JPH06320010A - Photocatalyst for treatment of harmful substance and device for treating harmful substance - Google Patents

Photocatalyst for treatment of harmful substance and device for treating harmful substance

Info

Publication number
JPH06320010A
JPH06320010A JP5136765A JP13676593A JPH06320010A JP H06320010 A JPH06320010 A JP H06320010A JP 5136765 A JP5136765 A JP 5136765A JP 13676593 A JP13676593 A JP 13676593A JP H06320010 A JPH06320010 A JP H06320010A
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
harmful substance
fabric
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5136765A
Other languages
Japanese (ja)
Other versions
JP3502413B2 (en
Inventor
Ryuji Masuda
竜司 増田
Koichi Kawashima
孝一 川島
Wataru Takahashi
渉 高橋
Masayuki Murabayashi
眞行 村林
Kiminori Ito
公紀 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP13676593A priority Critical patent/JP3502413B2/en
Publication of JPH06320010A publication Critical patent/JPH06320010A/en
Application granted granted Critical
Publication of JP3502413B2 publication Critical patent/JP3502413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a photocatalyst for treatment of a harmful substance having high efficiency and easy to handle by dipping a woven fabric of glass fibers in a soln. prepd. by dissolving a precursor of titanium oxide and an org. resin, drying the fabric and forming an Si-O-Ti bonded layer by firing between each of the glass fibers and the resulting titanium oxide. CONSTITUTION:A woven fabric of glass fibers A is dipped in a soln. prepd. by dissolving a precursor convertible into titanium oxide by heating and an org. resin in compatible solvents, the fabric is dried and an Si-O-Ti bonded layer C is formed by firing between each of the glass fibers A and the resulting thin titanium oxide film B coating the fabric to obtain the objective photocatalyst for treatment of a harmful substance. In this case, a dehydration condensation reaction proceeds and the Si-O-Ti bonded layer C is formed at a relatively low temp. because only the surface of the fabric is locally heated by the heat of combustion generated by an oxidation degradation reaction of the org. resin and that of org. residues constituting the precursor. By the presence of the layer C, a decomposition reaction of a harmful substance is accelerated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を照射することによ
り液中または気相中に存在するトリクロロエチレン、ク
ロロホルム、ダイオキシン等の有機ハロゲン化合物や、
シアン、農薬成分等の有害物質を効率よく分解、除去し
たり或いは液中または気相中に存在する菌を殺菌して低
減したり等して有害物質を処理できる有害物質処理用光
触媒とそれを利用した有害物質処理装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an organic halogen compound such as trichlorethylene, chloroform or dioxin which is present in a liquid or a gas phase when irradiated with light,
A photocatalyst for treating harmful substances such as cyanide, pesticide components, etc. that can efficiently decompose and remove harmful substances, or sterilize and reduce bacteria present in liquid or gas phase, and a photocatalyst for treating harmful substances. The present invention relates to a hazardous substance processing device used.

【0002】[0002]

【従来の技術】従来、光触媒を利用して有害物質を処理
する方法としては、酸化チタン粉体を液中に分散させて
これに有害物質を含む溶液を流し込み、光を照射して分
解処理する方法や、ガラス棒やガラス球にCVD法やゾ
ルゲル法で酸化チタン膜を被覆したものを液中に配置
し、これに有害物質を含む溶液を流し込み、光を照射し
て分解処理する方法が知られている。
2. Description of the Related Art Conventionally, as a method of treating a harmful substance by using a photocatalyst, titanium oxide powder is dispersed in a liquid and a solution containing the harmful substance is poured into the liquid and decomposed by irradiation with light. Known is a method of disposing a glass rod or glass sphere coated with a titanium oxide film by a CVD method or a sol-gel method in a liquid, pouring a solution containing a harmful substance into this, and irradiating it with light to decompose it. Has been.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の酸化チタン粉体を液中に分散させる方法は、粉体と
液体を分離するために、下流側にろ過膜を設ける必要が
あり、そのため圧力損失が高くなる。また、粉体を液中
に分散させると光が最外層のみで吸収され、照射光が内
部まで透過しにくくなり、処理効率が小さくなるという
欠点を有する。また、前記従来の酸化チタン膜を被覆し
たガラス棒やガラス球を用いる方法は、粉体を回収する
ろ過膜の設置は必要なく、光も透過するが、水や気相と
の接触界面が少なくなり処理効率が悪いという欠点を有
する。更に、従来法であるCVD法やゾルゲル法で酸化
チタン膜を被覆した場合には、基材であるガラス繊維上
に酸化チタンがガラス繊維との間にSi−O−Ti結合
層を介在することなく単独で存在するため、長時間の使
用の結果、膜の脱落等の問題があった。本発明は、これ
ら従来技術の欠点を解消し、高効率で使いやすい有害物
質処理用光触媒とこれを利用した有害物質処理装置を提
供することを目的としている。
However, in the conventional method for dispersing the titanium oxide powder in the liquid, it is necessary to provide a filtration membrane on the downstream side in order to separate the powder and the liquid, and therefore the pressure Higher losses. Further, when the powder is dispersed in the liquid, the light is absorbed only in the outermost layer, and it becomes difficult for the irradiation light to penetrate to the inside, resulting in a drawback that the processing efficiency is reduced. Further, the conventional method using a glass rod or a glass sphere coated with a titanium oxide film does not require the installation of a filtration film for recovering powder and transmits light, but has a small contact interface with water or a gas phase. However, it has the drawback of poor processing efficiency. Furthermore, when the titanium oxide film is coated by the conventional CVD method or sol-gel method, the titanium oxide should intervene the Si—O—Ti bonding layer between the glass fiber and the glass fiber as the base material. Since it is not present and is present alone, there is a problem that the film may come off as a result of long-term use. It is an object of the present invention to eliminate these drawbacks of the prior art and provide a photocatalyst for treating harmful substances with high efficiency and ease of use, and a harmful substance treating apparatus using the photocatalyst.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記欠点
を解決するため鋭意検討の結果、加熱により酸化チタン
になる前駆体と有機物樹脂とを相溶性のある溶媒に溶解
してなる溶液にガラス繊維からなる織布を浸漬した後、
乾燥、焼成することにより、従来品の不具合を解消し得
ることを知見し、本発明を完成させた。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned drawbacks, the present inventors have found that a solution obtained by dissolving a precursor that becomes titanium oxide by heating and an organic resin in a compatible solvent. After immersing the woven fabric made of glass fiber in
The present invention has been completed by finding that the defects of conventional products can be eliminated by drying and firing.

【0005】即ち、本発明の有害物質処理用光触媒はガ
ラス繊維からなる織布に酸化チタンを被覆した有害物質
処理用光触媒であって、前記ガラス繊維からなる織布
を、加熱により酸化チタンになる前駆体と有機物樹脂と
を相溶性のある溶媒に溶解してなる溶液に浸漬した後、
乾燥、焼成することにより前記ガラス繊維と前記酸化チ
タンの間にSi−O−Ti結合層を形成したことを特徴
とする。
That is, the photocatalyst for treating harmful substances of the present invention is a photocatalyst for treating harmful substances in which a woven fabric made of glass fibers is coated with titanium oxide, and the woven fabric made of the glass fibers is transformed into titanium oxide by heating. After immersion in a solution prepared by dissolving the precursor and the organic resin in a compatible solvent,
It is characterized in that a Si—O—Ti bond layer is formed between the glass fiber and the titanium oxide by drying and firing.

【0006】前記ガラス繊維からなる織布の目付け(g
/m2 )は、いくらのものでも構わないが、取扱い性や
分解効率の関係から、通常100〜900g/m2 のも
のを用いる。また、織布を構成するガラス繊維の種類と
しては、石英ガラス、高石英ガラス、Eガラス、Cガラ
ス、Sガラス、Aガラス等、光を透すならばどのような
組成でも構わないが、経済性からはEガラス繊維が好ま
しい。また、ガラス繊維の平均繊維径は、特に限定され
るものではないが、製造可能でしかも被処理流体との接
触面積を確保して効率を得るため5〜20ミクロンが好
ましい。また、織布の織り方は平織、綾織、朱子織な
ど、どのような織り方でも構わないが、光透過性の観点
から平織が好ましい。また、打込み密度、厚さ、引張強
度は特に限定されるものではないが、被処理流体に対す
る強度の観点から、各々タテ、ヨコ共に10〜80本/
25mm、0.01〜2.0mm、5kgf/25mm
巾以上が好ましい。
Fabric weight of the above-mentioned glass fiber (g
/ M 2 ) may be anything, but in view of handleability and decomposition efficiency, usually 100 to 900 g / m 2 is used. Further, as the kind of glass fiber constituting the woven cloth, any composition may be used, such as quartz glass, high quartz glass, E glass, C glass, S glass, A glass, etc., as long as it allows light to pass through. From the viewpoint of properties, E glass fiber is preferable. Further, the average fiber diameter of the glass fibers is not particularly limited, but is preferably 5 to 20 μm in order to be manufacturable and to secure the contact area with the fluid to be treated to obtain efficiency. The weave may be any weave, such as plain weave, twill weave and satin weave, but plain weave is preferred from the viewpoint of light transmission. Further, the implantation density, thickness, and tensile strength are not particularly limited, but from the viewpoint of strength against the fluid to be treated, both vertical and horizontal are 10 to 80 /
25 mm, 0.01 to 2.0 mm, 5 kgf / 25 mm
It is preferably a width or more.

【0007】また、前記加熱により酸化チタンとなる前
駆体としては、チタンアルコキシド、チタン塩化物、チ
タン硫化物、チタン酢酸塩等が使用できるが、有機物樹
脂との相溶性の関係から、アルコール類を相溶性溶媒と
する場合はチタンアルコキシド、水を相溶性溶媒とする
場合はチタン塩化物を選択することが好ましい。しか
し、前記前駆体と有機物樹脂が相溶する場合はどのよう
な組み合わせを選択しても構わない。
As the precursor which becomes titanium oxide by the heating, titanium alkoxide, titanium chloride, titanium sulfide, titanium acetate, etc. can be used, but alcohols are used because of their compatibility with organic resin. When a compatible solvent is used, titanium alkoxide is preferably selected, and when water is used as a compatible solvent, titanium chloride is preferably selected. However, if the precursor and the organic resin are compatible with each other, any combination may be selected.

【0008】また、前記有機物樹脂はアクリル系、オレ
フィン系等が一般的であるが、製造工程中の焼成工程で
酸化分解することが必要であるため、分解温度が200
℃以上かつ焼成温度以下の樹脂で、更に該酸化チタン前
駆体との相溶性があれば良く、モノマーの種類や分子量
によって特に限定されるものではない。
The organic resin is generally an acrylic resin, an olefin resin or the like, but the decomposition temperature is 200 because it needs to be oxidized and decomposed in the firing step in the manufacturing process.
It is only necessary that the resin is a resin having a temperature of not less than 0 ° C. and not more than the firing temperature, and has compatibility with the titanium oxide precursor, and is not particularly limited depending on the type and molecular weight of the monomer.

【0009】このようにして選定された有機物樹脂と酸
化チタン前駆体の溶液に、前記織布を浸漬した後乾燥す
る。乾燥温度は相溶性溶媒の沸点により異なるが、40
〜150℃の範囲で行うのが好ましい。次に、乾燥膜を
焼成することにより、有機物樹脂や酸化チタンの前駆体
を構成している有機残基を取り除く。この焼成で酸化チ
タン前駆体は酸化チタンに変化し、有機物樹脂は酸化分
解されSi−O−Ti結合を有する薄膜が得られる。
The woven fabric is dipped in a solution of the organic resin and the titanium oxide precursor thus selected, and then dried. The drying temperature depends on the boiling point of the compatible solvent.
It is preferably carried out in the range of up to 150 ° C. Next, the dried film is baked to remove the organic residues constituting the organic resin and the titanium oxide precursor. By this firing, the titanium oxide precursor is changed to titanium oxide, and the organic resin is oxidatively decomposed to obtain a thin film having a Si—O—Ti bond.

【0010】被覆する酸化チタン膜の厚さは、膜の接着
性や光透過性から1μm以下が好ましい。1μmを越え
ると膜の剥離が生じ、水の濁りや分解効率の低下が生じ
る。また、光の透過性も悪くなり、織布内部まで光が到
達しにくくなり分解効率的にも好ましくない。また、酸
化チタンの厚さは、溶液の酸化チタン前駆体の濃度を調
整するか、前記作製工程を繰り返すことにより変化させ
ることが可能である。
The thickness of the titanium oxide film to be coated is preferably 1 μm or less in view of the adhesiveness and light transmittance of the film. If it exceeds 1 μm, peeling of the film occurs, resulting in turbidity of water and deterioration of decomposition efficiency. In addition, the light transmittance also deteriorates, and it becomes difficult for light to reach the inside of the woven fabric, which is not preferable in terms of decomposition efficiency. In addition, the thickness of titanium oxide can be changed by adjusting the concentration of the titanium oxide precursor in the solution or by repeating the above production process.

【0011】また、織布全体から考えると、被覆した酸
化チタン膜の織布全体に対する量の比率は40wt%以
下が好ましい。この場合も40wt%を越えると光の透
過性が悪くなり、酸化チタンの剥離も生ずるため好まし
くない。
Considering the entire woven fabric, the ratio of the amount of the coated titanium oxide film to the entire woven fabric is preferably 40 wt% or less. Also in this case, if it exceeds 40 wt%, the light transmittance is deteriorated and the titanium oxide is also peeled off, which is not preferable.

【0012】また、酸化チタンに貴金属を担持する場合
の貴金属としては、白金、パラジウム、ロジウム、金、
銀等が好ましい。担持方法は光析出法を用いれば容易で
ある。
[0012] Further, when the noble metal is supported on titanium oxide, platinum, palladium, rhodium, gold,
Silver or the like is preferable. The method of supporting is easy if a photodeposition method is used.

【0013】また、本発明の有害物質処理装置は有害物
質を含む溶液または気体を通過させる容器内に前記光触
媒を配置すると共に該光触媒に光を照射するための光源
を備えたことを特徴とする。前記装置は例えば、容器を
プラスチック類、ホウ珪酸塩ガラス或いは、石英ガラス
等による透明容器に構成して、該容器の外部から光を照
射するようにしてもよく、或いは、該容器を特に透明容
器にすることなく該容器内に光源を配置するようにして
もよい。また、前記光源としては、低圧水銀灯やブラッ
クライト蛍光灯等を用いる。
Further, the harmful substance treating apparatus of the present invention is characterized in that the photocatalyst is arranged in a container for passing a solution or gas containing the harmful substance and a light source for irradiating the photocatalyst with light is provided. . In the above apparatus, for example, the container may be a transparent container made of plastics, borosilicate glass, quartz glass, or the like, and light may be irradiated from the outside of the container, or the container may be a transparent container. Alternatively, the light source may be arranged in the container. As the light source, a low pressure mercury lamp, a black light fluorescent lamp, or the like is used.

【0014】[0014]

【作用】従来、知られているCVD法やゾルゲル法によ
り基材と薄膜の間にSi−O−Tiなる結合を形成せし
めようとした場合、600℃以上の高温が必要となる。
これは、本反応が基材表面のSi−OH基と薄膜のTi
−OH基の間の脱水縮合反応によるものであるためで、
一般にこの縮合反応は−OH基の自由度が大きくなる6
00℃以上で起こるとされている。このため、汎用性が
高く耐熱性の小さいAガラス、Cガラス、Eガラス等に
被覆することは不可能であり、被覆する基材が限定され
ていた。本発明に於いて、Si−O−Ti結合の生成が
基材表面のSi−OH基と薄膜のTi−OH基の間の脱
水縮合反応によるものである点は前記CVD法やゾルゲ
ル法と同様である。しかしながら本発明では、有機物樹
脂および金属酸化物の前駆体を構成している有機残基の
酸化分解反応により生成する燃焼熱により表面のみ局部
的に加熱できるので前記脱水縮合反応が進行し、比較的
低温でSi−O−Ti結合が形成される。このため、耐
熱性の小さいガラス等の基材を用いた場合でも、Si−
O−Ti結合を持つ層を有した薄膜を形成することが可
能となり、強固な酸化チタン膜を得ることができる。更
に、このSi−O−Ti結合の存在によって有害物質の
分解反応が促進される。一般に液中や気相中の有害物質
の分解は、共存するH2 Oが分解して生成するOHラジ
カルが関与して起こるといわれている。酸化チタン光触
媒を用いた場合、光の照射により価電子帯に充満してい
る電子が伝導帯に励起され、酸化チタン表面に電子正孔
が発生する。このとき、Si−O−Ti結合が存在する
と、表面の酸化チタン層の配列に不規則な乱れが生じ、
この乱れによって電子正孔がプールされ易いサイトが生
ずる。このサイトは、一般の固体触媒における強酸点の
ような挙動を示し、電荷の偏析が起こりOHラジカルの
生成を促進する。このため前記有害物質の分解を促進す
ることができる。また、この酸化チタンの表面に貴金属
を担持させると、電気化学的に有害物質の分解反応が促
進されるため好ましい。更に、該光触媒はフレキシブル
であり、どのような形状の容器にも設置することができ
る。
When a known CVD method or sol-gel method is used to form a bond of Si-O-Ti between the substrate and the thin film, a high temperature of 600 ° C or higher is required.
This is because the reaction is based on the Si-OH group on the substrate surface and the Ti
Because it is due to a dehydration condensation reaction between —OH groups,
Generally, this condensation reaction increases the degree of freedom of the —OH group 6
It is said to occur above 00 ° C. For this reason, it is impossible to coat A glass, C glass, E glass and the like, which have high versatility and low heat resistance, and the substrates to be coated have been limited. In the present invention, the formation of the Si—O—Ti bond is due to the dehydration condensation reaction between the Si—OH group on the surface of the substrate and the Ti—OH group on the thin film, as in the CVD method and the sol-gel method. Is. However, in the present invention, since only the surface can be locally heated by the combustion heat generated by the oxidative decomposition reaction of the organic residue constituting the organic resin and the precursor of the metal oxide, the dehydration condensation reaction proceeds relatively, Si-O-Ti bonds are formed at low temperatures. Therefore, even when a substrate such as glass having low heat resistance is used, Si-
It becomes possible to form a thin film having a layer having an O—Ti bond, and a strong titanium oxide film can be obtained. Furthermore, the presence of this Si—O—Ti bond accelerates the decomposition reaction of harmful substances. It is generally said that the decomposition of harmful substances in liquid or gas phase is caused by the OH radical generated by decomposition of coexisting H 2 O. When a titanium oxide photocatalyst is used, the electrons filled in the valence band are excited to the conduction band by irradiation with light, and electron holes are generated on the surface of titanium oxide. At this time, if Si—O—Ti bonds are present, irregular disorder occurs in the arrangement of the titanium oxide layers on the surface,
This disorder causes sites where electron holes are easily pooled. This site behaves like a strong acid point in a general solid catalyst, and segregation of charges occurs to promote generation of OH radicals. Therefore, the decomposition of the harmful substance can be promoted. Further, it is preferable to support a noble metal on the surface of the titanium oxide, because the decomposition reaction of harmful substances is electrochemically promoted. Further, the photocatalyst is flexible and can be installed in a container of any shape.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は本発明有害物質処理装置の一実施例を示すも
ので、図中1は透明石英管からなる容器を示し、該容器
1内には有害物質処理用光触媒2が配置され、該容器1
内にポンプ3を介して有害物質を含む溶液を循環通過さ
せるようにし、容器1の近傍に設けた光源4から光を照
射して有害物質を処理するように構成してある。尚、図
中5は集光用ミラー、6は有害物質を処理された溶液を
取り出すための取出口、7は新たな有害物質を含む溶液
を供給するための取入口を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the harmful substance treating apparatus of the present invention. In the figure, reference numeral 1 denotes a container made of a transparent quartz tube, in which a photocatalyst 2 for treating harmful substances is arranged, and the container 1
A solution containing a harmful substance is circulated therein through a pump 3, and light is emitted from a light source 4 provided in the vicinity of the container 1 to treat the harmful substance. In the figure, 5 is a converging mirror, 6 is an outlet for taking out a solution treated with a harmful substance, and 7 is an inlet for supplying a solution containing a new harmful substance.

【0016】次に、前記装置の使用例に即し、具体的な
実施例を比較例と共に説明する。 (実施例)平均繊維径7μmのEガラスモノフィラメン
ト(単一繊維)からなるヤーンを織ってなる目付け50
0g/m2 のガラス織布(ガラスクロス)を、酸化チタ
ン前駆体であるチタンイソプロポキシド10gとアクリ
ル系樹脂10gをエチルアルコール180gに溶解した
溶液に浸漬した。このガラス織布を溶液から取り出し、
60℃で1時間乾燥した後毎分1℃の速度で450℃ま
で昇温し、450℃で5時間保持することにより、有機
物樹脂を完全に酸化分解し、同時にチタンイソプロポキ
シドもTiO2 に変化させ、ガラス繊維表面にTiO2
膜を形成した。このときのTiO2 膜の厚さは約0.3
μmであり、強固に付着していた。この場合、被覆した
酸化チタンのガラス織布全体に対する量の比率は18%
であった。この膜についてEPMA(測定にはX線マイ
クロアナライザー,日本電子製JEM−2000FXII
を使用)およびESCA(測定にはX線光電子分光器装
置,島津・クレイトス社製XSAM800を使用)によ
り分析を行ったところ、Si−O−Ti結合の存在が確
認された。ここで図2は本実施例による膜の断面図であ
り、Aはガラス繊維、BはTiO2 薄膜、CはSi−O
−Ti結合層を示している。このガラス織布(触媒)を
直径12mm、長さ500mmの透明石英管に詰め、反
応液を通し、ポンプにより循環させた。反応液は再蒸留
水に200mg/lのクロロホルムを溶解させた水溶液
で、液温40℃、低圧水銀灯により光照射した。約5時
間の光照射でクロロホルムの95%が分解された。この
場合、水の濁りはなかった。次に反応液を取り替え、ク
ロロホルムを同量溶解させた水溶液で同じ試験を行っ
た。この試験を50回繰り返したが、水の濁りはなく、
また、クロロホルムの分解効率は最初の値から低下する
ことなく、高効率を保っていた。
Next, a concrete embodiment will be described together with a comparative example in accordance with a usage example of the apparatus. (Example) A basis weight 50 formed by weaving a yarn made of E glass monofilament (single fiber) having an average fiber diameter of 7 μm
A glass woven fabric (glass cloth) of 0 g / m 2 was immersed in a solution of 10 g of titanium isopropoxide as a titanium oxide precursor and 10 g of an acrylic resin in 180 g of ethyl alcohol. Remove this woven glass cloth from the solution,
After being dried at 60 ° C for 1 hour, the temperature was raised to 450 ° C at a rate of 1 ° C / min and kept at 450 ° C for 5 hours to completely oxidize and decompose the organic resin and at the same time convert titanium isopropoxide to TiO 2 . Change the TiO 2 on the glass fiber surface.
A film was formed. At this time, the thickness of the TiO 2 film is about 0.3.
It was μm and was firmly attached. In this case, the ratio of the coated titanium oxide to the entire glass woven fabric is 18%.
Met. EPMA (X-ray microanalyzer for measurement, JEM-2000FXII manufactured by JEOL Ltd.)
And ESCA (using an X-ray photoelectron spectrometer, XSAM800 manufactured by Shimadzu-Kraitos Co., Ltd.) for the measurement, the presence of Si—O—Ti bonds was confirmed. Here, FIG. 2 is a cross-sectional view of the film according to this embodiment, where A is glass fiber, B is a TiO 2 thin film, and C is Si—O.
-Ti bond layer is shown. This glass woven fabric (catalyst) was packed in a transparent quartz tube having a diameter of 12 mm and a length of 500 mm, the reaction solution was passed through, and circulated by a pump. The reaction solution was an aqueous solution in which 200 mg / l of chloroform was dissolved in double-distilled water, and the solution was irradiated with light from a low-pressure mercury lamp at a solution temperature of 40 ° C. After irradiation with light for about 5 hours, 95% of chloroform was decomposed. In this case, there was no turbidity in the water. Next, the reaction solution was replaced, and the same test was performed with an aqueous solution in which the same amount of chloroform was dissolved. This test was repeated 50 times, but there was no turbidity in the water,
In addition, the decomposition efficiency of chloroform did not decrease from the initial value and kept high efficiency.

【0017】(比較例)実施例で用いたガラス織布を用
い、従来のゾルゲル法によりTiO2 薄膜の形成を試み
た。ガラス織布を浸漬させる液をチタンイソプロポキシ
ド10gと濃硫酸0.1gおよびエチルアルコール19
0gを混合した溶液に変えた以外は実施例と同様の方法
とした。結果形成されたTiO2 膜の厚さは約0.3μ
mであったが、弱い付着で簡単に剥離した。この場合、
被覆した酸化チタンのガラス織布全体に対する量の比率
は18%であった。この膜について前記実施例と同様に
EPMAおよびESCAにより分析を行ったところ、S
i−O−Ti結合の存在は確認されなかった。ここで、
図3は本比較例による膜の断面図であり、Aはガラス繊
維、BはTiO2 薄膜を示している。このガラス織布
(触媒)を直径12mm、長さ500mmの透明石英管
に詰め、反応液を通し、ポンプにより循環させた。反応
液は再蒸留水に200mg/lのクロロホルムを溶解さ
せた水溶液で、液温40℃、低圧水銀灯により光照射し
た。約5時間の光照射でクロロホルムの80%が分解さ
れたが、酸化チタンの脱落により水がかなり濁った。次
に反応液を取り替え、クロロホルムを同量溶解させた水
溶液で同じ試験を行った。2回目は同条件で60%が分
解、3回目は50%が分解と、反応液を取り替えて試験
を行う度に酸化チタンの脱落が起き、20回目以降は0
%となり触媒機能を失っていた。
Comparative Example Using the glass woven cloth used in the examples, an attempt was made to form a TiO 2 thin film by the conventional sol-gel method. The liquid in which the glass woven cloth is dipped is 10 g of titanium isopropoxide, 0.1 g of concentrated sulfuric acid and 19 of ethyl alcohol.
The same method as in Example was used except that 0 g was changed to a mixed solution. The resulting TiO 2 film has a thickness of about 0.3 μm.
It was m, but peeled off easily due to weak adhesion. in this case,
The ratio of the amount of coated titanium oxide to the entire glass woven fabric was 18%. When this film was analyzed by EPMA and ESCA in the same manner as in the above example, S
The presence of i-O-Ti bond was not confirmed. here,
FIG. 3 is a cross-sectional view of a film according to this comparative example, where A is glass fiber and B is a TiO 2 thin film. This glass woven fabric (catalyst) was packed in a transparent quartz tube having a diameter of 12 mm and a length of 500 mm, the reaction solution was passed through, and circulated by a pump. The reaction solution was an aqueous solution in which 200 mg / l of chloroform was dissolved in double-distilled water, and the solution was irradiated with light from a low-pressure mercury lamp at a solution temperature of 40 ° C. After irradiation with light for about 5 hours, 80% of chloroform was decomposed, but the water was considerably turbid due to the loss of titanium oxide. Next, the reaction solution was replaced, and the same test was performed with an aqueous solution in which the same amount of chloroform was dissolved. At the second time, 60% decomposed under the same conditions, and at the third time 50% decomposed. Titanium oxide fell out every time the reaction solution was replaced and the test was performed.
%, And the catalytic function was lost.

【0018】[0018]

【発明の効果】このように本発明による織布は、光透過
性が良く、かつ水や気体との接触面積が大きいため、液
中および気相中の有害物質を高効率で分解できるという
効果を有する。また、織布を構成する繊維にSi−O−
Ti結合により強固に酸化チタン膜が被覆されているた
め、酸化チタンの剥離や脱落がなく、長期に渡り高効率
を維持し、また水の濁りもないので粉体等を回収する必
要がない、という効果を有する。更にSi−O−Ti結
合が存在するため、酸化チタン表面の電荷が偏析し、有
害物質分解に必要なOHラジカルの生成を促進するとい
った効果を有する。また、フレキシブル性を有するの
で、複雑な形状の容器にも適用することが可能となり、
カラム化も可能である、という効果を有する。
As described above, since the woven fabric according to the present invention has good light transmittance and a large contact area with water or gas, it is possible to highly efficiently decompose harmful substances in liquid or gas phase. Have. Moreover, Si-O-
Since the titanium oxide film is firmly covered by the Ti bond, there is no peeling or dropping of titanium oxide, high efficiency is maintained for a long time, and there is no turbidity of water, so there is no need to collect powder or the like. Has the effect. Furthermore, since the Si-O-Ti bond is present, the charge on the surface of titanium oxide is segregated, and this has the effect of promoting the generation of OH radicals required for decomposition of harmful substances. Also, since it has flexibility, it can be applied to containers with complicated shapes,
It has an effect that it can be formed into a column.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有害物質処理装置の一実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of a hazardous substance processing apparatus of the present invention.

【図2】本発明の有害物質処理用光触媒の被膜の形成状
態を示す拡大断面図
FIG. 2 is an enlarged cross-sectional view showing a formation state of a coating film of the photocatalyst for treating harmful substances of the present invention.

【図3】比較例による有害物質処理用光触媒の被膜の形
成状態を示す拡大断面図
FIG. 3 is an enlarged cross-sectional view showing a state of forming a coating film of a photocatalyst for treating harmful substances according to a comparative example.

【符号の説明】[Explanation of symbols]

1 容器 2 有害物質処理用光触媒 3 ポンプ 4 光源 5 集光用ミラー 6 取出口 7 取入口 A ガラス繊維 B TiO2 薄膜 C Si−O−Ti結合層1 Container 2 Photocatalyst for Treating Hazardous Substances 3 Pump 4 Light Source 5 Converging Mirror 6 Inlet 7 Inlet A Glass Fiber B TiO 2 Thin Film C Si-O-Ti Bonding Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村林 眞行 神奈川県横浜市旭区笹野台4−25−14 (72)発明者 伊藤 公紀 東京都目黒区目黒本町1−16−13−906 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masayuki Murabayashi 4-25-14 Sasanodai, Asahi-ku, Yokohama-shi, Kanagawa (72) Inventor Kiminori Ito 1-16-13-906, Meguro-hon, Meguro-ku, Tokyo

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維からなる織布に酸化チタンを
被覆した有害物質処理用光触媒であって、前記ガラス繊
維からなる織布を、加熱により酸化チタンになる前駆体
と有機物樹脂とを相溶性のある溶媒に溶解してなる溶液
に浸漬した後、乾燥、焼成することにより前記ガラス繊
維と前記酸化チタンの間にSi−O−Ti結合層を形成
したことを特徴とする有害物質処理用光触媒。
1. A photocatalyst for treating harmful substances, comprising a woven cloth made of glass fibers coated with titanium oxide, wherein the woven cloth made of glass fibers is compatible with a precursor that becomes titanium oxide by heating and an organic resin. A photocatalyst for treating harmful substances, characterized in that a Si—O—Ti bond layer is formed between the glass fiber and the titanium oxide by immersing in a solution prepared by dissolving in a solvent, and then drying and firing. .
【請求項2】 前記酸化チタンに貴金属類を担持させた
ことを特徴とする請求項1記載の有害物質処理用光触
媒。
2. The photocatalyst for treating harmful substances according to claim 1, wherein noble metals are supported on the titanium oxide.
【請求項3】 前記酸化チタンの厚さが1μm以下であ
ることを特徴とする請求項1または2記載の有害物質処
理用光触媒。
3. The photocatalyst for treating harmful substances according to claim 1, wherein the titanium oxide has a thickness of 1 μm or less.
【請求項4】 前記酸化チタンの量がガラス繊維織布に
対して40wt%以下であることを特徴とする請求項1
乃至3の何れかに記載の有害物質処理用光触媒。
4. The amount of the titanium oxide is 40 wt% or less with respect to the glass fiber woven fabric.
4. The photocatalyst for treating harmful substances according to any one of 3 to 3.
【請求項5】 有害物質を含む溶液または気体を通過さ
せる容器内に前記請求項1乃至4の何れかに記載の光触
媒を配置すると共に該光触媒に光を照射するための光源
を備えたことを特徴とする有害物質処理装置。
5. The photocatalyst according to any one of claims 1 to 4 is arranged in a container through which a solution or gas containing a harmful substance is passed, and a light source for irradiating the photocatalyst with light is provided. Characteristic hazardous substance processing equipment.
JP13676593A 1993-05-15 1993-05-15 Method for producing photocatalyst for treating organic harmful substances Expired - Fee Related JP3502413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13676593A JP3502413B2 (en) 1993-05-15 1993-05-15 Method for producing photocatalyst for treating organic harmful substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13676593A JP3502413B2 (en) 1993-05-15 1993-05-15 Method for producing photocatalyst for treating organic harmful substances

Publications (2)

Publication Number Publication Date
JPH06320010A true JPH06320010A (en) 1994-11-22
JP3502413B2 JP3502413B2 (en) 2004-03-02

Family

ID=15182991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13676593A Expired - Fee Related JP3502413B2 (en) 1993-05-15 1993-05-15 Method for producing photocatalyst for treating organic harmful substances

Country Status (1)

Country Link
JP (1) JP3502413B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071312A (en) * 1996-08-30 1998-03-17 Hoya Corp Filter material, manufacture thereof, filter apparatus using filter material
EP0823280A4 (en) * 1996-02-28 1999-08-18 Hoya Corp Glass material for carrying a photocatalyst, filter device using the same and light irradiating method
JP2001205106A (en) * 1998-11-27 2001-07-31 Sumitomo Chem Co Ltd Photocatalytic sheet
WO2003061828A1 (en) * 2002-01-21 2003-07-31 Sumitomo Titanium Corporation Photocatalytic composite material and method for preparation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823280A4 (en) * 1996-02-28 1999-08-18 Hoya Corp Glass material for carrying a photocatalyst, filter device using the same and light irradiating method
JPH1071312A (en) * 1996-08-30 1998-03-17 Hoya Corp Filter material, manufacture thereof, filter apparatus using filter material
JP2001205106A (en) * 1998-11-27 2001-07-31 Sumitomo Chem Co Ltd Photocatalytic sheet
WO2003061828A1 (en) * 2002-01-21 2003-07-31 Sumitomo Titanium Corporation Photocatalytic composite material and method for preparation thereof

Also Published As

Publication number Publication date
JP3502413B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US4892712A (en) Fluid purification
US6336998B1 (en) UV lamp device for air cleaning
US5670206A (en) Deodorizing lamp and method for production thereof
US4966759A (en) Fluid purification
US5032241A (en) Fluid purification
US20040226813A1 (en) Fluorescent lamp device capable of cleaning air
JP4787253B2 (en) Alumina coating forming method, alumina fiber, and gas treatment apparatus equipped with the same
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
JP3502413B2 (en) Method for producing photocatalyst for treating organic harmful substances
WO2008001405A2 (en) Metal or metalized fabrics coated with nanostructured titanium dioxide
JP2002263176A (en) Photocatalyst device
JP3502414B2 (en) Method for producing photocatalyst for removing heavy metal ions in liquid
JP3358826B2 (en) Photocatalyst for treating toxic substances in liquids and equipment for treating toxic substances in liquids
US8343282B2 (en) Photocatalytic auto-cleaning process of stains
JPH1071337A (en) Photocatalyst and its production
JP3359667B2 (en) Photocatalyst for removing heavy metal ions in liquid and apparatus for removing heavy metal ions in liquid
CN1607035A (en) Method for processing waste gas treating ultraviolet lamp and waste gas treating method
JP3384930B2 (en) Method for producing photocatalyst-coated metal plate
JPH11188085A (en) Air cleaning unit
JP6190209B2 (en) Photocatalyst fiber structure and method for producing photocatalyst fiber structure
JPH10263412A (en) Photocatalyst composite substance and its production and photocataslyst produced by forming photocatalyst composite substance on substrate surface
JPH0985052A (en) Method for treating trichroloethylene-containing exhaust gas and apparatus therefor
JPH08323346A (en) Method and device for treating dry cleaning waste water
EP1831131B1 (en) Photocatalytic auto-cleaning process of stains
JPH08323347A (en) Method and device for treating trichloroethylene-containing waste water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031205

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees