JPH06320304A - Diamond cutting tool excellent in welding resistance and manufacture thereof - Google Patents

Diamond cutting tool excellent in welding resistance and manufacture thereof

Info

Publication number
JPH06320304A
JPH06320304A JP11334693A JP11334693A JPH06320304A JP H06320304 A JPH06320304 A JP H06320304A JP 11334693 A JP11334693 A JP 11334693A JP 11334693 A JP11334693 A JP 11334693A JP H06320304 A JPH06320304 A JP H06320304A
Authority
JP
Japan
Prior art keywords
diamond
cutting tool
boron nitride
film
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11334693A
Other languages
Japanese (ja)
Inventor
Toshiki Sato
俊樹 佐藤
Tsutomu Ikeda
孜 池田
Seiji Kameoka
誠司 亀岡
Katsuhiko Ozaki
勝彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11334693A priority Critical patent/JPH06320304A/en
Publication of JPH06320304A publication Critical patent/JPH06320304A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a diamond cutting tool, wherein a good cut surface can be formed by preventing welding from its generation in a cutting face of the cutting tool, and a method for manufacturing the cutting tool thus constructed. CONSTITUTION:In a diamond cutting tool wherein at least a cutting action part of the cutting tool is constituted of a polycrystalline diamond film, a surface of the polycrystalline diamond film corresponding to at least a cutting face of the cutting action part is coated with a boron nitride film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非鉄金属の切削特に仕
上げ加工に適用できるダイヤモンド切削工具及びその製
造方法に関し、特に切削の際の耐溶着性に優れた効果を
発揮するダイヤモンド切削工具、およびそのような切削
工具を製造するための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond cutting tool applicable to the cutting of non-ferrous metals, especially finishing, and a method for producing the same, and particularly to a diamond cutting tool exhibiting excellent welding resistance during cutting, and It relates to a method for manufacturing such a cutting tool.

【0002】[0002]

【従来の技術】ダイヤモンドは,硬質材料として従来か
ら用いられてきたアルミナ,窒化珪素,タングステンカ
ーバイド等と比べても極めて高い硬度を有し、また熱伝
導率も高いことから、切削工具への応用開発が盛んに行
なわれている。
2. Description of the Related Art Diamond has extremely high hardness as compared with alumina, silicon nitride, tungsten carbide, etc., which have been conventionally used as hard materials, and has high thermal conductivity. Therefore, diamond is applied to cutting tools. Development is actively done.

【0003】ダイヤモンドを応用した工具として、ダイ
ヤモンド微粉末を高温・高圧下で焼結して合成した多結
晶ダイヤモンド焼結体を用いた工具(焼結ダイヤモンド
工具)も開発され、非鉄金属や硬質材料の切削加工用工
具として広く使用されている。
As a tool to which diamond is applied, a tool (sintered diamond tool) using a polycrystalline diamond sintered body synthesized by sintering fine diamond powder at high temperature and high pressure has been developed. Widely used as a cutting tool.

【0004】一方、ダイヤモンドの気相合成法が確立さ
れて以来、複雑な形状の工具にも容易に且つ安価に応用
できる可能性があることから、気相合成法によってダイ
ヤモンドを主体とする多結晶ダイヤモンド膜を工具母材
表面に被覆した工具の開発も活発化している。
On the other hand, since the vapor phase synthesis method of diamond was established, it may be easily and inexpensively applied to tools having complicated shapes. Development of tools in which the surface of the tool base material is coated with a diamond film is also active.

【0005】ところで上記の様な工具を用いて非鉄金属
の仕上げ加工を行う場合には、刃先の鋭利性もさること
ながら、切削加工によって被削材から分離排出された切
り屑が工具すくい面に溶着しないこと、すなわち耐溶着
性に優れていることも必要である。上記のような溶着物
は、工具すくい面から脱落して被削材表面に付着した
り、構成刃先を形成して被削材表面粗度の低下を引き起
こす原因になる。
By the way, when non-ferrous metal is finished by using the above-mentioned tools, not only the sharpness of the cutting edge but also the chips separated and discharged from the work material by the cutting work are struck on the rake face of the tool. It is also necessary that they are not welded, that is, have excellent resistance to welding. The above-mentioned deposits fall off from the tool rake face and adhere to the surface of the work material, or form a cutting edge to cause a decrease in the surface roughness of the work material.

【0006】この様な溶着を防止するために、焼結ダイ
ヤモンド工具では、工具すくい面を鏡面に研磨して切り
屑の滑りを向上させるという工夫がなされている。この
研磨は、通常スカイフ盤によって行われるが、前述した
ようにダイヤモンドは最高の硬さを有するので、その研
磨に長時間を要するという欠点があった。またすくい面
を鏡面にしても、切削条件によっては溶着は防止でき
ず、切削条件が限定されるという問題もあった。
In order to prevent such welding, the sintered diamond tool has been devised so that the tool rake surface is mirror-finished to improve the slip of chips. This polishing is usually carried out by a skiffing machine, but as described above, diamond has the highest hardness, so that there is a drawback in that polishing takes a long time. Further, even if the rake face is a mirror surface, welding cannot be prevented depending on the cutting conditions, and there is a problem that the cutting conditions are limited.

【0007】一方、気相合成によって形成された多結晶
ダイヤモンド膜は、その表面が粒径0.5μmから数μ
mのダイヤモンド粒から構成されているので粗く、その
まま切削に用いれば溶着を起し、良好な切削面粗度は得
られにくいという欠点があった。そこで焼結ダイヤモン
ド工具と同様に、膜の表面を研磨することも考えられる
が、気相合成によって得られた多結晶ダイヤモンド膜は
焼結ダイヤモンドと異なり、金属バインダーを含まない
ほぼ100%に近いダイヤモンド粒から構成されている
ので、非常に硬く、研磨することは容易でない。
On the other hand, the polycrystalline diamond film formed by vapor phase synthesis has a surface with a grain size of 0.5 μm to several μm.
Since it is composed of diamond grains of m, it is rough, and if it is used for cutting as it is, it causes welding and it is difficult to obtain a good cut surface roughness. Therefore, like the sintered diamond tool, it is possible to polish the surface of the film, but the polycrystalline diamond film obtained by vapor phase synthesis differs from sintered diamond in that it does not contain metal binder and is close to 100% diamond. Being composed of grains, it is very hard and not easy to polish.

【0008】そこで多結晶ダイヤモンド膜の表面粗さを
改善する方法として、例えば特開平1−212767号
公報に開示される様な技術も提案されている。この技術
は、表面粗さがRmaxで0.1μm以下の基板上に気
相合成法によって多結晶ダイヤモンド膜を析出させ、生
成したダイヤモンド膜を一旦基板から外して刃先形状に
切断し、多結晶ダイヤモンド膜の基板の接合面側が工具
すくい面となるように前記ダイヤモンド膜を工具母材の
切削作用部分にろう付けによって取り付け、このろう付
けの前または後に多結晶ダイヤモンド膜から基板を除去
することによってすくい面の表面粗さをRmaxで0.
1μm以下にするものである。しかしながら、基板にダ
イヤモンドを析出するためには、予め基板にダイヤモン
ドの核発生の起点となる傷をダイヤモンドのパウダーに
よって緻密に付ける必要があり、そのため基板の表面粗
さをRmaxで0.1μm以下にすることは極めて困難
である。また仮にすくい面粗さをRmaxで0.1μm
以下にすることができても、それだけでは溶着を十分に
防止することはできず、焼結ダイヤモンド切削工具と同
様に切削条件によっては溶着を生じ、良好な被削面粗度
が得られないという欠点があった。
Therefore, as a method of improving the surface roughness of the polycrystalline diamond film, a technique disclosed in, for example, Japanese Patent Laid-Open No. 1-212767 has been proposed. This technique involves depositing a polycrystalline diamond film on a substrate having a surface roughness Rmax of 0.1 μm or less by a vapor phase synthesis method, temporarily removing the produced diamond film from the substrate and cutting it into a cutting edge shape. The diamond film is attached to the cutting action part of the tool base material by brazing so that the bonded surface side of the film to the tool rake surface, and the substrate is removed from the polycrystalline diamond film before or after this brazing. The surface roughness of the surface is Rmax of 0.
It is to be 1 μm or less. However, in order to deposit diamond on the substrate, it is necessary to make a fine scratch on the substrate, which is the starting point of diamond nucleation, with diamond powder in advance, so that the surface roughness of the substrate is set to Rmax of 0.1 μm or less. It is extremely difficult to do. If the rake surface roughness is Rmax of 0.1 μm
Even if it can be done below, it is not enough to prevent welding, and similar to the sintered diamond cutting tool, welding occurs depending on the cutting conditions, and good surface roughness cannot be obtained. was there.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、切削
工具すくい面の溶着の発生を防止し、良好な被削面を形
成することのできるダイヤモンド切削工具、およびその
ような切削工具を製造するための方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to prevent welding of a rake face of a cutting tool and to form a good work surface. It is to provide a diamond cutting tool that can do, and a method for manufacturing such a cutting tool.

【0010】[0010]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、切削工具の少なくとも切削作用部分が多結晶
ダイヤモンドで構成されるダイヤモンド切削工具におい
て、前記切削作用部分の少なくともすくい面に相当する
多結晶ダイヤモンド膜の表面が、窒化硼素膜で被覆され
ている点に要旨を有するものである。
Means for Solving the Problems The present invention which has achieved the above object is a diamond cutting tool in which at least a cutting action portion of the cutting tool is composed of polycrystalline diamond, and at least a rake face of the cutting action portion is provided. The gist is that the surface of the corresponding polycrystalline diamond film is covered with the boron nitride film.

【0011】[0011]

【作用】本発明者らは、溶着性の改善を図るべく被削材
と工具すくい面との親和性に着目し、様々な角度から検
討した。その結果、切削作用部分の少なくともすくい面
に相当する多結晶ダイヤモンド膜の表面を、被削材との
親和性の少ない窒化硼素膜で被覆すれば、溶着の発生を
防止することができ、良好な被削面粗度が得られること
見いだし、本発明を完成した。尚本発明のダイヤモンド
切削工具は、上記の如く、少なくともすくい面に相当す
る多結晶ダイヤモンド膜の表面を窒化硼素膜で被覆した
ものであるが、これは製造方法によってはにげ面側にも
窒化硼素膜で被覆される場合があるからである。但し、
にげ面側に被覆された窒化硼素膜は切削時に徐々に取り
除かれていき、その結果にげ面側は多結晶ダイヤモンド
が露出してダイヤモンド切削工具本来の機能を発揮する
ことになる。
The present inventors paid attention to the affinity between the work material and the tool rake face in order to improve the weldability, and studied from various angles. As a result, if the surface of the polycrystalline diamond film corresponding to at least the rake face of the cutting action portion is covered with a boron nitride film having a low affinity with the work material, the occurrence of welding can be prevented, which is good. It was found that the surface roughness to be machined was obtained, and the present invention was completed. As described above, the diamond cutting tool of the present invention is one in which at least the surface of the polycrystalline diamond film corresponding to the rake face is covered with the boron nitride film. This is because it may be covered with a boron film. However,
The boron nitride film coated on the scaly surface side is gradually removed during cutting, and as a result, polycrystalline diamond is exposed on the scaly surface side, and the original function of the diamond cutting tool is exhibited.

【0012】本発明のダイヤモンド切削工具は、上記の
ように切削作用部分の少なくともすくい面に相当する多
結晶ダイヤモンド膜の表面を、窒化硼素膜で被覆したも
のであるが、このとき被覆される窒化硼素膜の厚さは
0.05〜3μmとするのが好ましい。即ち、膜厚が
0.05μm未満であると膜が不均一となってすくい面
が完全に窒化硼素膜で被覆されず、十分な効果が得られ
ない。また膜厚が3μmを超えると、刃先部から窒化硼
素膜が貝殻状に欠けを生じ易くなって、却って被削材の
面粗度を悪くする。
The diamond cutting tool of the present invention is formed by coating the surface of the polycrystalline diamond film corresponding to at least the rake face of the cutting action portion with the boron nitride film as described above. The thickness of the boron film is preferably 0.05 to 3 μm. That is, if the film thickness is less than 0.05 μm, the film becomes non-uniform and the rake face is not completely covered with the boron nitride film, and a sufficient effect cannot be obtained. On the other hand, if the film thickness exceeds 3 μm, the boron nitride film is likely to be chipped in a shell shape from the cutting edge, which rather deteriorates the surface roughness of the work material.

【0013】また窒化硼素膜を被覆したダイヤモンド切
削工具のすくい面の表面粗さは、Rmaxで1μm以下
とするのが好ましい。これより面粗さが高いと、面の凹
凸によってすくい面を滑って排出される切り屑が削り取
られ、これがすくい面上に残って溶着の発生を引き起こ
す。
The surface roughness of the rake face of the diamond cutting tool coated with the boron nitride film is preferably Rmax of 1 μm or less. If the surface roughness is higher than this, chips discharged by sliding on the rake surface due to the unevenness of the surface are scraped off, and this remains on the rake surface, causing welding to occur.

【0014】窒化硼素膜中には、70容量%以上の立方
晶窒化硼素が含まれていることが好ましい。窒化硼素に
は、立方晶の他に六方晶や非晶質のものがあるが、立方
晶に比べて硬度が低い。窒化硼素膜中の立方晶窒化硼素
が70容量%未満であると、切り屑によるすくい面の摩
耗が激しくなり下地のダイヤモンド表面が露出してきて
切削途中で溶着が発生しだし、被削面粗度の低下を引き
起こす。
The boron nitride film preferably contains 70% by volume or more of cubic boron nitride. Boron nitride includes hexagonal crystals and amorphous ones in addition to cubic crystals, but has a lower hardness than cubic crystals. If the content of cubic boron nitride in the boron nitride film is less than 70% by volume, the rake face is heavily worn by chips and the underlying diamond surface is exposed, and welding begins to occur during cutting, resulting in a rough surface to be machined. Cause a decline.

【0015】窒化硼素膜中に含まれる立方晶窒化硼素の
粒径は、0.01〜2μmとするのが好ましい。即ち、
立方晶窒化硼素の粒径が0.01μm未満であると、膜
の摩耗が激しくなって本発明の効果を得ることができな
い。一方立方晶窒化硼素の粒径が2μmを超えると刃先
の方から立方晶窒化硼素の粒がチッピングによって脱落
しだし、下地の多結晶ダイヤモンドが露出し本発明の効
果が得られない。
The cubic boron nitride contained in the boron nitride film preferably has a grain size of 0.01 to 2 μm. That is,
If the particle size of the cubic boron nitride is less than 0.01 μm, the wear of the film becomes severe and the effect of the present invention cannot be obtained. On the other hand, when the grain size of the cubic boron nitride exceeds 2 μm, the grains of the cubic boron nitride start to drop off from the edge of the blade by chipping, and the underlying polycrystalline diamond is exposed, so that the effect of the present invention cannot be obtained.

【0016】本発明において、窒化硼素膜を形成するた
めの方法としては、非平衡状態を利用した低圧気相合成
法を採用すれば良い。このような方法としては、例えば
イオンプレーティング法やイオンビーム法等の物理的蒸
着法(PVD法)、RFプラズマCVD法やマイクロ波
プラズマCVD法等の化学的蒸着法(CVD法)等が挙
げられるが、窒化硼素膜が合成できればいずれの方法も
採用できる。
In the present invention, as a method for forming the boron nitride film, a low pressure vapor phase synthesis method utilizing a non-equilibrium state may be adopted. Examples of such a method include a physical vapor deposition method (PVD method) such as an ion plating method and an ion beam method, and a chemical vapor deposition method (CVD method) such as an RF plasma CVD method and a microwave plasma CVD method. However, any method can be adopted as long as the boron nitride film can be synthesized.

【0017】本発明で窒化硼素膜が被覆されるダイヤモ
ンド切削工具としては、焼結ダイヤモンド切削工具およ
び気相合成ダイヤモンド切削工具のいずれも採用でき
る。特に気相合成ダイヤモンド切削工具には、切削工具
母材表面にダイヤモンドを直接析出したダイヤモンド切
削工具、および基板上に多結晶ダイヤモンド膜を析出さ
せた後、該多結晶ダイヤモンド膜を基板面側がすくい面
となるように工具母材にろう付けによって取り付け、ろ
う付けの前または後に基板を除去して刃付け加工したい
わゆるろう付け工具にいずれも用いることができる。
As the diamond cutting tool coated with the boron nitride film in the present invention, either a sintered diamond cutting tool or a vapor phase synthetic diamond cutting tool can be adopted. In particular, for vapor phase synthetic diamond cutting tools, a diamond cutting tool in which diamond is directly deposited on the surface of the cutting tool base material, and after depositing a polycrystalline diamond film on the substrate, the polycrystalline diamond film is raked on the substrate surface side. It can be used for a so-called brazing tool in which a base material is attached to a tool base material by brazing so that the substrate is removed before or after the brazing so as to be bladed.

【0018】窒化硼素膜は、前述した方法によってダイ
ヤモンド切削工具に直接被覆されるが、前記気相合成多
結晶ダイヤモンドろう付け切削工具に関しては、下記の
方法によって製造することができる。即ち、基板上に窒
化硼素膜を析出させた後、該窒化硼素膜上に気相合成法
によって多結晶ダイヤモンド膜を合成して、窒化硼素膜
と多結晶ダイヤモンド膜の積層膜を作成し、該積層膜の
多結晶ダイヤモンド膜側を工具母材の少なくともすくい
面側に(即ち、窒化硼素膜が表面側となる様に)ろう付
けによって取付けると共に、前記基板をろう付けの前ま
たは後に除去し、刃付け加工することによってすくい面
が窒化硼素膜で被覆された気相合成多結晶ダイヤモンド
ろう付け切削工具を製造することができる。またこの
際、基板の表面粗さをRmaxで1μm以下とすること
によってすくい面における窒化硼素膜の表面粗さをRm
axで1μm以下にすることができる。
The boron nitride film is directly coated on the diamond cutting tool by the above-mentioned method, but the vapor-phase synthetic polycrystalline diamond brazing cutting tool can be manufactured by the following method. That is, after depositing a boron nitride film on a substrate, a polycrystalline diamond film is synthesized on the boron nitride film by a vapor phase synthesis method to form a laminated film of a boron nitride film and a polycrystalline diamond film. The polycrystalline diamond film side of the laminated film is attached by brazing to at least the rake face side of the tool base material (that is, the boron nitride film is the front side), and the substrate is removed before or after brazing, It is possible to manufacture a vapor-phase synthesized polycrystalline diamond brazing cutting tool having a rake face coated with a boron nitride film by performing the edging process. Further, at this time, the surface roughness of the boron nitride film on the rake face is set to Rm by setting the surface roughness of the substrate to 1 μm or less in Rmax.
It can be 1 μm or less in ax.

【0019】尚本発明で用いる切削工具母材としては、
工具としての使用に耐える硬度および強度を有するもの
であれば良く、特に限定されるものではないが、多結晶
ダイヤモンド膜をろう付けによって取りつける多結晶ダ
イヤモンドろう付け切削工具の場合には、ろう付けによ
る熱応力の発生が少ないという観点からして、多結晶ダ
イヤモンド膜の熱膨張係数に近い材質を用いるのが良
い。この様なものとして、超硬合金や窒化珪素系セラミ
ックスが挙げられる。また切削工具の形態としては、後
記実施例に示した様なチップの他、ドリル、エンドミル
等の切削工具にも適用できるものである。
As the cutting tool base material used in the present invention,
It is not particularly limited as long as it has hardness and strength that can be used as a tool, but in the case of a polycrystalline diamond brazing cutting tool for attaching a polycrystalline diamond film by brazing, From the viewpoint of less generation of thermal stress, it is preferable to use a material having a thermal expansion coefficient close to that of the polycrystalline diamond film. Examples of such materials include cemented carbide and silicon nitride ceramics. The cutting tool can be applied to cutting tools such as drills and end mills, in addition to the chips shown in the examples below.

【0020】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any change in the design of the present invention can be made without departing from the spirit of the preceding and the following. It is included in the technical scope.

【0021】[0021]

【実施例】【Example】

実施例1 表1に示す様な種々のすくい面を有する工具形状SPG
N120304の焼結体ダイヤモンドチップを準備し、
これらをイオンプレーティング装置内に装入し、装置内
を1×10-7Torrに排気した後、エレクトロンビー
ム照射によって硼素を蒸発させると共に、窒素ガスを装
置内に導入して窒素のアーク放電とRFグロー放電を重
畳させることによって、焼結体ダイヤモンドチップの表
面を各種膜厚の窒化硼素膜で被覆した。このとき成膜中
の装置内圧力は1×10-3Torrとし、窒化硼素の膜
厚の制御は成膜時間を制御することによって行なった。
このようにして作成した窒化硼素膜を赤外線吸光分析装
置および透過型電子顕微鏡で分析した結果、膜は93容
量%の立方晶窒化硼素と7容量%の非晶質窒化硼素から
構成されており、立方晶窒化硼素の平均粒径は0.03
μmであった。窒化硼素膜の膜厚と被覆後のすくい面の
表面粗さを表1に併記する。
Example 1 Tool shape SPG having various rake faces as shown in Table 1
Prepare a sintered diamond tip of N120304,
After charging these into an ion plating device and evacuating the device to 1 × 10 −7 Torr, boron is evaporated by electron beam irradiation, and nitrogen gas is introduced into the device to generate arc discharge of nitrogen. By superimposing RF glow discharge, the surface of the sintered diamond tip was coated with a boron nitride film of various thicknesses. At this time, the pressure inside the apparatus during film formation was 1 × 10 −3 Torr, and the film thickness of the boron nitride was controlled by controlling the film formation time.
The thus-produced boron nitride film was analyzed by an infrared absorption spectrometer and a transmission electron microscope. As a result, the film was composed of 93% by volume of cubic boron nitride and 7% by volume of amorphous boron nitride, The average particle size of cubic boron nitride is 0.03.
was μm. Table 1 shows the thickness of the boron nitride film and the surface roughness of the rake surface after coating.

【0022】[0022]

【表1】 [Table 1]

【0023】次に、得られたチップを用いて切削試験を
行ない、被削面の表面粗さおよびすくい面への溶着状況
を調査した。このときの切削条件は、被削材としてAl
−16%Si合金を用い、切削速度:400m/mi
n,送り速度:0.1mm/rev,切込み:0.25
mm/rev,切削時間:20分とし、乾式連続切削を
行った。その結果を表2に示すが、表2から明らかな様
に、窒化硼素膜ですくい面を被覆すると共に、該すくい
面の表面粗さを適切に調整することはすくい面における
溶着の発生を防止する上で有効であることがわかる。
Next, a cutting test was carried out using the obtained chips to investigate the surface roughness of the work surface and the welding condition on the rake face. The cutting conditions at this time are as follows:
-16% Si alloy is used, cutting speed: 400 m / mi
n, feed rate: 0.1 mm / rev, depth of cut: 0.25
mm / rev, cutting time: 20 minutes, and dry continuous cutting was performed. The results are shown in Table 2. As is clear from Table 2, it is possible to prevent the occurrence of welding on the rake face by covering the rake face with a boron nitride film and appropriately adjusting the surface roughness of the rake face. It turns out that it is effective in doing.

【0024】[0024]

【表2】 [Table 2]

【0025】実施例2 工具形状がSPGN120308の超硬チップ表面に、
マイクロ波プラズマCVD法によって、多結晶ダイヤモ
ンド膜を下記の合成条件にて形成した。このとき、多結
晶ダイヤモンド膜の表面粗さは膜厚と共に増大するの
で、膜厚をかえることによって、下記表3に示す様に種
々の表面粗さを有するダイヤモンド被覆超硬度チップを
得た。 (合成条件) ・原料ガス :H2 (流量:100cc/mi
n) CH4 (流量:1cc/min) ・圧力 :50Torr ・基板温度 :850℃ ・マイクロK波出力:1kw
Example 2 On the surface of a cemented carbide chip having a tool shape of SPGN120308,
A polycrystalline diamond film was formed by the microwave plasma CVD method under the following synthesis conditions. At this time, the surface roughness of the polycrystalline diamond film increases with the film thickness, so by changing the film thickness, diamond-coated superhard chips having various surface roughness as shown in Table 3 below were obtained. (Synthesis conditions) Raw material gas: H 2 (Flow rate: 100 cc / mi
n) CH 4 (flow rate: 1 cc / min) -Pressure: 50 Torr-Substrate temperature: 850 ° C-Micro K wave output: 1 kw

【0026】このようにして得られたダイヤモンド被覆
超硬度チップの表面に、実施例1と同様にして窒化硼素
膜を形成した。窒化硼素膜の膜厚、粒径および組成並び
に窒化硼素膜被覆後のすくい面の表面粗さを、表3に併
記する。
A boron nitride film was formed on the surface of the diamond-coated superhard chip thus obtained in the same manner as in Example 1. Table 3 also shows the film thickness, particle size and composition of the boron nitride film, and the surface roughness of the rake surface after coating the boron nitride film.

【0027】[0027]

【表3】 [Table 3]

【0028】次に、得られた窒化硼素膜被覆気相合成ダ
イヤモンドチップを用いて切削試験を行ない、被削面の
表面粗さおよびすくい面への溶着状況を調査した。この
ときの切削条件は、被削材としてAl−12%Si合金
を用い、切削速度:400m/min,送り速度:0.
1mm/rev,切込み:0.25mm/rev,切削
時間:40分とし、乾式連続切削を行った。その結果を
表4に示すが、表4から明らかな様に、窒化硼素膜の膜
厚や粒径,組成、或は窒化硼素膜の表面粗さを適切に調
整することは、すくい面における溶着の発生を防止する
上で有効であることがわかる。また本発明の切削工具で
はすくい面に溶着がまったく発生しておらず、比較材に
比べて良好な被削面粗度がえられていることがわかる。
Next, a cutting test was conducted using the obtained boron nitride film-covered vapor-phase synthetic diamond tip, and the surface roughness of the work surface and the welding condition on the rake face were investigated. The cutting conditions at this time were Al-12% Si alloy as the work material, cutting speed: 400 m / min, feed rate: 0.
Dry continuous cutting was performed with 1 mm / rev, depth of cut: 0.25 mm / rev, and cutting time: 40 minutes. The results are shown in Table 4. As is clear from Table 4, it is necessary to properly adjust the film thickness, grain size, composition of the boron nitride film, or the surface roughness of the boron nitride film, in order to prevent the deposition on the rake face. It can be seen that it is effective in preventing the occurrence of. Further, it can be seen that in the cutting tool of the present invention, welding was not generated on the rake face at all, and a good work surface roughness was obtained as compared with the comparative material.

【0029】[0029]

【表4】 [Table 4]

【0030】実施例3 表面粗さがRmaxで0.02μmのシリコン基板の表
面を、粒径1/4μmのダイヤモンドペーストによっ
て、ダイヤモンドの核を発生させるための傷入れ処理を
行なった。処理後のシリコン基板の表面粗度はRmax
で0.02μmであった。このシリコン基板の表面に、
実施例2に示したのと同様の方法でダイヤモンドを膜厚
100μmとなる様に析出させた。
Example 3 The surface of a silicon substrate having a surface roughness Rmax of 0.02 μm was subjected to a scratching treatment for generating diamond nuclei with a diamond paste having a grain size of 1/4 μm. The surface roughness of the treated silicon substrate is Rmax
Was 0.02 μm. On the surface of this silicon substrate,
Diamond was deposited in the same manner as in Example 2 to a film thickness of 100 μm.

【0031】上記ダイヤモンド析出シリコン基板を、6
0℃の30重量%水酸化ナトリウム水溶液に浸漬し、シ
リコン基板を除去した。引き続き、基板を除去したダイ
ヤモンド膜をYAGレーザーで刃先形状に切断した後、
ダイヤモンド膜の元の基板側がすくい面となる様にチッ
プ刃先にろう付けして刃付け加工した。このようにし
て、ダイヤモンド膜ろう付けチップを2個作製した。こ
のうち1個の表面に、実施例1と同様の方法で窒化硼素
膜を析出させた。このときの窒化硼素膜の膜厚は0.2
μmであり、表面粗度はRmaxで0.21μm、立方
晶窒化硼素の割合は94%、立方晶窒化硼素の粒径は
0.02μmであった。
The above diamond-deposited silicon substrate was replaced with 6
The silicon substrate was removed by immersing in a 30 wt% sodium hydroxide aqueous solution at 0 ° C. Subsequently, the diamond film from which the substrate has been removed is cut into a blade shape with a YAG laser,
The diamond film was brazed to the tip of the chip so that the original substrate side became the rake face, and the blade was processed. In this way, two diamond film brazing tips were produced. A boron nitride film was deposited on one of the surfaces in the same manner as in Example 1. At this time, the thickness of the boron nitride film is 0.2
The surface roughness Rmax was 0.21 μm, the ratio of cubic boron nitride was 94%, and the particle size of cubic boron nitride was 0.02 μm.

【0032】一方、表面粗度がRmaxで0.02μm
のシリコン基板の表面に、実施例1と同様にして立方晶
窒化硼素膜を析出させ、その表面を粒径1/4のダイヤ
モンドペーストで傷入れ処理を行ない、次いでダイヤモ
ンドを100μmの膜厚となる様に析出させた。引き続
き、ダイヤモンド析出シリコン基板を、60℃の30重
量%水酸化ナトリウム水溶液に浸漬し、シリコン基板を
溶解除去した。その後、基板を除去したダイヤモンド膜
をYAGレーザーで刃先形状に切断した後、窒化硼素膜
側がすくい面となる様にチップ刃先にろう付けして刃付
け加工を施した。このときの窒化硼素膜の膜厚は0.4
μmであり、表面粗度はRmaxで0.02μm,立方
晶窒化硼素の割合は94容量%、立方晶窒化硼素の粒径
は0.02μmであった。
On the other hand, the surface roughness Rmax is 0.02 μm.
A cubic boron nitride film is deposited on the surface of the silicon substrate in the same manner as in Example 1, the surface is scratched with a diamond paste having a grain size of 1/4, and then diamond is made to have a thickness of 100 μm. Was deposited in the same manner. Subsequently, the diamond-deposited silicon substrate was immersed in a 30% by weight aqueous sodium hydroxide solution at 60 ° C. to dissolve and remove the silicon substrate. After that, the diamond film from which the substrate was removed was cut into a blade shape by a YAG laser, and then the chip blade tip was brazed so that the boron nitride film side became the rake face, and blade processing was performed. At this time, the thickness of the boron nitride film is 0.4
The surface roughness was 0.02 μm in Rmax, the ratio of cubic boron nitride was 94% by volume, and the particle size of cubic boron nitride was 0.02 μm.

【0033】上記の様にして作成したチップを用いて切
削試験を行ない、被削面の表面粗さおよびすくい面への
溶着状況を調査した。このときの切削条件は、被削材と
してAl−10%Si合金を用い、切削速度:500m
/min,送り速度:0.1mm/rev,切込み:
0.2mm/rev,切削時間:60分とし、乾式連続
切削を行った。その結果、窒化硼素膜を被覆していない
チップについては、溶着が発生し、被削面粗度はRma
xで4.7であったが、窒化硼素膜を被覆した2種類の
チップについては、溶着は発生していなかった。窒化硼
素膜を被覆した2種類のチップのうち、すくい面の表面
粗さがRmaxで0.21μmの方は被削面の表面粗さ
Rmaxで1.9μmであり、すくい面の表面粗さがR
maxで0.02μmの方は被削面の表面粗さがRma
xで1.7μmであり、窒化硼素膜を被覆していないも
のに比べて良好な被削面の表面粗さが得られていた。
A cutting test was carried out using the chips prepared as described above, and the surface roughness of the work surface and the welding condition on the rake face were investigated. The cutting conditions at this time are as follows: Al-10% Si alloy is used as the work material, and the cutting speed is 500 m.
/ Min, feed rate: 0.1 mm / rev, depth of cut:
Dry continuous cutting was performed at 0.2 mm / rev and a cutting time of 60 minutes. As a result, welding occurs in the chip not coated with the boron nitride film, and the surface roughness to be machined is Rma.
Although x was 4.7, no welding occurred in the two types of chips coated with the boron nitride film. Of the two types of chips coated with a boron nitride film, the one having a rake surface with a surface roughness Rmax of 0.21 μm has a surface roughness Rmax of the work surface of 1.9 μm, and the rake surface has a surface roughness R.
If the maximum value is 0.02 μm, the surface roughness of the work surface is Rma.
The value of x was 1.7 μm, and the surface roughness of the work surface was better than that of the sample not coated with the boron nitride film.

【0034】[0034]

【発明の効果】本発明は以上の様に構成されており、ダ
イヤモンドに比べて被削材との親和性の少ない窒化硼素
膜を、少なくとも工具のすくい面に被覆することによっ
て、すくい面上への切り屑の溶着を防止できると共に、
優れた被削面粗度を得ることができる様になった。
The present invention is constructed as described above, and at least the rake face of the tool is coated with a boron nitride film having a lower affinity for the work material than diamond, so that the rake face is moved to the rake face. It is possible to prevent the welding of chips of
It became possible to obtain excellent surface roughness.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/04 W 8216−4G (72)発明者 尾崎 勝彦 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C30B 29/04 W 8216-4G (72) Inventor Katsuhiko Ozaki 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Co., Ltd.Kobe Research Institute

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 切削工具の少なくとも切削作用部分が多
結晶ダイヤモンドで構成されるダイヤモンド切削工具に
おいて、前記切削作用部分の少なくともすくい面に相当
する多結晶ダイヤモンド膜の表面が、窒化硼素膜で被覆
されていることを特徴とする耐溶着性に優れたダイヤモ
ンド切削工具。
1. A diamond cutting tool in which at least a cutting action portion of the cutting tool is composed of polycrystalline diamond, and a surface of a polycrystalline diamond film corresponding to at least a rake face of the cutting action portion is covered with a boron nitride film. A diamond cutting tool with excellent welding resistance.
【請求項2】 多結晶ダイヤモンドは、切削工具母材の
少なくとも切削作用部分の表面に、気相合成法によって
析出させたものである請求項1に記載のダイヤモンド切
削工具。
2. The diamond cutting tool according to claim 1, wherein the polycrystalline diamond is deposited on the surface of at least a cutting action portion of a cutting tool base material by a vapor phase synthesis method.
【請求項3】 気相合成によって形成された多結晶ダイ
ヤモンド膜を、切削工具母材の少なくとも切削作用部分
にろう付けによって取付けたものである請求項1に記載
のダイヤモンド切削工具。
3. The diamond cutting tool according to claim 1, wherein the polycrystalline diamond film formed by vapor phase synthesis is attached to at least the cutting action portion of the cutting tool base material by brazing.
【請求項4】 窒化硼素膜の厚さが0.05〜3μmで
ある請求項1〜3のいずれかに記載のダイヤモンド切削
工具。
4. The diamond cutting tool according to claim 1, wherein the boron nitride film has a thickness of 0.05 to 3 μm.
【請求項5】 すくい面の表面粗さが、Rmaxで1μ
m以下である請求項1〜4のいずれかに記載のダイヤモ
ンド切削工具。
5. The surface roughness of the rake face has a Rmax of 1 μm.
The diamond cutting tool according to any one of claims 1 to 4, which has a thickness of m or less.
【請求項6】 窒化硼素膜が、70容量%以上の立方晶
窒化硼素を含有するものである請求項1〜5のいずれか
に記載のダイヤモンド切削工具。
6. The diamond cutting tool according to claim 1, wherein the boron nitride film contains 70% by volume or more of cubic boron nitride.
【請求項7】 窒化硼素膜中の立方晶窒化硼素の粒径
が、0.01〜2μmである請求項6に記載のダイヤモ
ンド切削工具。
7. The diamond cutting tool according to claim 6, wherein the grain size of the cubic boron nitride in the boron nitride film is 0.01 to 2 μm.
【請求項8】 請求項3に記載のダイヤモンド切削工具
を製造するにあたり、基板上に窒化硼素膜を析出させた
後、該窒化硼素膜上に気相合成法によって多結晶ダイヤ
モンド膜を合成して、窒化硼素膜と多結晶ダイヤモンド
膜の積層膜を作製し、該積層膜多結晶ダイヤモンド膜側
を工具母材の切削作用部分の少なくともすくい面側にろ
う付けによって取付けると共に、前記基板をろう付けの
前または後に除去することを特徴とする耐溶着性に優れ
たダイヤモンド切削工具の製造方法。
8. In manufacturing the diamond cutting tool according to claim 3, a boron nitride film is deposited on a substrate, and then a polycrystalline diamond film is synthesized on the boron nitride film by a vapor phase synthesis method. , A laminated film of a boron nitride film and a polycrystalline diamond film is produced, and the laminated film polycrystalline diamond film side is attached to at least the rake face side of the cutting action portion of the tool base material by brazing, and the substrate is brazed. A method for producing a diamond cutting tool having excellent welding resistance, characterized by being removed before or after.
【請求項9】 前記基板の表面粗さがRmaxで1μm
以下である請求項8に記載のダイヤモンド切削工具の製
造方法。
9. The surface roughness Rmax of the substrate is 1 μm.
The method for manufacturing a diamond cutting tool according to claim 8, which is as follows.
JP11334693A 1993-05-14 1993-05-14 Diamond cutting tool excellent in welding resistance and manufacture thereof Withdrawn JPH06320304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11334693A JPH06320304A (en) 1993-05-14 1993-05-14 Diamond cutting tool excellent in welding resistance and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11334693A JPH06320304A (en) 1993-05-14 1993-05-14 Diamond cutting tool excellent in welding resistance and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06320304A true JPH06320304A (en) 1994-11-22

Family

ID=14609928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11334693A Withdrawn JPH06320304A (en) 1993-05-14 1993-05-14 Diamond cutting tool excellent in welding resistance and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06320304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104440004A (en) * 2014-11-14 2015-03-25 深圳市迈高机械工具有限公司 PCD tool cutting edge processing method
JP2020001156A (en) * 2018-06-29 2020-01-09 ヘラミエンタス プレジス,エセ.エレ. Cutting insert applicable to machining tool and machining tool bearing it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104440004A (en) * 2014-11-14 2015-03-25 深圳市迈高机械工具有限公司 PCD tool cutting edge processing method
JP2020001156A (en) * 2018-06-29 2020-01-09 ヘラミエンタス プレジス,エセ.エレ. Cutting insert applicable to machining tool and machining tool bearing it

Similar Documents

Publication Publication Date Title
US5178645A (en) Cutting tool of polycrystalline diamond and method of manufacturing the same
JP4500810B2 (en) Surface-coated cubic boron nitride sintered body tool and manufacturing method thereof
KR950007672B1 (en) Polycrystalline diamond cutting tod and method of making the same
EP0365218B1 (en) A polycrystal diamond fluted tool and a process for the production of the same
JP6659676B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
JP2867694B2 (en) Polycrystalline diamond cutting tool and its manufacturing method
JP2011110654A (en) Cutting tool for grooving
JPH06297206A (en) Hard sintered tool and its manufacture
JPH06320304A (en) Diamond cutting tool excellent in welding resistance and manufacture thereof
JP3013448B2 (en) Polycrystalline diamond cutting tool and its manufacturing method
JP2557560B2 (en) Polycrystalline diamond cutting tool and manufacturing method thereof
JPH0679504A (en) Polycrystal diamond cutting tool and its manufacture
JPH05253705A (en) Diamond cutting tool and manufacture thereof
JPH01212767A (en) Highly wear-resistant polycrystalline diamond tool and its production
JP2002275571A (en) cBN-BASE SINTERED COMPACT, AND COATED TOOL CONSISTING THEREOF
JPH10130092A (en) Diamond coated sintered alloy
JPH04201102A (en) Diamond-covered throw away tip
JPH10337602A (en) Cutting tool made of surface covering cemented carbide and having thick artificial diamond covering layer having superior peeling resistance
JPH0657426A (en) Diamond cutting tool and its production
JPH04280974A (en) Boron nitride coated hard material
JPH07196379A (en) Tool for brazing synthetic diamond in gas phase and its production
JP3235206B2 (en) Diamond cutting tool and manufacturing method thereof
JPH09241826A (en) Cemented carbide structural body, its production and cutting tool using the same
JPH0671503A (en) Diamond cutting tool and its manufacture
JPH06297209A (en) Excellent anti-deposition vapor phase synthetic diamond cutting tool and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801