JPH06321852A - Production of 1,3-cyclohexanedicarboxylic acid - Google Patents

Production of 1,3-cyclohexanedicarboxylic acid

Info

Publication number
JPH06321852A
JPH06321852A JP5137007A JP13700793A JPH06321852A JP H06321852 A JPH06321852 A JP H06321852A JP 5137007 A JP5137007 A JP 5137007A JP 13700793 A JP13700793 A JP 13700793A JP H06321852 A JPH06321852 A JP H06321852A
Authority
JP
Japan
Prior art keywords
steam
acid
chda
cyclohexanedicarboxylic acid
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5137007A
Other languages
Japanese (ja)
Other versions
JP3268890B2 (en
Inventor
Yoshiaki Tateno
芳明 立野
Tomohaya Sano
智早 佐野
Kotone Tanaka
琴音 田中
Mitsuo Magara
光男 真柄
Naoki Okamoto
直記 岡本
Kazuaki Kato
和昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Towa Chemical Industry Co Ltd
Original Assignee
Towa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa Chemical Industry Co Ltd filed Critical Towa Chemical Industry Co Ltd
Priority to JP13700793A priority Critical patent/JP3268890B2/en
Publication of JPH06321852A publication Critical patent/JPH06321852A/en
Application granted granted Critical
Publication of JP3268890B2 publication Critical patent/JP3268890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To facilitate actualization of economic hydrogenation reaction by greatly suppressing redaction in activity of an expensive palladium catalyst and to obtain extremely high-purity 1,3-CHDA by simple procedure by bringing a solution containing the hydrogenation reaction product into contact with steam. CONSTITUTION:In producing 1,3-cyclohexanedicarboxylic acid, two processes wherein the first process is carried out by hydrogenating an isophthalic acid- containing solution in the presence of a palladium catalyst in an acid-resistant container or a container lined with an acid-resistant substance and the second process is done by bringing a 1,3-cyclohexanedicarboxylic acid-containing solution obtained by the first process into contact with steam and removing the impurities transferred to the steam side are successively conducted to provide a characteristic production method of 1,3-cyclohexanedicarboxylic acid. By using the high-purity 1,3-CHDA, a resin having excellent weather resistance and mechanical strength and a high-purity medicine can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】[Industrial applications]

【0002】本発明は、1,3−シクロヘキサンジカル
ボン酸(以下、1,3−CHDAと云うことがある。)
の製造方法に関する。
The present invention is 1,3-cyclohexanedicarboxylic acid (hereinafter sometimes referred to as 1,3-CHDA).
Manufacturing method.

【0003】[0003]

【従来の技術】[Prior art]

【0004】1,3−CHDAは、医薬品や合成樹脂、
合成繊維、塗料等の原料として有用であり、特に、耐熱
性、耐候性、物理的強度等の優れた樹脂や繊維製造用の
原料として用いられる。
1,3-CHDA is a drug or synthetic resin,
It is useful as a raw material for synthetic fibers, paints and the like, and is particularly used as a raw material for producing resins and fibers having excellent heat resistance, weather resistance and physical strength.

【0005】1,3−CHDAを製造する方法として
は、工業用原料として製造されているイソフタル酸(以
下、IPAと云うことがある。)の中でも純度の高い物
を用い、ベンゼン環を水素化して得る方法が代表的であ
り、既にいくつかの方法が報告されている。
As a method for producing 1,3-CHDA, a highly pure one of isophthalic acid (hereinafter sometimes referred to as IPA) produced as an industrial raw material is used to hydrogenate a benzene ring. A typical method is to obtain it, and some methods have already been reported.

【0006】それらの方法の中には、大きく分けると、
IPAの酸部分を一度ナトリウム等の金属塩にしたり、
各種エステルにしてからベンゼン環を還元する方法と、
酸のまま還元する方法がある。
[0006] Some of these methods are roughly divided into
Once the acid part of IPA is changed to a metal salt such as sodium,
A method of reducing the benzene ring after forming various esters,
There is a method to reduce the acid as it is.

【0007】前者の方法は、例えばUSP2,828,
335号公報等に紹介されているように、イソフタル酸
を水酸化ナトリウム等に溶解してイソフタル酸ナトリウ
ム塩とし、酸化ルテニウム等を触媒として還元し、酸を
用いてナトリウムを外すと云うものであるが、原料のI
PAを一度誘導体の形にしておき、還元した後に再度酸
の形に戻すと云う手間が余計にかかることから、酸のま
ま還元する方法が経済的であり、有力視されてきた。
The former method is, for example, USP 2,828,
As disclosed in Japanese Patent No. 335, etc., it is said that isophthalic acid is dissolved in sodium hydroxide or the like to give sodium salt of isophthalic acid, which is reduced using ruthenium oxide or the like as a catalyst, and sodium is removed using an acid. But the raw material I
Since it takes extra time to convert PA into a derivative form once and then reduce it back to the acid form, it has been regarded as economical and promising to reduce the acid as it is.

【0008】多くの試みにも拘らず、酸のまま還元する
ことに成功した例は比較的少ないが、例えば、ジャーナ
ル・オブ・オルガニック・ケミストリー(Journal of O
rganic Chemistry),31(10)p3438−9(1
966)には、IPAを水溶媒中で、ロジウム・アルミ
ナ触媒の存在下で、60〜70℃、水素圧3気圧以下の
条件で水素化し、目的の1,3−CHDA(融点112
−134℃)をシス体:トランス体=60:40の比率
で、96%程度の収率で得る方法が紹介されている。
In spite of many attempts, there are relatively few cases where the reduction with acid is successful, but, for example, Journal of Organic Chemistry (Journal of O
rganic Chemistry), 31 (10) p3438-9 (1)
966), IPA was hydrogenated in a water solvent in the presence of a rhodium-alumina catalyst under the conditions of 60 to 70 ° C. and a hydrogen pressure of 3 atm or less to obtain the desired 1,3-CHDA (melting point: 112).
A method for obtaining (-134 ° C.) at a ratio of cis isomer: trans isomer = 60: 40 with a yield of about 96% is introduced.

【0009】[0009]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0010】最近、1,3−CHDAを原料として用い
る樹脂等の分野に於いて国際的な競争力と高度な機能を
有する製品が要求されるにつれて、その原料にも国際的
な価格競争力がありながら極めて不純物の少ない品、例
えば、1,3−CHDAの純度が99.9重量%程度の
高純度品や、塩素等の無機物の少ない品、シクロヘキサ
ンカルボン酸類縁体等の不純物の少ない品等が従来品と
あまり変わらない価格で提供されることが要望されてい
る。
Recently, in the field of resins and the like using 1,3-CHDA as a raw material, as products having international competitiveness and advanced functions are required, the raw materials also have international price competitiveness. Products with extremely few impurities, such as high-purity products with 1,3-CHDA purity of about 99.9% by weight, products with few inorganic substances such as chlorine, products with few impurities such as cyclohexanecarboxylic acid analogs, etc. Is required to be offered at a price that is not much different from conventional products.

【0011】しかしながら、従来の製造方法により得ら
れる1,3−CHDAには、現在の高度な品質上の要求
に答えられるほど高い純度ではなく、例え何らかの製造
方法が考察されたとしても、極めて繁雑で高価なプロセ
スが要求され、実用性が無いと云う課題が残されてい
た。
However, the 1,3-CHDA obtained by the conventional production method is not so high in purity as to meet the present demands for high quality, and even if some production method is considered, it is extremely complicated. However, an expensive process was required, and there was a problem that it was not practical.

【0012】例えば、前記のイソフタル酸をナトリウム
塩にしてから還元する方法について云えば、実際に追試
を試みると、触媒の活性低下が激しく、還元に要する触
媒の費用が極めて高価になると云う課題があったのであ
る。
[0012] For example, regarding the above-mentioned method of reducing isophthalic acid to a sodium salt and then reducing it, when an additional trial is actually attempted, there is a problem that the activity of the catalyst is drastically lowered and the cost of the catalyst required for the reduction becomes extremely high. There was.

【0013】また、その他にも、反応時に副成する4−
メチルシクロヘキサンカルボン酸等のシクロヘキサンカ
ルボン酸類縁体や、原料IPAの溶解に使用するアルカ
リや水素化反応物からの1,3−CHDAの回収の際に
使用する酸から生じる硫酸ナトリウム、塩化ナトリウム
等の無機塩類の不純物が、1,3−CHDAに混入する
のを避けられないと云う致命的な課題も残されていた。
In addition to the above, 4-by-products formed during the reaction
Cyclohexanecarboxylic acid analogs such as methylcyclohexanecarboxylic acid, sodium sulfate, sodium chloride, etc. generated from the acid used when recovering 1,3-CHDA from the alkali or hydrogenation reaction product used for dissolving the raw material IPA There is also a fatal problem that impurities of inorganic salts cannot be avoided from being mixed in 1,3-CHDA.

【0014】従って、この方法によって得られた1,3
−CHDAを原料として用いた樹脂等の重合反応の際
に、原料中の不純物の存在に起因する反応のムラが発生
することや、得られた樹脂等の製品の耐熱性や物理的強
度、耐候性等が原料中の不純物によって著しく損なわれ
ること等の欠点があり、それらの欠点の改善も課題とし
て残されていた。
Therefore, 1,3 obtained by this method
-In the polymerization reaction of a resin or the like using CHDA as a raw material, the unevenness of the reaction may occur due to the presence of impurities in the raw material, and the heat resistance, physical strength, and weather resistance of the obtained resin or other product. There are drawbacks such as the fact that the properties and the like are remarkably impaired by impurities in the raw material, and improvement of these drawbacks has been left as an issue.

【0015】また、例えば、前記イソフタル酸を直接還
元する方法について云えば、触媒として用いられている
ロジウムがパラジウムやルテニウムの10倍程度と云う
極めて高価なものでありながら、その価格ほどには触媒
寿命が長くなく、また、反応生成物中の目的物の純度が
96%程度と低く、且つ、反応時に副成するシクロヘキ
サンカルボン酸類縁体等の不純物が1,3−CHDAに
混入するのを避けられないと云う課題も残されていたの
である。
Further, regarding the method for directly reducing the isophthalic acid, for example, although the rhodium used as a catalyst is about 10 times as expensive as palladium or ruthenium, it is very expensive, but the catalyst is not so expensive. The life is not long, the purity of the target product in the reaction product is as low as about 96%, and avoids contamination of 1,3-CHDA with impurities such as cyclohexanecarboxylic acid analogs formed as a by-product during the reaction. There was also a problem that they could not do.

【0016】これらの課題を解決する手段として、1,
3−CHDA含有物の結晶化も考えられるが、1,3−
CHDAと副成物であるシクロヘキサンカルボン酸類縁
体との構造及び性質が比較的似ているため、結晶化によ
り96%程度の1,3−CHDA純度を99.9%以上
に向上することはそれほど容易ではない。
As means for solving these problems, 1,
Crystallization of 3-CHDA-containing products is also conceivable, but
Since CHDA and the by-product cyclohexanecarboxylic acid analog have relatively similar structures and properties, it is not so much that the crystallization improves the 96-% 1,3-CHDA purity to 99.9% or more. It's not easy.

【0017】その他に、触媒の使用を繰り返すにつれ
て、未還元物を残さないためには高い温度や高い圧力が
要求されるが、その厳しい温度条件故に反応生成物の
1,3−CHDA純度が低くなると云う課題も残されて
いた。
In addition, as the use of the catalyst is repeated, a high temperature and a high pressure are required in order not to leave an unreduced substance, but due to the severe temperature condition, the purity of 1,3-CHDA of the reaction product is low. There was also an issue to be answered.

【0018】前記に開示されている1,3−CHDAの
製造方法では、活性の失われていない新しい触媒を用い
て製造した例が開示されており、表面上は比較的高い純
度の1,3−CHDAが得られる方法に見えるが、本発
明者等の追試によれば、触媒を繰り返して使用した場合
には、殆ど全ての方法が低い純度の1,3−CHDAを
生成し、そのままでは実用に耐えないことが明らかにな
った。
In the method for producing 1,3-CHDA disclosed above, an example in which a new catalyst in which the activity is not lost is used is disclosed, and 1,3 having a relatively high purity on the surface is prepared. Although it seems to be a method of obtaining -CHDA, according to an additional test by the present inventors, almost all the methods produce low-purity 1,3-CHDA when the catalyst is repeatedly used, and are practically used as they are. It became clear that he could not stand.

【0019】その原因は、多くの場合、不純物は生成し
ているけれども、触媒の担体として使用している活性炭
等の吸着点に優先的に吸着される故、見掛け上1,3−
CHDAの純度が高く見えるだけであり、活性炭等の吸
着容量は少ないので、その吸着容量が満たされた後は、
本来生成している不純物が反応で生成したままの割合で
検出されることにあると思われる。
In many cases, the cause is that impurities are generated, but the impurities are preferentially adsorbed at the adsorption points of activated carbon or the like used as a carrier of the catalyst.
The purity of CHDA only looks high, and the adsorption capacity of activated carbon etc. is small, so after the adsorption capacity is satisfied,
It seems that the originally produced impurities are detected at the rate as they are produced in the reaction.

【0020】また、従来の製造方法では、ステンレス製
の耐圧容器が採用されているが、本発明者等の詳細な研
究によれば、通常のステンレス製容器にIPAや1,3
−CHDAの液を入れ、水素添加反応が行われる程度の
温度で容器壁と接触させた場合には、ステンレス鋼の成
分であるニッケル、鉄、クロム、モリブテン等が液中に
溶出し、ある濃度以上に金属が溶出してくると、その金
属が触媒毒となって触媒の活性を著しく減衰させること
が明らかになった。
Further, in the conventional manufacturing method, a pressure resistant container made of stainless steel is adopted, but according to a detailed study by the present inventors, IPA or 1,3 was added to a normal stainless steel container.
When the CHDA solution is put in and brought into contact with the vessel wall at a temperature at which the hydrogenation reaction is carried out, nickel, iron, chromium, molybdenum, etc., which are components of stainless steel, are eluted into the solution and a certain concentration is reached. It was revealed that when the metal is eluted as described above, the metal becomes a catalyst poison and the activity of the catalyst is significantly attenuated.

【0021】本発明者等の研究によれば、溶出した金属
の濃度が5〜10ppm程度まではあまり深刻な影響は
無いが、20ppm程度から影響が大きくなりはじめる
ので、この溶出金属による触媒寿命の短縮と云う課題に
ついても対策を講ずることが望まれていたのである。
According to the research conducted by the present inventors, there is no serious effect until the concentration of the eluted metal is about 5 to 10 ppm, but the effect begins to increase from about 20 ppm. It was desired to take measures against the problem of shortening.

【0022】これらの事情から、従来の方法では触媒の
活性低下が早いので経済的な製造が出来なかったこと、
また、1,3−CHDAを得るうえで、従来の反応から
は見掛け以上に多くの不純物が生成しているので、反応
生成物は到底最近の高度な要求を満たすに至らず、更
に、従来の技術で1,3−CHDAの純度を高くするこ
とも困難であったことから、前記諸々の課題を解決する
方法の開発が切望されていたのである。
Under these circumstances, the conventional method could not be economically produced because the activity of the catalyst deteriorates quickly.
Further, in obtaining 1,3-CHDA, more impurities than are apparent from the conventional reaction are produced, so that the reaction product does not meet the recent high demands, and Since it was also difficult to raise the purity of 1,3-CHDA by the technology, it has been earnestly desired to develop a method for solving the above various problems.

【0023】[0023]

【課題を解決するための手段】[Means for Solving the Problems]

【0024】本発明者等は、IPA又はそのアルカリ塩
の各種反応に対する挙動や水素化反応物の性質を研究
し、その経済的な工程の実現や製品の高純度化の方法を
鋭意検討した結果、触媒の活性低下の原因が従来使用さ
れているステンレス鋼等の耐圧金属容器壁から溶出して
きたニッケル、クロム、モリブデン、鉄等であることを
見出し、反応容器として高耐酸性の容器又は耐酸物質で
内張りをした容器を採用することにより、触媒活性の低
下を顕著に抑制して経済的な水素添加反応を実現するこ
とに成功し、更に、該水素化反応物含有液を水蒸気に接
触させることにより、非常に高い純度の1,3−CHD
Aを得ることに成功し、本発明を完成するに到った。
The present inventors have studied the behavior of IPA or its alkali salt for various reactions and the properties of the hydrogenation reaction product, and as a result of earnest studies on a method for realizing the economical process and high purification of the product. It has been found that the cause of the decrease in the activity of the catalyst is nickel, chromium, molybdenum, iron, etc. which have been eluted from the walls of pressure-resistant metal containers such as stainless steel, which have been conventionally used, and a highly acid-resistant container or acid-resistant substance as a reaction container. Succeeded in realizing economical hydrogenation reaction by remarkably suppressing the decrease in catalytic activity by adopting a vessel lined with the above, and further bringing the hydrogenation reaction product-containing liquid into contact with steam. Results in very high purity 1,3-CHD
Succeeded in obtaining A and came to complete the present invention.

【0025】以下に本発明の内容を詳細に説明する。The contents of the present invention will be described in detail below.

【0026】本発明は、第一に、1,3−シクロヘキサ
ンジカルボン酸を製造するに際し、IPA含有液をパラ
ジウム触媒の存在下で、耐酸容器内又は耐酸物質で内張
りをした容器内で水素添加する第一工程、第一工程で得
られた1,3−シクロヘキサンジカルボン酸含有液と水
蒸気とを接触させ、水蒸気側に移動した不純物を除去す
る第二工程、の二工程を逐次的に経由することを特徴と
する1,3−シクロヘキサンジカルボン酸の製造方法で
ある。
In the first aspect of the present invention, in producing 1,3-cyclohexanedicarboxylic acid, an IPA-containing solution is hydrogenated in the presence of a palladium catalyst in an acid resistant container or a container lined with an acid resistant material. Sequentially passing through two steps, a first step, a second step of contacting the 1,3-cyclohexanedicarboxylic acid-containing liquid obtained in the first step with water vapor, and removing impurities moved to the water vapor side. Is a method for producing 1,3-cyclohexanedicarboxylic acid.

【0027】本発明は、第二に、第一工程の水素添加を
2kg/cm2 以上、200kg/cm2 未満の水素圧
力下で実施することを特徴とする前記第一記載の1,3
−シクロヘキサンジカルボン酸の製造方法である。
The invention, secondly, the hydrogenation of the first step 2 kg / cm 2 or more, the first, wherein a carried out under a hydrogen pressure of less than 200 kg / cm 2 1, 3
-A method for producing cyclohexanedicarboxylic acid.

【0028】本発明は、第三に、第一工程の水素添加を
2kg/cm2 以上、10kg/cm2 未満の水素圧力
下で実施することを特徴とする前記第一記載の1,3−
シクロヘキサンジカルボン酸の製造方法である。
The invention, in a third, the hydrogenation of the first step 2 kg / cm 2 or more, which comprises carrying out under hydrogen pressure of less than 10 kg / cm 2 of the first described 1,3
It is a method for producing cyclohexanedicarboxylic acid.

【0029】本発明は、第四に、第二工程に於いて、
1,3−シクロヘキサンジカルボン酸含有液を充填塔の
一方から連続的に供給しながらそれとは逆の方向から連
続的に水蒸気を供給し、他方から1,3−シクロヘキサ
ンジカルボン酸を断続的に又は連続的に排出しながらそ
れとは逆の方向から水蒸気を排出して1,3−シクロヘ
キサンジカルボン酸と水蒸気とを向流接触させ、水蒸気
側に移動した不純物を、水蒸気と共に凝縮させて除去す
るか、又はアルカリ水溶液中に通して除去した後、必要
に応じて水蒸気を加熱し、再使用することを特徴とする
前記第一〜第三の何れかに記載の1,3−シクロヘキサ
ンジカルボン酸の製造方法である。
In the fourth and second steps of the present invention,
While continuously supplying the 1,3-cyclohexanedicarboxylic acid-containing liquid from one side of the packed column, steam is continuously supplied from the opposite direction, and the 1,3-cyclohexanedicarboxylic acid is intermittently or continuously supplied from the other side. Water vapor is discharged in the opposite direction to that of 1,3-cyclohexanedicarboxylic acid and the water vapor is brought into countercurrent contact with the water vapor, and impurities moving to the water vapor side are condensed and removed together with the water vapor, or In the method for producing 1,3-cyclohexanedicarboxylic acid according to any one of the above first to third, characterized in that after removal by passing through an aqueous alkaline solution, steam is heated if necessary and reused. is there.

【0030】本発明に用いるIPAの品質は、従来から
1,3−CHDAの原料として使用されているような高
い純度のものはもとより、それよりも若干純度が低くて
従来は採用されていなかった一般工業用途の品質であっ
ても有利に採用することができる。
The quality of IPA used in the present invention is not so high that it is conventionally used as a raw material of 1,3-CHDA, and is slightly lower than that. Even the quality for general industrial use can be advantageously adopted.

【0031】また、本発明を実施する際のIPAの濃度
は、第一工程の際には5〜50%が好ましいが、更に好
ましい濃度は10〜40%である。
The concentration of IPA in carrying out the present invention is preferably 5 to 50% in the first step, and more preferably 10 to 40%.

【0032】本発明を実施するうえに於いて、第一工程
の前記濃度範囲を外れた場合には、例えば、5%未満の
場合には設備の大きさの割に能率の良い生産が出来ない
ので不経済であると云う理由から、また、50%を越え
た場合には、結晶が析出しやすくなってしまい取扱が困
難になると云う理由から、何れの場合も好ましくない。
In practicing the present invention, if the concentration is out of the range of the first step, for example, if it is less than 5%, efficient production cannot be performed for the size of the equipment. Therefore, it is uneconomical because it is uneconomical, and when it exceeds 50%, it is difficult to handle because the crystal tends to precipitate, which is not preferable.

【0033】本発明に有利に用いられる水素添加反応用
触媒としては、担体上に担持された金属パラジウムが有
利に採用できるが、その担体としては、アルミナ、シリ
カ、炭素等の中で各種活性炭に代表される炭素が、酸の
影響を受けにくいこと等の理由から最も好ましい。
As the hydrogenation reaction catalyst which is advantageously used in the present invention, metallic palladium supported on a carrier can be advantageously adopted, and as the carrier, various activated carbons such as alumina, silica and carbon can be used. The representative carbon is most preferable because it is not easily affected by acid.

【0034】また、本発明を実施するうえで有利に採用
できるパラジウムの担持量は、反応が充分に進行するこ
とや経済的であること等の理由から、触媒重量の中のパ
ラジウム金属含有率で表現したときに2〜20%である
が、更に好ましい担持量は5〜10%である。
Further, the amount of palladium supported which can be advantageously employed in carrying out the present invention is determined by the palladium metal content in the catalyst weight because of the reason that the reaction proceeds sufficiently and is economical. When it is expressed, it is 2 to 20%, but a more preferable supported amount is 5 to 10%.

【0035】本発明を実施する際に、濃度を調整するた
めに用いる溶媒としては各種アルコール類や水、1,3
−CHDA等があるが、反応に対して不活性であること
や安価であること等の理由から水が最も好ましい。
In carrying out the present invention, various alcohols, water and 1,3 are used as a solvent for adjusting the concentration.
Although there are —CHDA and the like, water is most preferable because it is inert to the reaction and is inexpensive.

【0036】本発明に用いる耐酸物質、耐酸容器として
は、耐酸性の強い金属、例えば、ハステロイ鋼、インコ
ネル鋼やそれらの成形体、金属以外の耐酸性の強い物
質、例えば、セラミック、ホウロウ、ガラス等のガラス
質やそれらの成形体が挙げられるが、これらの他に、通
常の耐圧容器に使用される鉄やステンレス鋼に前記の各
種耐酸物質を内張りした容器も経済的であり、有利に採
用することができる。
The acid-resistant substance and acid-resistant container used in the present invention include metals having strong acid resistance, for example, Hastelloy steel, Inconel steel and molded products thereof, and substances having strong acid resistance other than metals, such as ceramics, enamel and glass. Examples of such glassy materials and molded articles thereof include, in addition to these, a container in which the above-mentioned various acid-resistant substances are lined with iron or stainless steel used for a normal pressure-resistant container is economical and is advantageously used. can do.

【0037】本発明の第一工程を有利に実施する条件と
しては、温度120〜160℃、水素圧力2〜200k
g/cm2 、更に好ましくは2kg/cm2 以上10k
g/cm2 未満、反応時間30分〜120分が挙げられ
るが、これらの範囲を外れた場合には、何れの場合も製
品の歩留りや純度に悪影響を及ぼすので好ましくない。
Conditions for advantageously carrying out the first step of the present invention are as follows: temperature: 120-160 ° C., hydrogen pressure: 2-200 k
g / cm 2 , more preferably 2 kg / cm 2 or more and 10 k
The reaction time is less than g / cm 2 , and the reaction time is from 30 minutes to 120 minutes, but if it is out of these ranges, the yield and the purity of the product are adversely affected in any case, which is not preferable.

【0038】また、第二工程に使用する1,3−CHD
A含有反応物の濃度は、水素化後、触媒を除去した濾過
液をそのままの濃度で用いることが最も経済的である
が、通常得られるシス体とトランス体との比率や経済的
な制約、水に対する溶解度等から、凡そ、2%〜40%
程度が好ましく、更に好ましい濃度範囲は、5%〜30
%である。
The 1,3-CHD used in the second step
Regarding the concentration of the A-containing reactant, it is most economical to use the filtrate without hydrogenation after the hydrogenation as it is, but the ratio of cis isomer to trans isomer which is usually obtained and economic restrictions, Based on the solubility in water, etc., approximately 2% to 40%
The preferred range is 5% to 30%.
%.

【0039】更に、第二工程に使用する1,3−CHD
A含有反応物に含まれるシス体とトランス体との割合に
ついても格別の制約はなく、IPAを水素化して得られ
る反応物中に出現する程度の割合であれば、本発明の実
施に支障が生ずることはないが、一般に、トランス体の
割合が多くなるにつれて反応物の水に対する溶解温度が
上昇する傾向があり、操作上扱い易い割合としては、シ
ス:トランス=65:35程度が挙げられる。
Further, 1,3-CHD used in the second step
There is no particular restriction on the ratio of the cis isomer and the trans isomer contained in the A-containing reaction product, and if the ratio is such that it appears in the reaction product obtained by hydrogenating IPA, the practice of the present invention is hindered. Although it does not occur, the dissolution temperature of the reaction product in water tends to rise as the proportion of the trans form increases, and a cis: trans ratio of about 65:35 may be mentioned as a ratio that is easy to handle in operation.

【0040】本発明の第二工程では、水蒸気を使用する
が、その水蒸気にも格別の制約はなく、本発明を実施す
る際に必要な温度条件を実現できる程度のものであれ
ば、通常の水蒸気発生器等によって発生されたもので充
分である。
In the second step of the present invention, steam is used, but the steam is not particularly limited as long as it can realize the temperature conditions necessary for carrying out the present invention. Those generated by a steam generator or the like are sufficient.

【0041】第二工程に於いて1,3−シクロヘキサン
ジカルボン酸含有液と水蒸気とを接触させる方法には、
回分式と連続式があるが、本発明に於いては何れの方法
も採用可能であり、連続的に行う方法が、効率的に優れ
ている。
In the second step, the method of contacting the 1,3-cyclohexanedicarboxylic acid-containing liquid with steam is as follows:
Although there are a batch method and a continuous method, any method can be adopted in the present invention, and the method of performing continuously is excellent in efficiency.

【0042】また、1,3−CHDAと水蒸気が接触し
た後に水蒸気側に移動した不純物を除去する方法も、回
分式又は連続式の何れもが採用可能であり、水蒸気を凝
縮させて不純物と水蒸気のドレーンとの混合物として除
去する方法や、アルカリ水溶液中に水蒸気を吹き込んだ
りアルカリ水溶液のシャワー中に水蒸気を通す等の方法
が採用可能である。
The method of removing the impurities that have moved to the steam side after the contact between 1,3-CHDA and the steam can be either batch-wise or continuous, and the steam is condensed to remove the impurities and the steam. It is possible to employ a method of removing the mixture as a mixture with the drain, a method of blowing steam into the alkaline aqueous solution, or a method of passing steam through the shower of the alkaline aqueous solution.

【0043】本発明の更に好ましい第二工程の実施態様
としては、前記1,3−シクロヘキサンジカルボン酸含
有液と水蒸気との接触を向流で接触させることである。
As a further preferred embodiment of the second step of the present invention, the 1,3-cyclohexanedicarboxylic acid-containing liquid is brought into contact with steam in countercurrent.

【0044】更に、工程全体のエネルギーロスを少なく
するために水蒸気を再利用することも任意であり、例え
ば、前記のようにアルカリ水溶液で水蒸気中の不純物を
除去した後に、水蒸気を必要に応じて加熱して使用する
こともできる。
Further, it is optional to reuse the steam in order to reduce the energy loss of the whole process. For example, after the impurities in the steam are removed by the alkaline aqueous solution as described above, the steam may be reused if necessary. It can also be used by heating.

【0045】以上に述べた第二工程の各操作は、それぞ
れ任意に組み合わせて採用することができるが、これら
の組み合わせの中でも、1,3−CHDA含有液と水蒸
気とを向流接触させ、不純物を含んだ水蒸気をアルカリ
水溶液に接触させて不純物をアルカリ水溶液側に吸収さ
せた後、水蒸気を再使用する方法が最も経済的に有利な
方法である。
The operations of the second step described above can be employed in any combination, but among these combinations, the 1,3-CHDA-containing liquid is brought into countercurrent contact with water vapor to remove impurities. The most economically advantageous method is to contact the water vapor containing water with an alkali aqueous solution to absorb impurities into the alkali aqueous solution and then reuse the water vapor.

【0046】この組み合わせによる方法を更に詳細に説
明すると、ラシヒリング等の充填物を詰めた塔(A)及
び塔(B)を用意しておき、塔(A)の上部と塔(B)
の下部、塔(A)の下部と塔(B)の上部とをそれぞれ
配管で連結し、各配管及び塔は所定の温度に調節できる
ようにジャケット等の構造を備えておき、塔(A)の下
部と塔(B)の上部をつなぐ配管の途中に水蒸気を循環
させる機能を有するポンプ(P)を塔(A)側が排出側
になるように備えておく。
The method using this combination will be described in more detail. A tower (A) and a tower (B) packed with a packing such as Raschig rings are prepared, and the upper part of the tower (A) and the tower (B) are prepared.
The lower part of the column, the lower part of the tower (A) and the upper part of the tower (B) are respectively connected by pipes, and each pipe and the column are provided with a structure such as a jacket so that the temperature can be adjusted to a predetermined temperature. A pump (P) having a function of circulating water vapor is provided in the middle of a pipe connecting the lower part of the column and the upper part of the column (B) such that the column (A) side is the discharge side.

【0047】次に、該装置のポンプ(P)を運転しなが
ら、塔(A)の上部から加熱した1,3−CHDA含有
液を連続的に導入し、塔(A)下部から抜き取り、それ
と同時に、塔(B)上部から加熱したアルカリ水溶液を
連続的に導入し、塔(B)下部から抜き取る。
Next, while operating the pump (P) of the apparatus, the heated 1,3-CHDA-containing liquid was continuously introduced from the upper part of the tower (A), withdrawn from the lower part of the tower (A), and At the same time, the heated alkaline aqueous solution is continuously introduced from the upper part of the tower (B) and withdrawn from the lower part of the tower (B).

【0048】このとき、塔(A)に供給する1,3−C
HDA含有液の好ましい濃度は2〜40%であるが、更
に好ましくは、5〜30%である。
At this time, 1,3-C supplied to the tower (A)
The preferred concentration of the HDA-containing liquid is 2 to 40%, more preferably 5 to 30%.

【0049】また、塔(B)に供給するアルカリ水溶液
の好ましい濃度は1〜50%であるが、更に好ましくは
1〜20%である。
The concentration of the alkaline aqueous solution supplied to the tower (B) is preferably 1 to 50%, more preferably 1 to 20%.

【0050】塔(A)に供給する1,3−CHDA含有
液の供給速度は、濃度や温度やその中に含有されている
不純物の濃度等により左右されるが、凡そ、塔(A)の
容量の1〜6倍量/毎時程度が好ましい。
The supply rate of the 1,3-CHDA-containing liquid supplied to the tower (A) depends on the concentration, the temperature, the concentration of impurities contained therein, and the like. The amount is preferably 1 to 6 times the capacity / hourly.

【0051】このとき、1,3−CHDAの供給速度が
1倍/毎時未満の場合には必要以上に効率を低下させる
ことになるので好ましくなく、6倍を超えた場合には不
純物の除去が不完全になることがあるので好ましくな
い。
At this time, if the feed rate of 1,3-CHDA is less than 1 time / hour, the efficiency is unnecessarily lowered, which is not preferable. If it exceeds 6 times, the removal of impurities is not preferable. It is not preferable because it may be incomplete.

【0052】また、アルカリ水溶液の塔(B)に対する
供給速度は、塔(B)の容量の1〜6倍/毎時程度が好
ましいが、この範囲を外れた場合には、何れもアルカリ
が無駄になったり不足になったりすることがあって好ま
しくない。
The supply rate of the aqueous alkali solution to the tower (B) is preferably about 1 to 6 times the capacity of the tower (B) per hour, but if it is out of this range, the alkali is wasted in any case. It is not preferable because it may become insufficient or insufficient.

【0053】本発明に有利に使用できるアルカリには水
酸化ナトリウム、水酸化カリウム、リン酸三ナトリウム
等が挙げられるが、アルカリの中でもカルシウム塩はス
ケールの原因になることが多く、炭酸塩はガスが発生す
るので何れも採用することは可能であるがあまり好まし
くはない。
Alkali which can be advantageously used in the present invention includes sodium hydroxide, potassium hydroxide, trisodium phosphate and the like. Among the alkalis, calcium salt often causes scale, and carbonate is gas. Therefore, it is possible to use any of them, but it is not so preferable.

【0054】ポンプ(P)の水蒸気循環量は、水蒸気を
凝縮した水の量に換算したときに、塔(A)の容量の
0.1〜1.6倍/毎時程度が好ましいが、この範囲を
外れた場合には、何れも第二工程のコストや収率に良い
影響を与えないので好ましくない。
The steam circulation amount of the pump (P) is preferably about 0.1 to 1.6 times the capacity of the column (A) per hour when converted to the amount of water condensed from steam, but this range is preferable. If it is out of the range, none of them has a good influence on the cost or yield of the second step, which is not preferable.

【0055】前記組み合わせの第二工程を採用した場合
には、各塔及び配管を100〜150℃、更に好ましく
は102〜130℃の範囲の温度に保持することが推奨
されるが、塔(A)と塔(B)の温度が異なった場合に
は、供給された1,3−CHDA含有液が沸騰したり、
水蒸気が凝縮したりして、塔内の物質の収支バランスが
取りにくいので好ましくなく、温度範囲が100℃未満
の場合には不純物の除去が不充分になることが多く、1
50℃を超えた場合には分解等により歩留りが低下する
ことがあるので何れも好ましくない。
When the second step of the above combination is adopted, it is recommended to keep each column and piping at a temperature in the range of 100 to 150 ° C, more preferably 102 to 130 ° C. ) And the temperature of the tower (B) are different, the 1,3-CHDA-containing liquid supplied is boiled,
This is not preferable because it is difficult to balance the balance of the substances in the column due to the condensation of water vapor, and when the temperature range is less than 100 ° C, the removal of impurities is often insufficient.
If the temperature exceeds 50 ° C., the yield may decrease due to decomposition or the like, which is not preferable.

【0056】前記塔(B)については、水蒸気中に含ま
れる不純物がアルカリ側に吸収され移動する速度が極め
て速いので、塔(A)の上部から出た不純物を含有した
水蒸気をシャワー状のアルカリ水溶液に接触させる方法
やアルカリ水溶液の中に直接水蒸気を吹き込む方法も採
用することができる。
In the tower (B), since the impurities contained in the water vapor are absorbed and moved to the alkali side at an extremely high speed, the water vapor containing the impurities discharged from the upper part of the tower (A) is showered into an alkali. A method of contacting with an aqueous solution or a method of directly blowing steam into an alkaline aqueous solution can also be adopted.

【0057】以上のように、本発明を実施することによ
り、水素添加触媒の活性低下を抑え、触媒の寿命を著し
く長く保つことが可能になり、これによってIPAを直
接水素添加反応に供して1,3−CHDAを得る方法が
経済的に可能になり、更に、現在の高度な要求に充分に
応えられる高い品質の、1,3−CHDAを製造するこ
とが可能になる。
As described above, by carrying out the present invention, it becomes possible to suppress the activity decrease of the hydrogenation catalyst and to keep the life of the catalyst remarkably long, whereby IPA is directly subjected to the hydrogenation reaction. , 3-CHDA is economically feasible, and further, high quality 1,3-CHDA which can sufficiently meet the present high demands can be produced.

【0058】[0058]

【実施例】【Example】

【0059】以下に、参考例及び実施例を掲げて本発明
の内容を更に具体的に説明するが、本発明の範囲はこれ
らの例に限定されるものではない。
Hereinafter, the contents of the present invention will be described more specifically with reference to Reference Examples and Examples, but the scope of the present invention is not limited to these examples.

【0060】[実施例−1](第一工程)[Example-1] (First step)

【0061】フッソ樹脂(テフロン)製の攪拌羽根を取
り付けた容量500mlのガラス製オートクレーブにイ
ソフタル酸30g、水270g並びに10%パラジウム
−炭素触媒(エヌ・イー・ケムキャット社製)10gを
入れ、温度130℃、水素圧8.3〜9.8kg/cm
2 で水素化を行った結果、50分後に水素の吸収が認め
られなくなり、反応が終了した。
30 g of isophthalic acid, 270 g of water and 10 g of 10% palladium-carbon catalyst (manufactured by NE Chemcat) were placed in a glass autoclave having a capacity of 500 ml equipped with a stirring blade made of fluorine resin (Teflon), and the temperature was 130. ° C, hydrogen pressure 8.3 ~ 9.8kg / cm
As a result of hydrogenation at 2 , the hydrogen absorption was not observed after 50 minutes and the reaction was completed.

【0062】反応液をオートクレーブから取り出し、6
0℃に保持して触媒を濾過し、濾液を得た。
The reaction solution was taken out from the autoclave and
The catalyst was filtered while maintaining at 0 ° C to obtain a filtrate.

【0063】この濾液をガスクロマトグラフ法にて分析
した結果、固形分中の1,3−CHDAの純度は98.
0%であり、未還元物量は0.01%、不純物の種類は
3−メチルシクロヘキサンカルボン酸とシクロヘキサン
カルボン酸のみであった。
As a result of analyzing this filtrate by gas chromatography, the purity of 1,3-CHDA in the solid content was 98.
It was 0%, the amount of unreduced substances was 0.01%, and the types of impurities were only 3-methylcyclohexanecarboxylic acid and cyclohexanecarboxylic acid.

【0064】次いで、回収した触媒にイソフタル酸30
g及び水270gを加えて同様の水素化を繰り返した。
Next, isophthalic acid 30 was added to the recovered catalyst.
g and 270 g of water were added and the same hydrogenation was repeated.

【0065】回収した触媒を使用して水素化の繰り返し
を70回目まで行ったが、触媒の水素化活性の指標にな
る反応時間、1,3−CHDA純度及び未還元物の量に
殆ど変化は見られなかった。
The hydrogenation was repeated up to the 70th time using the recovered catalyst, but there was almost no change in the reaction time, the 1,3-CHDA purity, and the amount of unreduced substances, which are indicators of the hydrogenation activity of the catalyst. I couldn't see it.

【0066】繰り返して水素化した結果を表1に示す。The results of repeated hydrogenation are shown in Table 1.

【0067】[0067]

【表1】 [Table 1]

【0068】[比較例−1](第一工程)[Comparative Example-1] (First step)

【0069】実施例−1のガラス製オートクレーブに代
えてステンレス製のオートクレーブを使用した他は実施
例−1と同様にして水素化を20回まで繰り返した。
Hydrogenation was repeated up to 20 times in the same manner as in Example-1 except that a stainless steel autoclave was used in place of the glass autoclave of Example-1.

【0070】その結果、水素化に要する反応時間が長く
なったため、以降の繰り返しを止めた。繰り返して水素
化した結果を表2に示す。
As a result, the reaction time required for hydrogenation was prolonged, so that the subsequent repetition was stopped. The results of repeated hydrogenation are shown in Table 2.

【0071】[0071]

【表2】 [Table 2]

【0072】[実施例−2](第一工程)[Example-2] (First step)

【0073】10,000mlのステンレス(SUS3
06)容器の内側と攪拌羽根の接液部分にグラスライニ
ングを施したオートクレーブに、イソフタル酸1.2k
g、水4.8kg並びに10%パラジウム−炭素240
gを入れ、温度130℃、水素圧8.5〜9.8kg/
cm2 の条件で水素化を行った結果、反応開始後80分
で水素の吸収が認められなくなり、反応が終了した。
10,000 ml of stainless steel (SUS3
06) 1.2k of isophthalic acid was added to an autoclave with glass lining on the inside of the container and the liquid contact part of the stirring blade.
g, 4.8 kg of water and 10% palladium-carbon 240
g, temperature 130 ° C, hydrogen pressure 8.5-9.8 kg /
As a result of hydrogenation under the condition of cm 2 , the absorption of hydrogen was not observed 80 minutes after the start of the reaction, and the reaction was completed.

【0074】反応液を60℃まで冷却した後オートクレ
ーブから取り出し、ろ過して、濾液を分析した結果、
1,3−CHDA純度は97.1%であり、未還元物含
量は0.02%であった。
The reaction solution was cooled to 60 ° C., taken out from the autoclave, filtered, and the filtrate was analyzed.
The 1,3-CHDA purity was 97.1%, and the unreduced substance content was 0.02%.

【0075】[実施例−3](第一工程)[Example-3] (First step)

【0076】実施例−2と同じオートクレーブに、イソ
フタル酸600g、水5.4kg、並びに10%パラジ
ウム−炭素触媒120gを入れ、温度140℃、水素圧
力5〜6kg/cm2 で水素化を行った結果、反応開始
後140分で水素の吸収が認められなくなり、反応が終
了した。
600 g of isophthalic acid, 5.4 kg of water, and 120 g of 10% palladium-carbon catalyst were placed in the same autoclave as in Example 2, and hydrogenated at a temperature of 140 ° C. and a hydrogen pressure of 5 to 6 kg / cm 2 . As a result, 140 minutes after the start of the reaction, hydrogen absorption was not observed and the reaction was completed.

【0077】反応液を冷却した後、実施例−2と同様に
して加熱濾過し、冷却して、濾液を分析した結果、1,
3−CHDA純度は95.8%であり、未還元物含量は
0.02%であった。
After cooling the reaction solution, it was heated and filtered in the same manner as in Example-2, cooled, and the filtrate was analyzed.
The 3-CHDA purity was 95.8% and the unreduced matter content was 0.02%.

【0078】[実施例−4](第一工程)[Example-4] (First step)

【0079】触媒として7.5%パラジウム−炭素触媒
を280g使用し、反応温度を150℃とし、水素圧力
を8.5〜9.8kg/cm2 とした他は実施例−3と
同様にして水素化した結果、反応時間は70分で、分析
結果は、1,3−CHDA純度が96.2%、未還元物
含量が0.02%であった。
280 g of a 7.5% palladium-carbon catalyst was used as a catalyst, the reaction temperature was 150 ° C., and the hydrogen pressure was 8.5 to 9.8 kg / cm 2. As a result of hydrogenation, the reaction time was 70 minutes, and the analysis results showed that the purity of 1,3-CHDA was 96.2% and the content of unreduced products was 0.02%.

【0080】[実施例−5](第一工程)[Example-5] (First step)

【0081】実施例−2と同じオートクレーブに、イソ
フタル酸900g、水5.1kg、並びに5%パラジウ
ム−炭素触媒400gを入れ、温度130℃、水素圧力
8.5〜9.8kg/cm2 で水素化を行った結果、反
応開始後80分で水素の吸収が認められなくなり、反応
が終了した。
900 g of isophthalic acid, 5.1 kg of water, and 400 g of 5% palladium-carbon catalyst were placed in the same autoclave as in Example 2, and hydrogen was added at a temperature of 130 ° C. and a hydrogen pressure of 8.5 to 9.8 kg / cm 2 . As a result, the hydrogen absorption was not observed 80 minutes after the start of the reaction, and the reaction was completed.

【0082】実施例−2と同様にして濾液を分析した結
果、1,3−CHDA純度は97.6%であり、未還元
物含量は0.02%であった。
As a result of analyzing the filtrate in the same manner as in Example-2, the 1,3-CHDA purity was 97.6% and the unreduced substance content was 0.02%.

【0083】[実施例−6](第二工程)[Example-6] (second step)

【0084】ジャケット付のステンレス製の塔(B)と
それ以外の各々の接液部をグラスライニングした図1に
示す加熱ジャケット付設備を用意し、図のように加熱ジ
ャケット付配管を接続した。
The stainless steel tower (B) with a jacket and the equipment with a heating jacket shown in FIG. 1 in which the liquid contact parts other than that were glass-lined were prepared, and the piping with a heating jacket was connected as shown in the figure.

【0085】各々の寸法は、塔(A)の容器(1)(内
径5cm、長さ20cm)、カラム(2)(内径5c
m、長さ200cm、容量3900ml)、液受器
(3)(内径5cm、長さ70cm)、塔(B)の容器
(4)(内径5cm、長さ20cm)、カラム(5)
(内径5cm、長さ200cm、容量3900ml)、
液受器(6)(内径5cm、長さ70cm)とし、カラ
ム(2)には内径3mm、外径6mm、長さ6mmの磁
製のラシヒリングを、カラム(5)には5mm×12m
mの金網をそれぞれ充填した。
The respective dimensions are as follows: the container (1) of the tower (A) (inner diameter 5 cm, length 20 cm), the column (2) (inner diameter 5 c
m, length 200 cm, capacity 3900 ml), liquid receiver (3) (inner diameter 5 cm, length 70 cm), tower (B) container (4) (inner diameter 5 cm, length 20 cm), column (5)
(Inner diameter 5 cm, length 200 cm, capacity 3900 ml),
A liquid receiver (6) (internal diameter 5 cm, length 70 cm) was used. The column (2) was equipped with a porcelain Raschig ring having an inner diameter of 3 mm, an outer diameter of 6 mm and a length of 6 mm, and the column (5) was 5 mm × 12 m.
m wire mesh was filled in each case.

【0086】また、容器(1)の上部には1,3−CH
DA含有液の入口(a)を、側面には水蒸気出口(b)
を、液受器(3)の側面には水蒸気入口(c)を、下部
には1,3−CHDAの排出口(d)を、容器(4)の
上部にはアルカリ水溶液の入口(e)を、側面には水蒸
気出口(f)を、液受器(6)の側面には水蒸気入口
(g)を、下部にはアルカリ水溶液の取出口(h)をそ
れぞれ取り付けた。
Further, 1,3-CH is provided on the upper part of the container (1).
An inlet (a) for the DA-containing liquid and a steam outlet (b) on the side surface
, A water vapor inlet (c) on the side surface of the liquid receiver (3), a 1,3-CHDA outlet (d) on the lower portion, and an alkaline aqueous solution inlet (e) on the upper portion of the container (4). The water vapor outlet (f) was attached to the side surface, the water vapor inlet (g) was attached to the side surface of the liquid receiver (6), and the aqueous alkaline solution outlet (h) was attached to the lower portion.

【0087】最初に装置のジャケット部に4.8kg/
cm2 の蒸気圧をかけ、系内の温度を150℃に調節
し、次いで、水蒸気循環ポンプ(9)を毎分57ml
(水としての量)の速さで運転して水蒸気入口(c)に
向けて水蒸気を送り、系内の水蒸気を循環させた。
First, 4.8 kg / in the jacket of the device.
Apply a vapor pressure of cm 2 to adjust the temperature inside the system to 150 ° C, and then turn on the steam circulation pump (9) at 57 ml / min.
By operating at a speed of (amount as water), steam was sent toward the steam inlet (c) to circulate the steam in the system.

【0088】次に、ポンプ(8)を運転して10%の水
酸化ナトリウム水溶液を毎分67mlの速さで入口
(e)に送り、実施例−2で製造した1,3−CHDA
含有液(濃度20%、1,3−CHDA純度97.1
%)をポンプ(7)で毎分133mlの速さで送り、1
0分毎に各塔の排出口(d)及び取出口(h)から各々
の液の抜き取りを行った。
Next, the pump (8) was operated to send a 10% aqueous sodium hydroxide solution to the inlet (e) at a rate of 67 ml / min to prepare 1,3-CHDA produced in Example-2.
Contained liquid (concentration 20%, 1,3-CHDA purity 97.1
%) By pump (7) at a rate of 133 ml / min, 1
Each liquid was extracted from the outlet (d) and the outlet (h) of each tower every 0 minutes.

【0089】1時間後及び2時間後に液受器(3)の排
出口(d)から生成された1,3−CHDA含有液を抜
き取って分析した結果、不純物は検出されなかった。
As a result of extracting and analyzing the 1,3-CHDA-containing liquid produced from the outlet (d) of the liquid receiver (3) after 1 hour and 2 hours, no impurities were detected.

【0090】[実施例−7](第二工程)[Example-7] (second step)

【0091】下記に示す条件の他は実施例−6と同じ方
法で処理を行った。
Processing was carried out by the same method as in Example 6 except for the conditions shown below.

【0092】配管及び装置内部温度を130℃とし、
1,3−CHDA含有液として実施例−5の条件で得た
もの(濃度15%、1,3−CHDA純度97.6%)
を用い、入口(a)への供給速度を毎分133mlとし
て、10%水酸化ナトリウム水溶液の入口(e)への供
給速度を毎分67mlとした。
The temperature inside the piping and the apparatus was set to 130 ° C.,
What was obtained under the conditions of Example-5 as a 1,3-CHDA-containing liquid (concentration 15%, 1,3-CHDA purity 97.6%)
The feed rate to the inlet (a) was 133 ml / min, and the feed rate of the 10% aqueous sodium hydroxide solution to the inlet (e) was 67 ml / min.

【0093】また、水蒸気循環ポンプ(9)の供給速度
を水の量で毎分71mlとして該装置を運転し、1時間
後及び2時間後に液受器(3)の排出口(d)から抜き
取った液を分析した結果、不純物は検出されなかった。
The steam circulation pump (9) was operated at a supply rate of 71 ml / min of water and the apparatus was operated, and after 1 hour and 2 hours, the liquid was taken out from the discharge port (d) of the liquid receiver (3). As a result of analyzing the solution, no impurities were detected.

【0094】[実施例−8](第二工程)[Example-8] (second step)

【0095】実施例−6の装置内部の温度を110℃に
調節し、1,3−CHDA含有液として実施例−3の条
件で製造したもの(1,3−CHDA純度95.8%、
濃度10%)を用い、入口(a)への供給速度を毎分2
00mlとし、5%のアルカリ水溶液を用いて、その入
口(e)への供給速度を毎分134mlとし、水蒸気循
環ポンプ(9)の供給速度を水の量で毎分71mlとし
て実施例−6と同様に運転し、1時間後及び2時間後に
液受器(3)の排出口(d)から抜き取った液を分析し
た結果、不純物は検出されなかった。
The temperature inside the apparatus of Example-6 was adjusted to 110 ° C., and the 1,3-CHDA-containing liquid was produced under the conditions of Example-3 (1,3-CHDA purity 95.8%,
(Concentration 10%) and the feed rate to the inlet (a) is 2 per minute
Example-6, in which the feed rate to the inlet (e) was set to 134 ml / min, and the feed rate of the water vapor circulation pump (9) was 71 ml / min in terms of the amount of water. As a result of operating the same operation and analyzing the liquid extracted from the discharge port (d) of the liquid receiver (3) after 1 hour and 2 hours, no impurities were detected.

【0096】[実施例−9](第二工程)[Example-9] (second step)

【0097】実施例−6の塔(B)として、充填物の入
っていない、内径12cm、長さ100cm、容積11
300mlのステンレス容器を用い、水蒸気出口(b)
と水蒸気入口(g)の間には、液が逆流しないように逆
止弁を取り付け、水蒸気が水蒸気出口(b)から水蒸気
入口(g)に流れるようにした。
As the tower (B) of Example-6, no packing was contained, the inner diameter was 12 cm, the length was 100 cm, and the volume was 11.
Steam outlet (b) using a 300 ml stainless steel container
A check valve was attached between the water vapor inlet (g) and the water vapor inlet (g) to prevent the liquid from flowing backward, and the water vapor was allowed to flow from the water vapor outlet (b) to the water vapor inlet (g).

【0098】容器(B)の水蒸気入口(g)がアルカリ
水溶液の液面下になるように、濃度20%の水酸化カリ
ウム5000mlを入れ、全体の系を130℃に保っ
た。
5000 ml of potassium hydroxide having a concentration of 20% was added so that the water vapor inlet (g) of the container (B) was below the surface of the alkaline aqueous solution, and the whole system was kept at 130 ° C.

【0099】実施例−5の条件で製造した1,3−CH
DA含有液(1,3−CHDA純度97.6%、濃度1
5%)を毎分67mlの速さで入口(a)から供給し、
アルカリの連続的な供給と抜き取りをしない他は実施例
−6と同様に装置を運転して、1時間目及び2時間目
に、排出口(d)から抜き出した液を分析した結果、不
純物は検出されなかった。
1,3-CH produced under the conditions of Example-5
DA-containing liquid (1,3-CHDA purity 97.6%, concentration 1
5%) at a rate of 67 ml / min from the inlet (a),
As a result of analyzing the liquid extracted from the outlet (d) at the 1st hour and the 2nd hour by operating the apparatus in the same manner as in Example 6 except that the alkali was not continuously supplied and extracted, impurities were found. Not detected.

【0100】[実施例−10](第二工程)[Example-10] (second step)

【0101】実施例−6の塔(A)のみを用いて、水蒸
気入口(c)に外部のジャケットと同じ蒸気圧の水蒸気
が入るように配管を接続し、水蒸気出口(b)に絞り弁
と冷却器を取り付け、排出される水蒸気を凝縮させる構
造にした。
Using only the tower (A) of Example 6, a pipe was connected to the steam inlet (c) so that the steam having the same vapor pressure as the outer jacket could enter, and a throttle valve was connected to the steam outlet (b). A cooler was attached so that the discharged water vapor was condensed.

【0102】装置及び配管のジャケットに2.0kg/
cm2 の水蒸気圧をかけて温度を120℃に保持し、水
蒸気入口(c)の弁を開けて装置内部に水蒸気を導入
し、水蒸気出口(b)の弁を開けて冷却されて排出され
て来る凝縮水の量を毎分57mlになるように調節し
た。
2.0 kg / in jacket of equipment and piping
A steam pressure of cm 2 was applied to maintain the temperature at 120 ° C., a steam inlet (c) valve was opened to introduce steam into the apparatus, and a steam outlet (b) valve was opened to be cooled and discharged. The amount of incoming condensed water was adjusted to 57 ml per minute.

【0103】次いで、実施例−4の条件で製造した1,
3−CHDA含有液(1,3−CHDA純度96.2
%、濃度10%)をポンプ(7)で毎分100mlの速
さで入口(a)に供給し、水蒸気入口(c)の弁を調節
して排出口(d)から排出される精製された1,3−C
HDA含有液の濃度が10%になるように調節した。
Next, 1, which was produced under the conditions of Example-4,
3-CHDA-containing liquid (1,3-CHDA purity 96.2
%, Concentration 10%) is supplied to the inlet (a) by the pump (7) at a rate of 100 ml / min, and the valve of the steam inlet (c) is adjusted to be discharged from the outlet (d). 1,3-C
The concentration of the HDA-containing solution was adjusted to 10%.

【0104】排出口(d)から10分毎に液を排出し、
1時間目及び2時間目の抜き取り液を分析した結果、不
純物は検出されなかった。
The liquid is discharged from the discharge port (d) every 10 minutes,
Impurities were not detected as a result of analyzing the extracted liquids at 1 hour and 2 hours.

【0105】[実施例−11](第二工程)[Example-11] (second step)

【0106】図2に示すように、実施例−6の塔(B)
に代えてジャケット付の塔(C)(材質、SUS31
6)を用意し、その塔(C)の構造を塔(B)と同様に
上から、容器(10)(内径12cm、長さ20c
m)、アルカリシャワー装置(11)(内径12cm、
長さ50cm、容積22600ml)、及び液受器(1
2)(内径12cm、長さ50cm、容積11300m
l)とした。
As shown in FIG. 2, the tower of Example-6 (B)
Instead of the tower with jacket (C) (material, SUS31
6) is prepared, and the structure of the tower (C) is the same as the tower (B) from the top, and the container (10) (inner diameter 12 cm, length 20 c
m), an alkaline shower device (11) (inner diameter 12 cm,
Length 50 cm, volume 22600 ml), and liquid receiver (1
2) (Inner diameter 12 cm, length 50 cm, volume 11300 m
l).

【0107】容器(10)の上部にはアルカリ液入口
(i)を、また内部には、アルカリの配管の先端に分配
器をつけてアルカリ液入口(i)から入ったアルカリ液
がアルカリシャワー装置(11)内で均一にシャワー状
に分散される構造とし、容器(10)の側面には水蒸気
出口(j)を取り付け、その外側に絞り弁及び冷却器を
取り付けた。
An alkaline liquid inlet (i) is provided in the upper part of the container (10), and an alkaline liquid is introduced from the alkaline liquid inlet (i) by attaching a distributor to the tip of the alkali pipe inside the container. In the structure (11), the water was uniformly dispersed in a shower, the water vapor outlet (j) was attached to the side surface of the container (10), and the throttle valve and the cooler were attached to the outside thereof.

【0108】液受器(12)の下部には液の出口(k)
を、側面には水蒸気入口(m)と弁を取り付け、アルカ
リ液入口(i)と出口(k)との間にポンプ(13)を
取り付けて、液をアルカリ液入口(i)の方向に循環で
きる構造にした。
At the bottom of the liquid receiver (12) is the liquid outlet (k).
A steam inlet (m) and a valve are attached to the side surface, and a pump (13) is attached between the alkaline liquid inlet (i) and the outlet (k) to circulate the liquid in the direction of the alkaline liquid inlet (i). I made it possible.

【0109】更に、水蒸気出口(b)と水蒸気入口
(m)、水蒸気入口(c)と水蒸気出口(j)とをそれ
ぞれ配管で接続し、水蒸気入口(c)と水蒸気出口
(j)との間に水蒸気循環ポンプ(9)を入れて水蒸気
が水蒸気入口(c)の方向に循環するようにした。
Further, the water vapor outlet (b) and the water vapor inlet (m), and the water vapor inlet (c) and the water vapor outlet (j) are respectively connected by pipes so that the water vapor inlet (c) and the water vapor outlet (j) are connected. A water vapor circulation pump (9) was put in to allow water vapor to circulate in the direction of the water vapor inlet (c).

【0110】最初に、塔(C)の容器(10)に10%
水酸化ナトリウム水溶液5000mlを入れ、各ジャケ
ットに水蒸気圧2kg/cm2 をかけて温度を120℃
とした後、ポンプ(13)を毎分6000mlの速度で
循環させ、水蒸気循環ポンプ(9)を毎分71ml(水
として)の速さで運転しながら、実施例−5の条件で製
造した1,3−CHDA含有液を毎分177mlの速さ
で塔(A)の入口(a)に供給し、排出口(d)から
は、10分毎に1,3−CHDA含有液を抜き取った。
First, 10% was added to the container (10) of the tower (C).
Add 5000 ml of sodium hydroxide aqueous solution, apply steam pressure of 2 kg / cm 2 to each jacket and raise the temperature to 120 ° C.
After that, the pump (13) was circulated at a rate of 6000 ml / min, and the steam circulation pump (9) was operated at a rate of 71 ml / min (as water), and the production was carried out under the conditions of Example-5 1 , 3-CHDA-containing liquid was supplied to the inlet (a) of the tower (A) at a rate of 177 ml / min, and the 1,3-CHDA-containing liquid was withdrawn every 10 minutes from the outlet (d).

【0111】排出口(d)から抜き取った液の1時間目
及び2時間目の品質を分析した結果、不純物は検出され
なかった。
As a result of analyzing the quality of the liquid withdrawn from the outlet (d) at the first hour and the second hour, no impurities were detected.

【0112】[0112]

【発明の効果】【The invention's effect】

【0113】本発明を実施することによって、高価なパ
ラジウム触媒の活性低下を顕著に抑制して経済的な水素
添加反応を実現することが可能になり、更に、該水素化
反応物含有液を水蒸気に接触させることにより、簡便な
操作で非常に高い純度の1,3−CHDAを得ることが
でき、この高純度1,3−CHDAを用いることによ
り、耐侯性や物理的強度等が優れた樹脂や高純度医薬品
の製造が可能になる。
By carrying out the present invention, it becomes possible to remarkably suppress the activity decrease of the expensive palladium catalyst and realize an economical hydrogenation reaction. It is possible to obtain 1,3-CHDA having a very high purity by a simple operation by contacting with a resin, and by using this high-purity 1,3-CHDA, a resin excellent in weather resistance, physical strength, etc. And high-purity pharmaceuticals can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いる加熱ジャケット付設備装
置の第1例の概略図である。
FIG. 1 is a schematic view of a first example of an equipment device with a heating jacket used for carrying out the present invention.

【図2】本発明の実施に用いる加熱ジャケット付設備装
置の第2例の概略図である。
FIG. 2 is a schematic view of a second example of the equipment device with a heating jacket used for carrying out the present invention.

【符号の説明】[Explanation of symbols]

A 塔 B 塔 C 塔 a 入口 b 水蒸気出口 c 水蒸気入口 d 排出口 e 入口 f 水蒸気出口 g 水蒸気入口 h 取出口 i アルカリ液入口 j 水蒸気出口 k 出口 m 水蒸気入口 1 容器 2 カラム 3 液受器 4 容器 5 カラム 6 液受器 7 ポンプ 8 ポンプ 9 水蒸気循環ポンプ 10 容器 11 アルカリシャワー装置 12 液受器 13 ポンプ A tower B tower C tower a inlet b steam outlet c steam inlet d steam outlet e inlet f steam outlet g steam inlet h discharge outlet i alkali liquid inlet j steam outlet k outlet m steam inlet 1 container 2 column 3 liquid receiver 4 container 5 Column 6 Liquid Receiver 7 Pump 8 Pump 9 Water Vapor Circulation Pump 10 Container 11 Alkaline Shower 12 Liquid Receiver 13 Pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 直記 千葉県松戸市南花島4−61−17 (72)発明者 加藤 和昭 埼玉県北葛飾郡吉川町中曽根477 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Naoki Okamoto 4-61-17 Minamihanajima, Matsudo City, Chiba Prefecture (72) Inventor Kazuaki Kato 477 Nakasone, Yoshikawa-cho, Kitakatsushika-gun, Saitama Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 1,3−シクロヘキサンジカルボン酸を
製造するに際し、 イソフタル酸含有液をパラジウム触媒の存在下で、耐酸
容器内又は耐酸物質で内張りをした容器内で水素添加す
る第一工程、 第一工程で得られた1,3−シクロヘキサンジカルボン
酸含有液と水蒸気とを接触させ、水蒸気側に移動した不
純物を除去する第二工程、 の二工程を逐次的に経由することを特徴とする1,3−
シクロヘキサンジカルボン酸の製造方法。
1. A first step of producing 1,3-cyclohexanedicarboxylic acid, wherein an isophthalic acid-containing liquid is hydrogenated in the presence of a palladium catalyst in an acid-resistant container or a container lined with an acid-resistant substance, 1. A 1,3-cyclohexanedicarboxylic acid-containing liquid obtained in one step is brought into contact with water vapor, and a second step of removing impurities that have moved to the water vapor side is sequentially performed. , 3-
Method for producing cyclohexanedicarboxylic acid.
【請求項2】 第一工程の水素添加を2kg/cm2
上、200kg/cm2 未満の水素圧力下で実施するこ
とを特徴とする請求項1記載の1,3−シクロヘキサン
ジカルボン酸の製造方法。
2. The method for producing 1,3-cyclohexanedicarboxylic acid according to claim 1, wherein the hydrogenation in the first step is carried out under a hydrogen pressure of 2 kg / cm 2 or more and less than 200 kg / cm 2. .
【請求項3】 第一工程の水素添加を2kg/cm2
上、10kg/cm2 未満の水素圧力下で実施すること
を特徴とする請求項1記載の1,3−シクロヘキサンジ
カルボン酸の製造方法。
3. The method for producing 1,3-cyclohexanedicarboxylic acid according to claim 1, wherein the hydrogenation in the first step is carried out under a hydrogen pressure of 2 kg / cm 2 or more and less than 10 kg / cm 2. .
【請求項4】 第二工程に於いて、1,3−シクロヘキ
サンジカルボン酸含有液を充填塔の一方から連続的に供
給しながらそれとは逆の方向から連続的に水蒸気を供給
し、他方から1,3−シクロヘキサンジカルボン酸を断
続的に又は連続的に排出しながらそれとは逆の方向から
水蒸気を排出して1,3−シクロヘキサンジカルボン酸
と水蒸気とを向流接触させ、水蒸気側に移動した不純物
を、水蒸気と共に凝縮させて除去するか、又はアルカリ
水溶液中に通して除去した後、必要に応じて水蒸気を加
熱し、再使用することを特徴とする請求項1〜3の何れ
かに記載の1,3−シクロヘキサンジカルボン酸の製造
方法。
4. In the second step, 1,3-cyclohexanedicarboxylic acid-containing liquid is continuously supplied from one side of the packed column, while steam is continuously supplied from the opposite direction to the other side, and 1 is supplied from the other side. , 3-Cyclohexanedicarboxylic acid is discharged intermittently or continuously, and steam is discharged from the opposite direction to bring 1,3-cyclohexanedicarboxylic acid and steam into countercurrent contact with each other, and the impurities are moved to the steam side. Is condensed with water vapor to be removed, or is passed through an aqueous alkali solution to be removed, and then the water vapor is heated if necessary and reused. A method for producing 1,3-cyclohexanedicarboxylic acid.
JP13700793A 1993-05-17 1993-05-17 Method for producing 1,3-cyclohexanedicarboxylic acid Expired - Fee Related JP3268890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13700793A JP3268890B2 (en) 1993-05-17 1993-05-17 Method for producing 1,3-cyclohexanedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13700793A JP3268890B2 (en) 1993-05-17 1993-05-17 Method for producing 1,3-cyclohexanedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPH06321852A true JPH06321852A (en) 1994-11-22
JP3268890B2 JP3268890B2 (en) 2002-03-25

Family

ID=15188633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13700793A Expired - Fee Related JP3268890B2 (en) 1993-05-17 1993-05-17 Method for producing 1,3-cyclohexanedicarboxylic acid

Country Status (1)

Country Link
JP (1) JP3268890B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193873A (en) * 2000-12-28 2002-07-10 Mitsubishi Gas Chem Co Inc Method for producing cyclohexane dicarboxylic acid
JP4664497B2 (en) * 1997-12-19 2011-04-06 ビーエーエスエフ ソシエタス・ヨーロピア Method for hydrogenating benzenepolycarboxylic acid or its derivative using catalyst having large pores
US8197665B2 (en) 2007-06-12 2012-06-12 Solvay (Societe Anonyme) Aqueous composition containing a salt, manufacturing process and use
US8258350B2 (en) 2007-03-07 2012-09-04 Solvay (Societe Anonyme) Process for the manufacture of dichloropropanol
US8273923B2 (en) 2007-06-01 2012-09-25 Solvay (Societe Anonyme) Process for manufacturing a chlorohydrin
US8314205B2 (en) 2007-12-17 2012-11-20 Solvay (Societe Anonyme) Glycerol-based product, process for obtaining same and use thereof in the manufacturing of dichloropropanol
US8378130B2 (en) 2007-06-12 2013-02-19 Solvay (Societe Anonyme) Product containing epichlorohydrin, its preparation and its use in various applications
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664497B2 (en) * 1997-12-19 2011-04-06 ビーエーエスエフ ソシエタス・ヨーロピア Method for hydrogenating benzenepolycarboxylic acid or its derivative using catalyst having large pores
JP2002193873A (en) * 2000-12-28 2002-07-10 Mitsubishi Gas Chem Co Inc Method for producing cyclohexane dicarboxylic acid
JP4687844B2 (en) * 2000-12-28 2011-05-25 三菱瓦斯化学株式会社 Method for producing cyclohexanedicarboxylic acid
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
US8258350B2 (en) 2007-03-07 2012-09-04 Solvay (Societe Anonyme) Process for the manufacture of dichloropropanol
US8273923B2 (en) 2007-06-01 2012-09-25 Solvay (Societe Anonyme) Process for manufacturing a chlorohydrin
US8197665B2 (en) 2007-06-12 2012-06-12 Solvay (Societe Anonyme) Aqueous composition containing a salt, manufacturing process and use
US8378130B2 (en) 2007-06-12 2013-02-19 Solvay (Societe Anonyme) Product containing epichlorohydrin, its preparation and its use in various applications
US8399692B2 (en) 2007-06-12 2013-03-19 Solvay (Societe Anonyme) Epichlorohydrin, manufacturing process and use
US8314205B2 (en) 2007-12-17 2012-11-20 Solvay (Societe Anonyme) Glycerol-based product, process for obtaining same and use thereof in the manufacturing of dichloropropanol

Also Published As

Publication number Publication date
JP3268890B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
JPH06184041A (en) Production of 1,4-cyclohexanedicarboxylic acid
EP0265137B1 (en) Purifying terephthalic acid
CN101528657B (en) Manufacture of substantially pure monochloroacetic acid
JPH06321852A (en) Production of 1,3-cyclohexanedicarboxylic acid
JP2020019773A (en) Process for purification of monochloroacetic acid
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JPH0753510A (en) Purification of epsilon-caprolactam
EP1219586B1 (en) Process for producing a hydrogenation product of an aromatic carboxylic acid
EP1449822B1 (en) Method for producing trans-1,4-cyclohexane dicarboxylic acid
JP4134761B2 (en) Production method of alkyl nitrite
JPH07188117A (en) Method of treating liquid reaction product obtained in production dimethyl carbonate in the presence of cu catalyst
JP2009051798A (en) Production method of hexafluoroisopropanol
JPH083081A (en) Liquid-phase production of 1,1,1,4,4,4-hexafluorobutane
JP2819171B2 (en) Method for producing aromatic alcohol
JP2002356461A (en) Method for continuously producing diaminodicyclohexylmethane
JPH09169691A (en) Production of especially pure monochloroacetic acid
JP2004501891A (en) Method for producing aromatic amine
JP4687844B2 (en) Method for producing cyclohexanedicarboxylic acid
JPH01160947A (en) Method for purifying dialkylaminoethanol
JPS62185041A (en) Recovery of 2-(p-isobutylphenyl)propionic acid or salt thereof
JP4093789B2 (en) Method for initiating reaction in the production of 1,2-dichloroethane
JP2000072710A (en) High-purity monochloroacetic acid and its production
JP2512067B2 (en) Manufacturing method of cumyl alcohol
JPS6351351A (en) Production of monochloroacetic acid
KR100300884B1 (en) MONOCHOLOROACETICACID MANUFACTURING METHOD

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees