JPS6351351A - Production of monochloroacetic acid - Google Patents

Production of monochloroacetic acid

Info

Publication number
JPS6351351A
JPS6351351A JP61192868A JP19286886A JPS6351351A JP S6351351 A JPS6351351 A JP S6351351A JP 61192868 A JP61192868 A JP 61192868A JP 19286886 A JP19286886 A JP 19286886A JP S6351351 A JPS6351351 A JP S6351351A
Authority
JP
Japan
Prior art keywords
acid
monochloroacetic
hydrogen
monochloroacetic acid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61192868A
Other languages
Japanese (ja)
Inventor
Tetsuzo Miyazaki
宮崎 鉄三
Kiyokazu Murata
清和 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61192868A priority Critical patent/JPS6351351A/en
Publication of JPS6351351A publication Critical patent/JPS6351351A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the high-quality titled compound useful as a raw material for drugs, agricultural chemicals and food additives efficiently, by reducing dichloroacetic acid contained in monochloroacetic acid with hydrogen by the use of a specific hydrogenating catalyst to make the content of acid chloride, etc., into specific amounts. CONSTITUTION:Dichloroacetic acid contained in monochloroacetic acid is reduced with hydrogen in the presence of a hydrogenating catalyst obtained by supporting a noble metal such as Pd, etc., of group VIII of the periodic table on an acid-resistance carrier such as silica, etc., >=110 deg.C, preferably 150-170 deg.C, the content of acid chloride and acid anhydride in the crude monochloroacetic acid is made <=0.1, preferably <=0.05 and low-boiling acetic acid is removed by simple distillation to give high-quality monochloroacetic acid having <=99.9% purity. This method is economical by even balance between long-term maintenance of high catalytic activity (high load ratio) and removal cost, and high cost of noble metal catalyst and device cost can be reduced, which makes the method industrially advantageous.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酢酸を塩素化してモノクロル酢酸を製造する方
法に関するものであり、詳しくはジクロル酢酸含有量の
少い高品質のモノクロル酢酸(以下MCAという)を効
率よく製造する方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing monochloroacetic acid by chlorinating acetic acid. This article relates to a method for efficiently manufacturing .

(従来技術) 酢酸の塩素化によってMCAを製造する場°合。(Conventional technology) When producing MCA by chlorination of acetic acid.

副生成物としてジクロル酢酸(以下DCAという)。Dichloroacetic acid (hereinafter referred to as DCA) as a by-product.

トリクロル酢酸(以下TCAと−・う)が生成するが、
MCAを高品位の医薬、農薬1食品添710物の原料と
して使用する場合この副生物であるDCA 。
Trichloroacetic acid (hereinafter referred to as TCA) is produced,
When MCA is used as a raw material for high-grade pharmaceuticals, agricultural chemicals, and 710 food additives, this by-product is DCA.

TCAは大きな障害となり、従来より高品質(つまりD
CA 、TCAの少ない ) M CA製造の為の精製
方法が研究されている。その方法として工業的に実施さ
れているものとしては、晶析法、蒸留法、水添法が上げ
られる。しかし品質レベル。
TCA is a major obstacle, and higher quality (i.e. D
Purification methods for producing MCA (low in CA, TCA) are being researched. Examples of methods used industrially include a crystallization method, a distillation method, and a hydrogenation method. But the quality level.

経済性から晶析法、蒸留法は、水添法に比べて格段の差
があり近年は水添法が主流となっている。
In terms of economy, the crystallization method and the distillation method are significantly different from the hydrogenation method, and the hydrogenation method has become mainstream in recent years.

水添法における従来の技術としては、耐酸仁物質上に貴
金属を担持させた触媒を用℃・た、非連続的又は連続的
固定床液相反応(口S P 2863917 。
Conventional techniques for hydrogenation include discontinuous or continuous fixed bed liquid phase reactions at °C using catalysts in which noble metals are supported on acid-resistant substances.

持分50−34533 、持分52−4530.特開5
0−30828 ) 。
Equity 50-34533, Equity 52-4530. Tokukai 5
0-30828).

連続的固定床気相反応(持分41−6171.特公42
−8284 ) 、連続的固定床液相反応(%公5O−
31130)が知られている。
Continuous fixed bed gas phase reaction (equity 41-6171.Special Publication 42
-8284), Continuous Fixed Bed Liquid Phase Reaction (%K5O-
31130) is known.

これらの方法において固定床反応は、懸濁床反応に較べ
、触媒の分離工程を必要としないこと。
In these methods, fixed bed reactions do not require a catalyst separation step compared to suspended bed reactions.

あるいは高価な貴金属の損失が少いこと等の点で経済的
に有利であるが、いまだ高触媒活性を長期間維持する技
術は知られていない。
Although it is economically advantageous in terms of less loss of expensive precious metals, there is still no known technology for maintaining high catalytic activity for a long period of time.

例えば、持分41−6171 、持分42−8284の
明細書に記載されている60°C〜150°Cの温度で
塩素化混合液を蒸気状又は液霧状で水素とともに固定床
触媒上に導き脱塩素化反応を行なう方法では短期間(2
ケ月)に触媒活性が低下する。このため持分49−34
917.特公49−31438明細書に記載されている
様に、不経済で煩雑な再生操作を必要とする。
For example, the chlorinated mixture is introduced in the form of vapor or liquid mist over a fixed bed catalyst together with hydrogen at a temperature of 60°C to 150°C as described in the specifications of Equity 41-6171 and Equity 42-8284. The chlorination reaction method requires a short period of time (2
catalytic activity decreases. Therefore, equity 49-34
917. As described in Japanese Patent Publication No. 49-31438, it requires an uneconomical and complicated regeneration operation.

又、持分50−31130においては、触媒活性の低下
の原因は重縮合物の触媒表面上への沈着であるとして、
その重縮合樹脂化物を液で洗い流すべく液相での水添反
応を110 ’C〜145℃好ましくは115〜125
℃という低温度で行なう事により触媒活性が長期に維持
できることが記載されている。しかし、低温反応では高
価な触媒に対する粗酸の負荷率(単位時間車り処理粗酸
量/触媒量)が0.19 kg/Hr−1と低く経済的
でない。
In addition, in equity 50-31130, the cause of the decrease in catalyst activity is the deposition of polycondensates on the catalyst surface,
In order to wash away the polycondensation resin compound with a liquid, the hydrogenation reaction is carried out in the liquid phase at 110'C to 145°C, preferably at 115 to 125°C.
It is stated that catalytic activity can be maintained for a long period of time by carrying out the process at a low temperature of °C. However, in low-temperature reactions, the loading ratio of crude acid to an expensive catalyst (amount of crude acid processed per unit time/amount of catalyst) is as low as 0.19 kg/Hr-1, which is not economical.

(発明が解決しようとする問題点) 本発明は貴金属を耐酸性担体上に担持した水素化触媒の
存在下−MCA中に含まれるDCAを水素還元する工程
において前述の問題点を解決し。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems in the step of reducing DCA contained in MCA with hydrogen in the presence of a hydrogenation catalyst in which a noble metal is supported on an acid-resistant carrier.

高触媒活性(高負荷率)を長期に維持する方法を提供す
ることを目的とするものである。
The purpose of this invention is to provide a method for maintaining high catalytic activity (high loading rate) for a long period of time.

(問題点を解決するための手段) 本発明者らは触媒活性の低下原因を徹底的に研究し、そ
の要因は、水素還元に供する粗モノクロル酢酸の組成に
あることを発見した。
(Means for Solving the Problems) The present inventors thoroughly studied the cause of the decrease in catalyst activity and discovered that the cause lies in the composition of the crude monochloroacetic acid used for hydrogen reduction.

つまり触媒活性の低下をもたらす重縮合物は。In other words, polycondensates that cause a decrease in catalytic activity.

アルデヒド類の重縮合物であり、そのアルデヒド類の源
は酢酸の塩素化反応からもたらされている−ことを発見
し本発明に到達した。
The present invention was achieved by discovering that it is a polycondensation product of aldehydes, and the source of the aldehydes is derived from the chlorination reaction of acetic acid.

即ち1本発明は貴金属を耐酸性担体上に担持した水素化
触媒の存在下、モノクロル酢酸中に含まれるジクロル酢
酸を、水素還元する工程を含むモノクロル酢酸の製造法
において、水素還元に供する粗モノクロル酢酸中の酸ク
ロライド及び酸無水物の含量を0.1%以下にすること
を特徴とするモノクロル酢酸の製造方法である。
That is, 1. The present invention relates to a method for producing monochloroacetic acid that includes a step of reducing dichloroacetic acid contained in monochloroacetic acid with hydrogen in the presence of a hydrogenation catalyst in which a noble metal is supported on an acid-resistant carrier. This is a method for producing monochloroacetic acid, characterized by reducing the content of acid chloride and acid anhydride in acetic acid to 0.1% or less.

公知のごと<、MCAの生成反応は系内に生成した。あ
るいは添加した塩化アセチル(ACCI)の塩素化から
始まり1反応液中では種々の平衡反応が起っている。よ
って、水添反応に導びかれる粗酸中には反応の中間体で
あるACCI 、クロル塩化アセチル(CAC)、ジク
ロル塩化アセチル(DCAC)に代表される酸クロライ
ド類及び酢酸、MCA。
As is well known, the MCA production reaction occurred within the system. Alternatively, various equilibrium reactions occur in one reaction solution, starting from the chlorination of added acetyl chloride (ACCI). Therefore, the crude acid introduced into the hydrogenation reaction contains acid chlorides such as ACCI, chloroacetyl chloride (CAC), and dichloroacetyl chloride (DCAC), acetic acid, and MCA, which are reaction intermediates.

DCAそれらの又相互の酸無水物類が混入している。こ
れらの酸クロライド類及び、酸無水物類は。
DCA is contaminated with their and mutual acid anhydrides. These acid chlorides and acid anhydrides.

水添触媒上で水添されアルデヒド類に容易に変化し、さ
らに高温にさらされる為1重縮合を起しその重縮合物が
触媒表面上に沈着し触媒の活性が低下するものと考えら
れる。
It is thought that it is hydrogenated on the hydrogenation catalyst and easily converted to aldehydes, and then exposed to high temperatures to cause single polycondensation, and the polycondensate is deposited on the catalyst surface, reducing the activity of the catalyst.

本発明を実施するにあたり、水素還元に供する粗M C
A中の酸クロライド及び酸無水物の含量を01チ以下に
する方法は特に限定されるものではない。
In carrying out the present invention, crude M C to be subjected to hydrogen reduction
The method for reducing the content of acid chloride and acid anhydride in A to 0.1% or less is not particularly limited.

例えば、MCAに較べ、比較的低沸物である酸クロライ
ド類は、蒸留といった既存の簡単な操作で除去すること
ができる。除去度合は、粗酸中に0.1%以下好ましく
は0.05%以下が触媒活性の長期維持と除去コストと
の兼ね合いで経済的である。
For example, acid chlorides, which have a relatively low boiling point compared to MCA, can be removed by existing simple operations such as distillation. The degree of removal is preferably 0.1% or less, preferably 0.05% or less in the crude acid, which is economical in view of long-term maintenance of catalyst activity and removal cost.

一方、MCAと比較的沸点の似かまった酸無水物は前述
した蒸留操作では除去しえない。しかし本発明者らの研
究によると、酢酸の塩素化反応に塩化アセチル、無酢の
他に触媒量の硫酸を添加して反応させるだけで硫酸無添
加の場合数条副生じていた酸無水物が全(副生じない事
を発見した。
On the other hand, acid anhydrides having boiling points relatively similar to MCA cannot be removed by the above-mentioned distillation operation. However, according to the research of the present inventors, by simply adding a catalytic amount of sulfuric acid in addition to acetyl chloride and vinegar to the chlorination reaction of acetic acid, several acid anhydrides were produced as by-products when no sulfuric acid was added. It was discovered that no side effects occurred.

硫酸の添加量は反応液中で0.5〜5%好ましく)ま1
チル3%で上記効果が達成できる、この硫酸は、簡単な
蒸発操作で除去する事が可能でしかもMCAを含んだ硫
酸は反応に有効に再利用が可能な為。
The amount of sulfuric acid added is preferably 0.5 to 5% in the reaction solution)
The above effect can be achieved with 3% chill, because this sulfuric acid can be removed by a simple evaporation operation, and the sulfuric acid containing MCA can be effectively reused in the reaction.

全く無駄にはならない。It won't be wasted at all.

本発明の水素化触媒は、貴金属を耐酸性担体上に担持し
た公知のものが使用できる。貴金属としてはパラジウム
等の周期律表の第〜■族金属が単独あるいは複合して用
いられる。又、耐酸性担体としては、シリカ、アルミナ
、カーボン等がある。
As the hydrogenation catalyst of the present invention, a known catalyst in which a noble metal is supported on an acid-resistant carrier can be used. As the noble metal, metals from groups 1 to 1 of the periodic table, such as palladium, may be used alone or in combination. Further, examples of the acid-resistant carrier include silica, alumina, and carbon.

以上説明した様に本発明はfllえば、硫酸を融媒全添
加して酢酸を塩素化した反応液から、蒸留により酸クロ
ライドと硫酸を除去した粗MCAを水素とともに水添反
応へ導(ことにより実施される。
As explained above, in the present invention, crude MCA obtained by removing acid chloride and sulfuric acid by distillation from a reaction solution in which sulfuric acid is completely added as a melting medium to chlorinate acetic acid is introduced together with hydrogen into a hydrogenation reaction (possibly by Implemented.

水添反応は、110℃以上で行われるが、触媒の粗M’
CA負荷率の点から150〜170℃が好ましいO (発明の効果) 1)150〜170°Cの高温で反応させても。
The hydrogenation reaction is carried out at 110°C or higher, but the crude M' of the catalyst
From the viewpoint of CA loading rate, O is preferably 150 to 170°C. (Effects of the invention) 1) Even if the reaction is carried out at a high temperature of 150 to 170°C.

触媒上への重縮合物の沈着が抑制できる。Deposition of polycondensates on the catalyst can be suppressed.

2)又このため、従来の約2倍の粗MCA負荷率(0,
40kg/Hr−6)で触媒活性が再生ナシで長期(約
1年)に渡り維持される。従って、高価な貴金属触媒の
コスト及び装置コストが低減でき工業上非常に有利であ
る。
2) Also, for this reason, the coarse MCA load factor (0,
40 kg/Hr-6), the catalyst activity is maintained for a long period of time (about 1 year) without regeneration. Therefore, the cost of expensive precious metal catalysts and equipment costs can be reduced, which is very advantageous industrially.

3)本発明により得られた水素比相M CAはその後簡
単な蒸留により低沸の酢酸を除去するだけで、純度99
9%以上(DCA濃度0.1%以下)の高品質のMCA
を得る事ができる。
3) The hydrogen ratio phase MCA obtained by the present invention can be purified to a purity of 99 by simply removing low-boiling acetic acid by simple distillation.
High quality MCA of 9% or more (DCA concentration 0.1% or less)
can be obtained.

(実施例) 実施例1 酢酸70部、無水酢酸30部、硫酸1部を反応缶に仕込
む。
(Examples) Example 1 70 parts of acetic acid, 30 parts of acetic anhydride, and 1 part of sulfuric acid were charged into a reaction vessel.

100°Cに加熱し塩素を10部/時間で反応缶内にガ
ス状で仕込み酢酸の塩素化反応を行った。
The reactor was heated to 100°C and 10 parts/hour of chlorine was charged in gaseous form into the reactor to carry out a chlorination reaction of acetic acid.

反応熱は反応缶のジャケット冷却により除去され反応温
度は100°Cに保持した。
The reaction heat was removed by jacket cooling of the reactor, and the reaction temperature was maintained at 100°C.

得られた反応液の組成は、MCA 75.5%。The composition of the obtained reaction solution was 75.5% MCA.

D CA 3.1%、酢酸15.9%、酸クロライド類
4.5%、硫酸1.0チ、酸無水物質ND(非検出)で
あった。
D CA 3.1%, acetic acid 15.9%, acid chlorides 4.5%, sulfuric acid 1.0%, acid anhydride ND (not detected).

これを蒸留設備で低沸物(酢酸、酸クロライド類)、高
沸物(硫酸)を除去し得られた粗M CAの組成は以下
に示すものであった。MCA95.45係、DCA4.
0チ、酢酸0.5係、酸クロライド類0、05 % 、
硫酸ND、酸無水物ND。
The crude MCA obtained by removing low-boiling substances (acetic acid, acid chlorides) and high-boiling substances (sulfuric acid) using distillation equipment was as shown below. MCA95.45 Section, DCA4.
0%, acetic acid 0.5%, acid chlorides 0.05%,
Sulfuric acid ND, acid anhydride ND.

パラジウムを耐酸性担体(シリカ)上Vc0.5%担持
した水素化触媒2tを直径5Qxm長さ1000工翼の
グラスライニング二重管に充填し170℃に保持する。
2 tons of hydrogenation catalyst in which palladium is supported on an acid-resistant carrier (silica) at 0.5% Vc is packed into a glass-lined double tube with a diameter of 5Qxm and a length of 1000 blades and maintained at 170°C.

上記で得られた粗酸を800 g/l−Irの速度で上
から水素と併流で流下せしめる。Hlば28 L/Hr
の速度で170°Cに予熱したものを流す。水素比相M
CAから酢酸を蒸留により除去することにより得られた
MCAの分析値を経時的に以下シτ示す。
The crude acid obtained above is cocurrently flowed down from above with hydrogen at a rate of 800 g/l-Ir. Hlba 28 L/Hr
Flow the water preheated to 170°C at a speed of . Hydrogen ratio phase M
The analytical values of MCA obtained by removing acetic acid from CA by distillation are shown below over time.

水素化反応経過時間   MCA     DCA  
 酢酸10Hr     100%    Trace
  ’[’race1000I(r      99.
99%  0.01% ’l’raee5000Hr 
     99.97%  0.03% Trace8
000I(r      99.90%  0.10%
 Trace比較例−1 ダ酸を添加せず既知の塩素化反応の手法により塩素化反
応を実施した反応液の組成は−MCA65.7%、DC
A2.7チ、酢酸18.9%、酸クロライド類4.5%
、酸無水物類8.2%であった。これを実施例−1と同
様に低沸、高沸を除去し得られた粗MCAの組成は以下
に示すものであった。
Hydrogenation reaction elapsed time MCA DCA
Acetic acid 10Hr 100% Trace
'['race1000I(r 99.
99% 0.01% 'l'raee5000Hr
99.97% 0.03% Trace8
000I(r 99.90% 0.10%
Trace Comparative Example-1 The composition of the reaction solution in which the chlorination reaction was carried out using a known chlorination reaction method without adding daic acid was - MCA65.7%, DC
A2.7%, acetic acid 18.9%, acid chlorides 4.5%
The content of acid anhydrides was 8.2%. The composition of the crude MCA obtained by removing low boiling points and high boiling points in the same manner as in Example 1 was as shown below.

MCA37.35%、DCA3.6%、酢酸0.5%。MCA 37.35%, DCA 3.6%, acetic acid 0.5%.

酸クロライド類0.05%I酸無水物85チ。Acid chlorides 0.05% I acid anhydride 85%.

実施例−1と同様の装置に同様の条件で水Jζ反応を実
施し得られた水素比相MCAから酢酸を実施例1と同様
の方法で除去し、得られたM CAの分析値を経時的に
以下に示す。
Acetic acid was removed from the hydrogen ratio phase MCA obtained by carrying out the water Jζ reaction in the same apparatus as in Example 1 under the same conditions, and the analytical values of the obtained MCA were calculated over time. The details are shown below.

水素化反応経過時間   MCA     DCA  
  酢酸10Hr     :00%    Trac
e   TracelooHr      99.9%
   0.10%  TraceloooHr    
  99.6%  0.4%   Trace2000
Hr      98.9%  1.1%   ’l’
race比較例−2 比較例−1で得られた反応液そのまま実方例−1と同様
の水添反応、酢酸除去で得られたM CAの分析値を経
時的に以下に示す。
Hydrogenation reaction elapsed time MCA DCA
Acetic acid 10Hr: 00% Trac
e TracelooHr 99.9%
0.10% TracelooooHr
99.6% 0.4% Trace2000
Hr 98.9% 1.1% 'l'
Race Comparative Example-2 The reaction solution obtained in Comparative Example-1 was subjected to the same hydrogenation reaction and acetic acid removal as in Practical Example-1. The analytical values of MCA are shown below over time.

Claims (1)

【特許請求の範囲】[Claims] 貴金属を耐酸性担体上に担持した水素化触媒の存在下、
モノクロル酢酸中に含まれるジクロル酢酸を、水素還元
する工程を含むモノクロル酢酸の製造法において、水素
還元に供する粗モノクロル酢酸中の酸クロライド及び、
酸無水物の含量を0.1%以下にすることを特徴とする
モノクロル酢酸の製造方法。
In the presence of a hydrogenation catalyst in which precious metals are supported on an acid-resistant support,
A method for producing monochloroacetic acid that includes a step of reducing dichloroacetic acid contained in monochloroacetic acid with hydrogen, an acid chloride in crude monochloroacetic acid to be subjected to hydrogen reduction, and
A method for producing monochloroacetic acid, which comprises reducing the content of acid anhydride to 0.1% or less.
JP61192868A 1986-08-20 1986-08-20 Production of monochloroacetic acid Pending JPS6351351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192868A JPS6351351A (en) 1986-08-20 1986-08-20 Production of monochloroacetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192868A JPS6351351A (en) 1986-08-20 1986-08-20 Production of monochloroacetic acid

Publications (1)

Publication Number Publication Date
JPS6351351A true JPS6351351A (en) 1988-03-04

Family

ID=16298308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192868A Pending JPS6351351A (en) 1986-08-20 1986-08-20 Production of monochloroacetic acid

Country Status (1)

Country Link
JP (1) JPS6351351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238039A (en) * 1993-12-17 1995-09-12 Solvay Deutsche Gmbh Catalytic dehalogenation of halogen-atom- containing compound of main group iv element
JP2014530833A (en) * 2011-10-20 2014-11-20 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. Method for purifying a liquid feed comprising MCA and DCA
CN105503574A (en) * 2015-12-07 2016-04-20 西安凯立新材料股份有限公司 Hydrodechlorination method for producing high-purity monochloro acetic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031130A (en) * 1973-07-23 1975-03-27
JPS5034533A (en) * 1973-07-28 1975-04-02
JPS524530A (en) * 1975-06-30 1977-01-13 Showa Denko Kk Manufacturing of light foamed concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031130A (en) * 1973-07-23 1975-03-27
JPS5034533A (en) * 1973-07-28 1975-04-02
JPS524530A (en) * 1975-06-30 1977-01-13 Showa Denko Kk Manufacturing of light foamed concrete

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238039A (en) * 1993-12-17 1995-09-12 Solvay Deutsche Gmbh Catalytic dehalogenation of halogen-atom- containing compound of main group iv element
JP2014530833A (en) * 2011-10-20 2014-11-20 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. Method for purifying a liquid feed comprising MCA and DCA
CN105503574A (en) * 2015-12-07 2016-04-20 西安凯立新材料股份有限公司 Hydrodechlorination method for producing high-purity monochloro acetic acid

Similar Documents

Publication Publication Date Title
EP2748138B1 (en) Process for the purification of a liquid feed comprising mca and dca
US7595423B2 (en) Process for producing trans-1,4-cyclohexanedicarboxylic acid
KR920005847B1 (en) Method and catalyst for the dehalogenation of alpha-halogenated carboxylic acids
US5414116A (en) Catalyst for the dehalogenation of alphahalogenated carboxylic acids and its use for purifying monochloroacetic acid
JPS6351351A (en) Production of monochloroacetic acid
US4420433A (en) Process for the preparation of fluorine-substituted carboxylic acid chlorides and their use
JPS58116439A (en) Preparation of high purity aromatic polycarboxylic acid
JPH01193246A (en) Production of 2,3-dichloropyridine
EP0648731B1 (en) Process for hydroxycarbonylation of butadiene
JPH02275830A (en) Production of aromatic alcohol
JP3143598B2 (en) Method for producing high-purity phthalic anhydride
JPS61267538A (en) Production of 2-alkyl-6-acylnaphthalene
JPH02279643A (en) Production of isopropyl alcohol
KR20010049577A (en) Continuous hydrogenation process
JP4248051B2 (en) High purity monochloroacetic acid and process for producing the same
JPH02121946A (en) Continuous production of succinic acid
JPH10218873A (en) Purification of phthalic anhydride
JPH09221446A (en) Production of fluorenone
JPS62209030A (en) Separation of durene
JPH06234683A (en) Production of beta-naphthol
JPH10237062A (en) Production of high-purity phthalic anhydride
JP2000095742A (en) Production of acetamide
JPH10237061A (en) Production of high-purity phthalic anhydride
JPS5825655B2 (en) Isomerization method of diacetoxybutene
JPS623139B2 (en)