shape memory alloy was similarly welded by the conventional seam welding method.

【0017】これらの接合部の断面の金属組織の模式図
を図2および図3に示す。図2は本発明方法によって接
合したもの、図3は従来の融接法によって接合したもの
である。図3の従来の融接法では熱流の方向に沿って上
方へ粗大な柱状晶として凝固が進行し、特に柱状晶に直
角方向の伸びや衝撃値が低下する。また柱状晶の先端や
間にはNi3 Ti等の異相も生じやすい。これに対し、
本発明方法では図2のように接合部全体にわたって微細
かつ均質な組織になっており、またNiTi以外の相は
生じていなかった。また、組成の配合値からのずれは
0.1at%以内におさまっていた。
A schematic view of the metallographic structure of the cross section of these joints is shown in FIGS. 2 and 3. FIG. 2 shows the joint by the method of the present invention, and FIG. 3 shows the joint by the conventional fusion welding method. In the conventional fusion welding method of FIG. 3, solidification proceeds as coarse columnar crystals upward along the direction of heat flow, and in particular, the elongation in the direction perpendicular to the columnar crystals and the impact value decrease. Further, a heterogeneous phase such as Ni 3 Ti is likely to occur at the tips or between the columnar crystals. In contrast,
According to the method of the present invention, as shown in FIG. 2, the entire joint has a fine and uniform structure, and no phase other than NiTi has occurred. Further, the deviation from the composition value of the composition was within 0.1 at%.

【0018】接合強度を調べるために剥離試験を行っ
た。剥離試験方法の概略を図4に示す。同一形状の接合
部材を本発明方法と従来方法でそれぞれ作製し、図4中
の矢印方向に引張荷重をかけ、接合部に破壊が始まった
荷重で評価した。本発明方法で接合したのは従来方法で
接合したものに比べて約1.8倍の荷重まで破壊が生じ
なかった。
A peel test was conducted to examine the bonding strength. An outline of the peeling test method is shown in FIG. Bonding members having the same shape were produced by the method of the present invention and the conventional method, respectively, and a tensile load was applied in the direction of the arrow in FIG. With the method of the present invention, the fracture did not occur up to about 1.8 times the load of the method with the conventional method.

【0019】また前記と同様のNi板とTi板およびF
e板を用い、薄膜多層複合材の接合後の組成がNi5
0.5at%、Fe0.2at%、残りTiになるよう
に、素板の枚数を調整して作製した薄膜多層複合材を用
い、前記と同様に接合した。そして前記と同様に接合部
の組織の観察、および曲げ試験を行った結果、前記の本
発明方法の場合と略同様の結果を示した。
Further, the same Ni plate, Ti plate and F as described above are used.
The composition after joining the thin-film multilayer composite is Ni5 using the e-plate.
The thin-film multi-layer composite material was prepared by adjusting the number of blanks so that the content was 0.5 at%, Fe 0.2 at%, and the balance was Ti. Then, as a result of observing the structure of the joint portion and conducting a bending test in the same manner as described above, substantially the same result as in the case of the method of the present invention was shown.

【0020】[0020]

【発明の効果】以上に説明したように本発明によれば、
NiTi系形状記憶合金を接合する際に、接合部の柱状
晶の発生を抑えて微細かつ均一な組織にすることがで
き、またNiTi以外の異相の生成もなくなるので、従
来の融接法に比べて接合部の強度の低下が少なくなる。
また広い面積にわたって2次元的に重ね合わせ接合する
ことが容易に可能になる。さらに圧接法やシーム溶接法
と違って接合部材の形状の自由度は大きく、しかも加熱
が抵抗線の通電加熱のみで良いため、簡便かつ容易に接
合ができるという効果がある。
As described above, according to the present invention,
When joining NiTi-based shape memory alloys, it is possible to suppress the formation of columnar crystals in the joints and to form a fine and uniform structure, and because the formation of heterogeneous phases other than NiTi is also eliminated, compared to the conventional fusion welding method. As a result, the decrease in the strength of the joint is reduced.
In addition, it is possible to easily perform two-dimensional overlapping and joining over a wide area. Further, unlike the pressure welding method and the seam welding method, the degree of freedom of the shape of the joining member is large, and moreover, heating can be performed only by electric heating of the resistance wire, so that the joining can be easily and easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るNiTi系形状記憶合
金部材の接合方法の概略図
FIG. 1 is a schematic view of a method for joining NiTi-based shape memory alloy members according to an embodiment of the present invention.

【図2】本発明の接合方法により接合したNiTi系形
状記憶合金部材の接合部断面の金属組織の模式図
FIG. 2 is a schematic diagram of a metallographic structure of a cross section of a joint portion of a NiTi-based shape memory alloy member joined by the joining method of the present invention.

【図3】従来の接合方法により接合したNiTi系形状
記憶合金部材の接合部断面の金属組織の模式図
FIG. 3 is a schematic diagram of a metal structure of a cross section of a joint portion of a NiTi-based shape memory alloy member joined by a conventional joining method.

【図4】本発明の一実施例に係る剥離試験方法を示す概
略図
FIG. 4 is a schematic diagram showing a peeling test method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 薄膜多層複合材 2 NiTi系形状記憶合金母材 3 水冷銅ブロック 4 点火用抵抗加熱線 5 接合部 1 Thin Film Multilayer Composite Material 2 NiTi Shape Memory Alloy Base Material 3 Water-Cooled Copper Block 4 Ignition Resistance Heating Wire 5 Joint

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 接合すべき複数のNiTi系形状記憶合
金部材の間に、NiとTiを主とする2種以上の金属ま
たはNiとTiをぞれぞれ主成分とする合金からなる薄
膜多層複合材を配置し、燃焼合成法によって合金化する
と共に、接合を行うことを特徴とするNiTi系形状記
憶合金部材の接合方法。
1. A thin film multilayer comprising a plurality of NiTi-based shape memory alloy members to be joined and made of two or more kinds of metals mainly composed of Ni and Ti or an alloy composed mainly of Ni and Ti respectively. A joining method for a NiTi-based shape memory alloy member, comprising arranging a composite material, alloying it by a combustion synthesis method, and performing joining.
【請求項2】 前記の薄膜多層複合材の接合後の組成
は、Ni49〜52at%、残りがTiからなる組成、
または前記のNiまたは/およびTiの一部をFe、C
r、Al、V、Pd、Mn、Co、Nb、Cuの内の1
種または2種以上で0.01〜2at%の範囲で置換し
た組成になるように調整することを特徴とする請求項1
記載のNiTi系形状記憶合金部材の接合方法。
2. The composition of the thin-film multi-layer composite material after bonding is Ni 49 to 52 at%, and the balance Ti.
Alternatively, a part of the above Ni or / and Ti may be Fe, C
1 of r, Al, V, Pd, Mn, Co, Nb and Cu
It adjusts so that it may become a composition which substituted in the range of 0.01-2at% by 1 type or 2 types or more.
A method for joining NiTi-based shape memory alloy members as described.
【請求項3】 前記薄膜多層複合材の薄膜の一層の厚さ
が、100μm以下であることを特徴とする請求項1記
載のNiTi系形状記憶合金部材の接合方法。
3. The method for joining NiTi-based shape memory alloy members according to claim 1, wherein the thin film of the thin film multilayer composite has a thickness of 100 μm or less.
【請求項4】 前記の燃焼合成法は、真空中またはアル
ゴン、窒素等の不活性ガス雰囲気中で接合を行うことを
特徴とする請求項1記載のNiTi系形状記憶合金部材
の接合方法。
4. The method for joining NiTi-based shape memory alloy members according to claim 1, wherein the combustion synthesis method is performed in vacuum or in an atmosphere of an inert gas such as argon or nitrogen.
【請求項5】 前記の接合すべき複数のNiTi系形状
記憶合金部材に、熱伝導性の良好な材料からなる冷却板
を接触させ、冷却しながら接合を行うことを特徴とする
請求項1記載のNiTi系形状記憶合金部材の接合方
法。
5. The cooling plate made of a material having good thermal conductivity is brought into contact with the plurality of NiTi-based shape memory alloy members to be bonded, and the bonding is performed while cooling. The method for joining NiTi-based shape memory alloy members of.
JP25483193A 1993-09-17 1993-09-17 Method for joining ni-ti based shape memory alloy member Pending JPH0788674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25483193A JPH0788674A (en) 1993-09-17 1993-09-17 Method for joining ni-ti based shape memory alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25483193A JPH0788674A (en) 1993-09-17 1993-09-17 Method for joining ni-ti based shape memory alloy member

Publications (1)

Publication Number Publication Date
JPH0788674A true JPH0788674A (en) 1995-04-04

Family

ID=17270466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25483193A Pending JPH0788674A (en) 1993-09-17 1993-09-17 Method for joining ni-ti based shape memory alloy member

Country Status (1)

Country Link
JP (1) JPH0788674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094383A (en) * 2015-11-27 2017-06-01 株式会社デンソー Cooler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094383A (en) * 2015-11-27 2017-06-01 株式会社デンソー Cooler

Similar Documents

Publication Publication Date Title
EP0508414B1 (en) Joined parts of Ni-Ti alloys with different metals and joining method therefor
US7156282B1 (en) Titanium-aluminide turbine wheel and shaft assembly, and method for making same
JP5388157B2 (en) Aluminum alloy clad material for forming
JP2733016B2 (en) Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
EP0854002A1 (en) Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere
JP2820613B2 (en) Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
JP3243184B2 (en) Alloy foil for liquid phase diffusion bonding that can be bonded in oxidizing atmosphere
JP3434128B2 (en) Liquid phase diffusion bonding alloy foil that can be bonded in oxidizing atmosphere
JPH06322413A (en) Method for joining niti shape memory alloy
JPH05202706A (en) Engine valve and manufacture thereof
JPH0788674A (en) Method for joining ni-ti based shape memory alloy member
WO2019049792A1 (en) Welding method and joining member
JPH02185940A (en) Alloy foil for liquid-phase diffusion joining capable of joining in oxidizing atmosphere
JP3822851B2 (en) Alloy for low melting point iron-based joining
JPH02151377A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JP3434126B2 (en) Liquid phase diffusion bonding alloy foil that can be bonded in oxidizing atmosphere
JP2003117679A (en) Composite brazing filler metal and composite material for brazing and brazing method
JPH0788673A (en) Method for joining ni-ti based shape memory alloy member
JPH02151378A (en) Alloy foil for liquid phase diffusion joining which can be joined in oxidation atmosphere
JP2737817B2 (en) Joint between Ni-Ti alloy and dissimilar metal and joining method thereof
KR102226046B1 (en) Brazing filler metal and the manufacturing method thereof
JP3822850B2 (en) Iron-based low melting point alloy
JPH08325636A (en) Production of structural part equipped with element brazed to base material
JP5386706B2 (en) High purity iron alloy joint with excellent solid-phase bondability
JP2004209490A (en) Clad material for welding structure and welding structure member using the clad material