JPH11188085A - Air cleaning unit - Google Patents

Air cleaning unit

Info

Publication number
JPH11188085A
JPH11188085A JP10234958A JP23495898A JPH11188085A JP H11188085 A JPH11188085 A JP H11188085A JP 10234958 A JP10234958 A JP 10234958A JP 23495898 A JP23495898 A JP 23495898A JP H11188085 A JPH11188085 A JP H11188085A
Authority
JP
Japan
Prior art keywords
photocatalyst
layer
sheet
fine particles
optical catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10234958A
Other languages
Japanese (ja)
Inventor
Hisashi Ikehata
永 池端
Satoru Ishizaki
哲 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP10234958A priority Critical patent/JPH11188085A/en
Priority to EP99107320A priority patent/EP0978690A3/en
Priority to KR1019990013945A priority patent/KR20000016856A/en
Publication of JPH11188085A publication Critical patent/JPH11188085A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide fine deodorization and to make the unit smaller by placing an optical catalytic sheet within an optical reception area toward an ultraviolet ray generator, by forming an optical catalytic layer between a polytetrafluoroethylene resin and optical catalytic minute particles which are dispersed on the burning layer of the polytetrafluoroethylene resin, and by providing the optical catalytic layer with the support material of the optical catalytic sheet. SOLUTION: Optical catalytic sheet 1 comprises optical catalytic layer 12 whose space rate is more than 7% on mesh support material 11. In the optical catalytic later 12, optical catalytic minute particles are dispersed in the burning layer of sintered polytetrafluoroethylene powders and minute spaces are created between the resin and the optical catalytic minute particles. The optical catalytic sheet 1 can laminate deodorant sheets made mainly of one or more than two kinds of activated carbon or coppercarboxymethylcellulose. Air passes contacting a wide area of the outer surface of the optical catalytic minute particles so that deodorant components in the air can be oxidation-deodorized with activated optical catalytic minute particles by putting the optical catalytic sheet 1 on support 3, putting ultraviolet ray generator 2 between them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は通気性光触媒シ−ト
を用いた空気浄化用ユニットに関し、煙草臭その他の悪
臭や有害ガス等の濃度低減・除去または抗菌等の空気浄
化に有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air purifying unit using a gas permeable photocatalyst sheet, which is useful for reducing or removing the concentration of tobacco odor and other odors and harmful gases, or for purifying air such as antibacterial. is there.

【0002】[0002]

【従来の技術】周知の通り、酸化チタン等の金属酸化物
半導体においては紫外線の照射により価電子帯の電子が
伝導帯に飛び上がって正孔を発生し、この励起状態のも
とで表面に接触する酸素や水分から活性種(ラジカル)
が生じ、その活性種が表面に付着する有機物や微生物等
を酸化分解し、また窒素酸化物や硫黄酸化物においても
最終酸化物にまで酸化されていく。
2. Description of the Related Art As is well known, in a metal oxide semiconductor such as titanium oxide, electrons of a valence band jump up to a conduction band by irradiation of ultraviolet rays to generate holes, and contact with the surface under this excited state. Active species (radicals) from oxygen and moisture
The active species oxidize and decompose organic substances and microorganisms attached to the surface, and also oxidize nitrogen oxides and sulfur oxides to final oxides.

【0003】そこで、この光触媒微粒子をバインダ−で
担持させた光触媒シ−トに紫外線を照射し、この活性化
光触媒シ−トに空気を接触させて生活空間や作業場での
煙草臭等の悪臭や窒素酸化物や硫黄酸化物等の有害ガ
ス、或いは新築住宅等における揮発性有機化合物(VO
C)の濃度低減・除去または抗菌等の空気浄化を行うこ
とが知られている。
[0003] Therefore, ultraviolet rays are irradiated on a photocatalyst sheet in which the photocatalyst fine particles are carried by a binder, and the activated photocatalyst sheet is brought into contact with air to reduce malodor such as cigarette odor in a living space or a work place. Toxic gases such as nitrogen oxides and sulfur oxides, or volatile organic compounds (VO
It is known to perform concentration reduction / removal of C) or air purification such as antibacterial.

【0004】上記光触媒微粒子を支持体に担持させるに
は、通常、光触媒微粒子をバインダ−を介して支持体に
固着する方法が用いられており、このバインダ−には、
活性化された光触媒微粒子で分解劣化されることのない
安定性が要求される。而して、多くの先行例が開示され
ており、例えば、バインダ−として、シリコ−ン系ポリ
マ−やビニルエ−テル−フルオロオレフィンコポリマ−
やビニルエステル−フルオロオレフィンコポリマ−等の
フッ素系ポリマ−を使用することが提案されている(特
開平7−171408号)。
In order to support the photocatalyst fine particles on a support, a method of fixing the photocatalyst fine particles to the support via a binder is generally used.
Activated photocatalyst fine particles are required to be stable without being decomposed and degraded. Many prior examples are disclosed. For example, as a binder, a silicone-based polymer or a vinyl ether-fluoroolefin copolymer is used.
It has been proposed to use a fluorine-based polymer such as vinylester-fluoroolefin copolymer (JP-A-7-171408).

【0005】[0005]

【発明が解決しようとする課題】従来、光触媒シ−トを
使用した空気浄化装置が種々提案されているが(例え
ば、特開平3−106420号、特開平7−25102
8号、特開平7−35373号、特開平7−28452
3号等)、従来の装置では、光触媒シ−トにおける光触
媒粒子の表面の大部分がバインダ−樹脂で覆われて空気
と光触媒粒子との接触面積が小さいために、空気浄化効
率が低く装置の大型化や設備費の高コスト化が余儀なく
されている。
Conventionally, various air purifying apparatuses using a photocatalyst sheet have been proposed (for example, JP-A-3-106420, JP-A-7-25102).
8, JP-A-7-35373, JP-A-7-28452
No. 3), in the conventional apparatus, since most of the surface of the photocatalyst particles in the photocatalyst sheet is covered with the binder resin and the contact area between the air and the photocatalyst particles is small, the air purification efficiency is low and Larger sizes and higher equipment costs are inevitable.

【0006】そこで、本発明者は、光触媒シ−トの脱臭
性能を向上するために鋭意検討した結果、ポリテトラフ
ルオロエチレン粉末と光触媒微粒子とのディスパ−ジョ
ンを塗布し、この塗布層を焼成して得た光触媒層が著し
く優れた脱臭性能を呈することを知った。この高い脱臭
性能の原因を解明するために、その光触媒層の組織を顕
微鏡で観察したところ、光触媒微粒子と樹脂との間に空
隙層が存在し、この空隙層が繋がって連通路を形成して
いることを知った。この光触媒層において、光触媒微粒
子とポリテトラフルオロエチレン樹脂との界面に空隙が
形成される理由は、ポリテトラフルオロエチレンと光触
媒酸化チタン微粒子との熱収縮率の著しい差とポリテト
ラフルオロエチレンの非接着性にあり、焼成加熱の冷却
時、その界面に大なる熱収縮応力が発生し、界面の非接
着性のためにその大なる引張り応力で界面剥離が生じる
ことによると推定される。
Accordingly, the present inventors have conducted intensive studies to improve the deodorizing performance of the photocatalyst sheet. As a result, a dispersion of polytetrafluoroethylene powder and photocatalyst fine particles was applied, and this applied layer was fired. It was found that the photocatalyst layer thus obtained exhibited remarkably excellent deodorizing performance. In order to elucidate the cause of this high deodorizing performance, the structure of the photocatalyst layer was observed with a microscope, and a void layer was present between the photocatalyst fine particles and the resin, and this void layer was connected to form a communication passage. I knew that In this photocatalyst layer, the voids are formed at the interface between the photocatalyst fine particles and the polytetrafluoroethylene resin because of the remarkable difference in the heat shrinkage between polytetrafluoroethylene and the photocatalytic titanium oxide fine particles and the non-adhesion of polytetrafluoroethylene. It is presumed that a large heat shrinkage stress is generated at the interface at the time of cooling by baking heating, and the interface is separated due to the large tensile stress due to the non-adhesiveness of the interface.

【0007】従来、光触媒シ−トの製造方法として、ビ
ニルエ−テル−フルオロオレフィンコポリマ−やビニル
エステル−フルオロオレフィンコポリマ−等のフッ素系
ポリマ−とイソシアネ−ト系硬化剤等の架橋剤と光触媒
微粒子との溶液を支持体上に塗布し、この塗布層を架橋
反応で硬化させること(前記の特開平7−171408
号)が公知であるが、これらでは光触媒微粒子と樹脂と
の界面に収縮応力を発生させるような過程がなく、その
界面での空隙発生が到底期待できない。
Conventionally, a photocatalyst sheet is produced by using a crosslinking agent such as a fluorine-based polymer such as vinyl ether-fluoroolefin copolymer or vinylester-fluoroolefin copolymer and an isocyanate-based curing agent, and photocatalyst fine particles. Is coated on a support, and the coated layer is cured by a crosslinking reaction (see the above-mentioned JP-A-7-171408).
However, in these methods, there is no process for generating a shrinkage stress at the interface between the photocatalyst fine particles and the resin, and it is hardly expected that voids will be generated at the interface.

【0008】本発明の目的は、上記検討結果に基づき、
優れた脱臭性能を有し、小型化や低コスト化を可能とす
る光触媒シ−ト使用の空気浄化用ユニットを提供するこ
とにある。
[0008] The object of the present invention is to
An object of the present invention is to provide an air purifying unit using a photocatalyst sheet, which has excellent deodorizing performance and can be reduced in size and cost.

【0009】[0009]

【課題を解決するための手段】本発明に係る空気浄化用
ユニットは、ポリテトラフルオロエチレン樹脂の焼成層
に光触媒微粒子が分散されその樹脂と光触媒微粒子との
間に微小空隙が形成された光触媒層を支持基材上に有す
る光触媒シ−トが紫外線発生器に対する受光領域内に配
設されていることを特徴とする構成であり、光触媒シ−
トを活性炭、ゼオライト、または銅カルボキシルメチル
セルロ−スの一種または二種以上を主成分とする脱臭シ
−トとの積層で使用すること、また、メッシュ状または
孔開きの支持基材を用いた通気性の光触媒シ−トを紫外
線発生器に対する受光領域内に曲げ加工して配設するこ
ともでき、上記光触媒層の空隙率は7%以上とすること
が好ましい。
According to the present invention, there is provided an air purification unit comprising a photocatalyst layer in which fine particles of photocatalyst are dispersed in a fired layer of polytetrafluoroethylene resin and fine voids are formed between the resin and the fine particles of photocatalyst. A photocatalyst sheet having a photocatalyst sheet on a supporting base material is provided in a light receiving region for an ultraviolet ray generator.
Activated carbon, zeolite, or copper carboxymethylcellulose used as a laminate with a deodorizing sheet containing one or more of them, and a mesh-shaped or perforated support base material was used. A gas permeable photocatalyst sheet may be bent and provided in the light receiving region for the ultraviolet ray generator, and the porosity of the photocatalyst layer is preferably 7% or more.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明において使
用する光触媒シ−ト1の断面図を示している。図1にお
いて、11は支持基材である。12は支持基材11上に
設けた光触媒層であり、焼結されたポリテトラフルオロ
エチレン粉末の焼成層内に光触媒微粒子が分散され、樹
脂と光触媒微粒子との間に微小空隙が形成され、焼結さ
れたポリテトラフルオロエチレン粉末間の間隙が上記空
隙層に繋がって多間隙連通組織となっている。上記ポリ
テトラフルオロエチレン樹脂と光触媒微粒子との間の空
隙の厚みは、数ナノメ−タ〜数ミクロンの微細間隙であ
り、ポリテトラフルオロエチレンの撥水性のために、水
等の通過は生じないが、空気は充分に流出入され得る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a photocatalyst sheet 1 used in the present invention. In FIG. 1, reference numeral 11 denotes a supporting substrate. Reference numeral 12 denotes a photocatalyst layer provided on the support substrate 11, in which fine particles of photocatalyst are dispersed in a fired layer of sintered polytetrafluoroethylene powder, and fine voids are formed between the resin and the fine particles of photocatalyst. The gaps between the tied polytetrafluoroethylene powders are connected to the void layer to form a multi-gap communication structure. The thickness of the gap between the polytetrafluoroethylene resin and the photocatalyst fine particles is a fine gap of several nanometers to several microns, and water and the like do not pass due to the water repellency of polytetrafluoroethylene. The air can flow in and out well.

【0011】図2の(イ)は本発明において使用する通
気性光触媒シ−トを示す図面、図2の(ロ)は図2の
(イ)のロ−ロ断面図である。図2において、11はメ
ッシュ状支持基材(例えば平織のガラスクロス)、12
は支持基材11上に設けた光触媒層であり、前記したと
おり、焼結されたポリテトラフルオロエチレン粉末の焼
成層内に光触媒微粒子が分散され、樹脂と光触媒微粒子
との間に微小空隙が形成され、焼結されたポリテトラフ
ルオロエチレン粉末間の間隙が上記空隙層に繋がって多
間隙連通組織となっている。
FIG. 2 (A) is a drawing showing a gas permeable photocatalyst sheet used in the present invention, and FIG. 2 (B) is a cross-sectional view of FIG. 2 (A). In FIG. 2, reference numeral 11 denotes a mesh-like supporting substrate (for example, a plain-woven glass cloth);
Is a photocatalyst layer provided on the support base material 11, as described above, the photocatalyst fine particles are dispersed in the fired layer of the sintered polytetrafluoroethylene powder, and minute voids are formed between the resin and the photocatalyst fine particles. The gaps between the sintered and polytetrafluoroethylene powders are connected to the gap layer to form a multi-gap communication structure.

【0012】上記の光触媒シ−トを製造するには、ポリ
テトラフルオロエチレン粉末と光触媒微粒子とを含有し
たディスパ−ジョンを支持基材に塗布し、加熱により塗
布層中の溶媒を蒸発除去し、更に加熱焼成(加熱温度は
330℃以上)によりポリテトラフルオロエチレン粒子
間を焼結する。この焼結後の冷却時、ポリテトラフルオ
ロエチレン樹脂の光触媒微粒子よりも大なる熱収縮及び
ポリテトラフルオロエチレン樹脂の光触媒微粒子に対す
る非融着性のために、光触媒微粒子とポリテトラフルオ
ロエチレン樹脂との間に空隙層が形成される。また、焼
成時でのポリテトラフルオロエチレン粉末の溶融粘度が
高く(108ポアズ以上)流動せずに粒形状が保持さ
れ、かつ焼成が無加圧で行われるから、焼結されたポリ
テトラフルオロエチレン粉末間に間隙が充分に残存され
る。従って、光触媒層は通気性の多間隙組織となる。
In order to produce the above-mentioned photocatalyst sheet, a dispersion containing polytetrafluoroethylene powder and photocatalyst fine particles is applied to a supporting substrate, and the solvent in the coating layer is removed by evaporation by heating. Further, the polytetrafluoroethylene particles are sintered by heating and firing (heating temperature is 330 ° C. or higher). At the time of cooling after the sintering, due to the heat shrinkage larger than the photocatalyst fine particles of the polytetrafluoroethylene resin and the non-fusion property of the polytetrafluoroethylene resin to the photocatalyst fine particles, the photocatalytic fine particles and the polytetrafluoroethylene resin A void layer is formed therebetween. Further, the melt viscosity of the polytetrafluoroethylene powder at the time of firing is high (10 8 poise or more), the particle shape is maintained without flowing, and the firing is performed without pressure. Enough gaps remain between the ethylene powders. Therefore, the photocatalyst layer has an air-permeable multi-gap structure.

【0013】上記ポリテトラフルオロエチレン粉末の粒
径は、0.1〜1μm、光触媒微粒子の粒径は200n
m以下、好ましくは50nm以下である。
The polytetrafluoroethylene powder has a particle size of 0.1 to 1 μm, and the photocatalyst fine particles have a particle size of 200 n.
m, preferably 50 nm or less.

【0014】上記光触媒層の空隙率は7%以上、特に1
0%以上とすることが好ましい。この空隙率xは、光触
媒層の真比重をρ、光触媒層の体積vの重量をwとすれ
ば、 x=1−〔w/(vρ)〕 で与えられる。空隙率7%未満では、多間隙組織による
空気と光触媒微粒子との接触度向上効果が低くなる。た
だし、機械的強度上30%以下とすることが好ましい。
The porosity of the photocatalyst layer is 7% or more, especially 1%.
It is preferred to be 0% or more. The porosity x is given by x = 1− [w / (vρ)], where ρ is the true specific gravity of the photocatalytic layer and w is the weight of the volume v of the photocatalytic layer. If the porosity is less than 7%, the effect of improving the degree of contact between the air and the photocatalyst fine particles by the multi-porous structure is reduced. However, it is preferable to be 30% or less in terms of mechanical strength.

【0015】また、光触媒層の厚さは3μm〜30μm
とすることが好ましい。3μm未満では、光触媒層の体
積が少なく脱臭性能が低くなり、30μmを越えるとガ
ス拡散効率が低下し必要以上に厚い層厚になってしま
う。上記ディスパ−ジョンの光触媒微粒子配合量が多す
ぎると、ポリテトラフルオロエチレンによる光触媒微粒
子間の結着強度が不充分となるので、光触媒微粒子の含
有率は5〜60%とすることが好ましい。
The thickness of the photocatalyst layer is 3 μm to 30 μm.
It is preferable that If it is less than 3 μm, the volume of the photocatalyst layer will be small and the deodorizing performance will be low. If it exceeds 30 μm, the gas diffusion efficiency will be reduced and the layer thickness will be unnecessarily thick. If the content of the photocatalyst fine particles in the dispersion is too large, the binding strength between the photocatalyst fine particles by polytetrafluoroethylene becomes insufficient. Therefore, the content of the photocatalyst fine particles is preferably 5 to 60%.

【0016】上記光触媒微粒子には、酸化チタン、チタ
ン酸ストロンチウム、酸化タングステン、酸化亜鉛、酸
化すず、硫化カドミウム等を挙げることができるが、最
も優れた光触媒活性を呈するアナタ−ゼ型酸化チタン微
粒子を使用することが好ましい。また、光触媒粒子の活
性を高めるために、アルカリ金属イオンを担持させるこ
とができる。
The photocatalyst fine particles include titanium oxide, strontium titanate, tungsten oxide, zinc oxide, tin oxide, cadmium sulfide and the like. Anatase type titanium oxide fine particles exhibiting the most excellent photocatalytic activity can be used. It is preferred to use. Further, in order to enhance the activity of the photocatalyst particles, an alkali metal ion can be supported.

【0017】上記支持基材には、焼成時の加熱によって
も変形等を生じない耐熱性を有するものが使用され、例
えば、アルミニウム,ステンレス等の金属箔やセラミッ
クス板,ガラス板等の無機質板、ポリイミド,ポリテト
ラフルオロエチレン等の耐熱性プラスチックフィルムや
ポリテトラフルオロエチレン等の耐熱性プラスチックを
含浸したガラス繊維やポリアミド繊維の織物やガラス繊
維,セラミックス繊維,金属繊維,炭素繊維の単独また
は混合物のフエルト状物やガラス繊維,セラミックス繊
維,金属繊維,炭素繊維の単独または混合物の網状物等
を使用できる。
As the above-mentioned supporting base material, a material having heat resistance which does not cause deformation or the like even when heated during firing is used, for example, metal foils such as aluminum and stainless steel, inorganic plates such as ceramic plates and glass plates, and the like. Heat-resistant plastic film such as polyimide or polytetrafluoroethylene, or woven glass fiber or polyamide fiber impregnated with heat-resistant plastic such as polytetrafluoroethylene, or felt of glass fiber, ceramic fiber, metal fiber, or carbon fiber alone or as a mixture A net-like material such as a glass fiber, a ceramic fiber, a metal fiber, and a carbon fiber alone or as a mixture can be used.

【0018】上記通気性光触媒シ−トの場合のメツシュ
状または孔開き支持基材としては、柔軟性、耐熱性、高
強度等の要件を充足すれば適宜のものを使用でき、例え
ば金網(例えば、アルミニウム金網)、耐熱性プラスチ
ックシ−ト(例えば、ポリイミド、ポリテトラフルオロ
エチレン)のパンチングシ−ト、耐熱性有機繊維(例え
ば、ガラス繊維、ポリアミド繊維)の織物等の使用も可
能である。
As the mesh-like or perforated support substrate in the case of the above-mentioned air-permeable photocatalyst sheet, any suitable substrate can be used as long as it satisfies requirements such as flexibility, heat resistance and high strength. , Aluminum wire mesh), punching sheets of heat-resistant plastic sheets (for example, polyimide and polytetrafluoroethylene), and woven fabrics of heat-resistant organic fibers (for example, glass fibers and polyamide fibers).

【0019】上記支持基材へのディスパ−ジョンの塗布
には、ロ−ルコ−タで塗布する方法、支持基材をディス
パ−ジョン中に浸漬して引き上げる方法、ディスパ−ジ
ョンをスプレ−する方法、ディスパ−ジョンを刷毛塗す
る方法、ディスパ−ジョンを流延する方法等を使用でき
る。上記ディスパ−ジョンの濃度は、塗布方法に応じて
設定されるが、通常40%〜60%とされる。ディスパ
−ジョンには、焼成層の空隙率をアップするための添加
剤、強度を向上するための添加剤、更に焼成温度に耐え
得るガス吸着剤を適宜添加することも可能である。
The dispersion may be applied to the support substrate by a method of applying a roll coater, a method of dipping the support substrate into the dispersion and pulling it up, and a method of spraying the dispersion. A method of brushing the dispersion, a method of casting the dispersion, and the like can be used. The concentration of the dispersion is set according to the coating method, and is usually 40% to 60%. An additive for increasing the porosity of the fired layer, an additive for improving the strength, and a gas adsorbent that can withstand the firing temperature can be appropriately added to the dispersion.

【0020】上記光触媒シ−トには、活性炭、ゼオライ
ト、または銅カルボキシルメチルセルロ−スの一種また
は二種以上を主成分とする脱臭シ−トを積層することも
できる。
The above-mentioned photocatalyst sheet may be laminated with a deodorizing sheet containing one or more of activated carbon, zeolite and copper carboxymethyl cellulose as main components.

【0021】上記光触媒粒子と共に活性炭粒子、ゼオラ
イト粒子、シリカゲル粒子の少なくとも一つを添加する
ことも可能である。
It is also possible to add at least one of activated carbon particles, zeolite particles and silica gel particles together with the photocatalyst particles.

【0022】図3の(イ)は本発明に係る空気浄化用ユ
ニットの一例を示し、図3の(ロ)は図3の(イ)にお
けるロ−ロ断面図である。図3において、2は紫外線発
生器であり、台板3上に水平に支持してある。1は上記
した光触媒シ−トであり、表面積を大きくするために例
えばブリ−ツ加工し、台板3上に紫外線発生器2を挾ん
で載設してある。
FIG. 3A shows an example of an air purification unit according to the present invention, and FIG. 3B is a cross-sectional view taken along a line in FIG. 3A. In FIG. 3, reference numeral 2 denotes an ultraviolet ray generator, which is horizontally supported on a base plate 3. Reference numeral 1 denotes the above-described photocatalyst sheet, which is subjected to, for example, a bleaching process in order to increase the surface area, and is mounted on a base plate 3 with an ultraviolet generator 2 interposed therebetween.

【0023】上記紫外線発生器2には、波長400nm
以下の紫外線を発生するブラックライトブル−ランプ、
蛍光灯、ハロゲンランプ、キセノンフラッシュランプ、
水銀灯、殺菌灯等を使用できる。上記光触媒シ−ト1の
表面積を大きくするための加工としては、上記のブリ−
ツ加工以外にハニカム加工等も使用できる。
The UV generator 2 has a wavelength of 400 nm.
A black light bull-lamp that generates the following ultraviolet light,
Fluorescent lamps, halogen lamps, xenon flash lamps,
Mercury lamps, germicidal lamps and the like can be used. The processing for increasing the surface area of the photocatalyst sheet 1 includes the above-described bridge.
Honeycomb processing and the like can also be used in addition to punch processing.

【0024】上記光触媒シ−ト1は、紫外線発生器の近
傍に紫外線を効率良く照射し得るように配設すればよ
く、図4の(イ)〔平面図〕及び図4の(ロ)〔図4の
(イ)におけるロ−ロ断面図〕に示すように、台板3に
紫外線ランプ2を立設し、ブリ−ツ加工した光触媒シ−
ト1を紫外線ランプ2を囲むように台板3上に載置する
こともできる。必要に応じ、反射鏡を取付けることも可
能である。
The photocatalyst sheet 1 may be disposed in the vicinity of the ultraviolet ray generator so as to efficiently irradiate the ultraviolet ray. The photocatalyst sheet 1 is shown in FIG. 4 (a) [plan view] and FIG. As shown in FIG. 4 (a), a UV lamp 2 is erected on a base plate 3 and a photocatalyst sheet subjected to a pleating process.
The table 1 can be placed on the base plate 3 so as to surround the ultraviolet lamp 2. If necessary, a reflecting mirror can be attached.

【0025】本発明に係る空気浄化用ユニットの光触媒
シ−トには、光触媒微粒子と樹脂バインダ−との間に空
隙が存在し、この空隙を通じて空気が拡散流通するか
ら、空気が光触媒微粒子の外表面に広い面積で接触して
通過し、空気中の脱臭性成分が活性化光触媒微粒子で効
率よく酸化脱臭される。また、光触媒微粒子を担持して
いるポリテトラフルオロエチレンが難分解性であるか
ら、樹脂バインダ−を崩壊無く長期にわたり安定に保持
でき、かつ、光触媒微粒子を樹脂層の空隙を介して包み
込んであるから、光触媒微粒子を長期にわたり安定に担
持できる。従って、空気中の脱臭性成分を長期にわたり
効率よく酸化脱臭できる。
In the photocatalyst sheet of the air purifying unit according to the present invention, there is a gap between the photocatalyst fine particles and the resin binder. The deodorizing component in the air is efficiently oxidized and deodorized by the activated photocatalyst fine particles while passing over a large area in contact with the surface. Further, since the polytetrafluoroethylene carrying the photocatalyst fine particles is hardly decomposable, the resin binder can be stably retained for a long time without collapse, and the photocatalyst fine particles are wrapped through the voids of the resin layer. In addition, photocatalyst fine particles can be stably supported over a long period of time. Therefore, the deodorizing components in the air can be efficiently oxidized and deodorized over a long period of time.

【0026】図5の(イ)〜図6の(ニ)は本発明に係
る空気浄化用ユニットの異なる別例を示し、該紫外線発
生器2に対する受光領域内に上記の通気性光触媒シ−ト
1を円柱状、楕円柱状、円弧状、渦巻状、傘状、ブリ−
ツ状、波形状、螺旋状等に曲げ加工して配設して成り、
空気入口にフィルタ−を、空気出口にファンをそれぞれ
有するケ−スの内部に収容して使用することができる。
FIGS. 5 (a) to 6 (d) show another example of the air purifying unit according to the present invention, in which the above-mentioned air-permeable photocatalyst sheet is provided in a light receiving area for the ultraviolet ray generator 2. FIG. 1 is cylindrical, elliptical, arc, spiral, umbrella, blow
Bend, wave, spiral, etc.
The filter can be housed in a case having a filter at the air inlet and a fan at the air outlet.

【0027】図5の(イ)に示す空気浄化用ユニット
は、上記の通気性光触媒シ−ト1を紫外線照射ランプ2
と同心の二重円柱形に曲げ加工し、光触媒シ−トとラン
プ間の距離を一定にして均一照射とした構成であり、小
型化に適し、筒状反射鏡(例えばアルミ板製)で包囲す
ることにより光触媒シ−ト1の外面側も空気浄化に使用
できる。空気の流動方向は、紫外線照射ランプに対し平
行方向、垂直方向の何れにも対応可能である。
The air purifying unit shown in FIG. 5 (A) uses the air permeable photocatalyst sheet
It is bent into a double column concentric with the photocatalyst sheet and the distance between the photocatalyst sheet and the lamp is kept constant to achieve uniform irradiation. It is suitable for miniaturization and is surrounded by a cylindrical reflector (for example, made of aluminum plate). By doing so, the outer surface side of the photocatalyst sheet 1 can also be used for air purification. The flow direction of the air can correspond to either a parallel direction or a perpendicular direction to the ultraviolet irradiation lamp.

【0028】図5の(ロ)に示す空気浄化用ユニット
は、上記の通気性光触媒シ−ト1をU字型紫外線照射ラ
ンプまたは2本の紫外線照射ランプ2の各芯を焦点とす
る楕円柱形に曲げ加工した構成であり、図5の(イ)の
ものと同様小型化に適し、筒状反射鏡(例えばアルミ板
製)で包囲することにより光触媒シ−ト1の外面側も空
気浄化に使用でき、空気の流動方向は、紫外線照射ラン
プに対し平行方向、垂直方向の何れにも対応可能であ
る。特にU字型紫外線照射ランプの場合は、ランプが片
端固定支持とされるために光触媒シ−トの交換、洗浄時
の着脱が容易である。
In the air purifying unit shown in FIG. 5B, the air-permeable photocatalyst sheet 1 is an elliptic cylinder having a U-shaped ultraviolet irradiation lamp or two ultraviolet irradiation lamps 2 as focal points. It is suitable for miniaturization like the one shown in FIG. 5 (a), and the outer surface of the photocatalyst sheet 1 is also air-purified by being surrounded by a cylindrical reflecting mirror (for example, made of aluminum plate). The direction of air flow can be either parallel or perpendicular to the ultraviolet irradiation lamp. In particular, in the case of a U-shaped ultraviolet irradiation lamp, since the lamp is fixedly supported at one end, it is easy to replace the photocatalyst sheet and to attach and detach it during cleaning.

【0029】図5の(ハ)に示す空気浄化用ユニット
は、上記の通気性光触媒シ−ト1を大小の半円弧のド−
ム状に曲げ加工し、反射板31上に配設した紫外線照射
ランプ2をこれらのド−ムで覆った構成である。
In the air purifying unit shown in FIG. 5C, the above air-permeable photocatalyst sheet 1 is provided with a large and small semi-circular
In this configuration, the ultraviolet irradiation lamp 2 disposed on the reflection plate 31 is covered with the dome.

【0030】図5の(ニ)に示す空気浄化用ユニット
は、上記の通気性光触媒シ−ト1を紫外線照射ランプ2
の周りに渦巻状に曲げ加工した構成であり、一枚の通気
性光触媒シ−トで図5の(イ)に示す空気浄化用ユニッ
トに近い性能を発揮させることができる。
In the air purifying unit shown in FIG. 5D, the air permeable photocatalyst sheet 1
5 is spirally bent, and a single air-permeable photocatalyst sheet can exhibit performance close to that of the air purification unit shown in FIG.

【0031】図6の(イ)に示す空気浄化用ユニット
は、上記の通気性光触媒シ−ト1を紫外線照射ランプ2
に多段の傘状に曲げ加工して取付けた構成であり、ラン
プと平行方向の空気流れに対しては多段で空気浄化でき
る。
The air purifying unit shown in FIG. 6 (A) uses the air permeable photocatalyst sheet
It is configured to be bent into a multi-stage umbrella shape and attached, and air purification can be performed in multiple stages for air flow parallel to the lamp.

【0032】図6の(ロ)に示す空気浄化用ユニット
は、上記の通気性光触媒シ−ト1を紫外線照射ランプ2
上にブリ−ツ状に曲げ加工して配設した構成であり、平
面的であり、太陽光との併用が可能である。図5の
(ハ)の実施例のように反射板を併用することも可能で
ある。
The air purifying unit shown in FIG. 6 (b) uses the above-described air permeable photocatalyst sheet
It has a configuration in which it is bent and arranged in the form of a beam, and is planar, and can be used in combination with sunlight. It is also possible to use a reflector in combination as in the embodiment of FIG.

【0033】図6の(ハ)に示す空気浄化用ユニット
は、上記の通気性光触媒シ−トを紫外線照射ランプ上に
波状に曲げ加工して配設した構成である。図6の(ロ)
に示す実施例と同様、平面的であるために太陽光との併
用が可能であり、また、図5の(ハ)の実施例のように
反射板を併用することも可能である。
The air purifying unit shown in FIG. 6 (c) has a configuration in which the above-mentioned air-permeable photocatalyst sheet is bent and arranged on an ultraviolet irradiation lamp. (B) of FIG.
As in the embodiment shown in FIG. 5, since it is planar, it can be used in combination with sunlight, and it is also possible to use a reflector in combination as in the embodiment shown in FIG.

【0034】図6の(ニ)に示す空気浄化用ユニット
は、上記の通気性光触媒シ−ト1を紫外線照射ランプ2
に螺旋状に曲げ加工して取付けた構成であり、ランプと
平行方向の空気流れに対しては多段で空気浄化できる。
The air purifying unit shown in FIG. 6 (d) uses the air permeable photocatalyst sheet
It is configured to be spirally bent and attached, so that air can be purified in multiple stages for air flow parallel to the ramp.

【0035】本発明に係る空気浄化用ユニットは、生活
空間(例えば、トイレ)や作業場での煙草臭等の悪臭や
窒素酸化物や硫黄酸化物等の有害ガス、或いは新築住宅
等における揮発性有機化合物(VOC)の濃度低減・除
去または抗菌等に好適に使用される。
The air purifying unit according to the present invention can be used for odors such as tobacco odors in living spaces (for example, toilets) and workplaces, harmful gases such as nitrogen oxides and sulfur oxides, and volatile organic compounds in new houses and the like. It is suitably used for reducing or removing the concentration of the compound (VOC) or for antibacterial purposes.

【0036】上記図5及び図6に示す空気浄化用ユニッ
トによれば、光触媒層の連鎖空隙構造に基づく優れた空
気浄化効率に加え、通気性光触媒シ−トの曲げ加工に
よる多重構造で、通過空気を光触媒体に多回接触させ得
る、空気が通気性光触媒シ−トのメッシュを通過する
際に撹拌させ得る、通気性光触媒シ−トの裏面側に通
過した空気を反射ミラ−による反射紫外線でその光触媒
シ−ト裏面側を励起して浄化できる、空気の流通方向
を2方向の何れにも設定できるために紫外線照射ランプ
の配設方向の自由度を高め得る等のために、高い効率で
の空気浄化が可能となり、通気性光触媒シ−トの曲げ加
工という簡単な加工と相俟って、小型・低コストの空気
浄化手段を提供できる。
According to the air purifying unit shown in FIGS. 5 and 6, in addition to the excellent air purifying efficiency based on the chain void structure of the photocatalyst layer, the air purifying sheet has a multi-layer structure formed by bending the photocatalytic sheet. The air can be brought into contact with the photocatalyst multiple times, the air can be agitated when passing through the mesh of the gas permeable photocatalyst sheet, and the air passing through the back side of the gas permeable photocatalyst sheet is reflected by the reflection mirror. High efficiency because the back surface of the photocatalyst sheet can be excited and purified, and the air flow direction can be set in any of two directions, so that the degree of freedom in the arrangement direction of the ultraviolet irradiation lamp can be increased. In addition to the simple processing of bending the air-permeable photocatalyst sheet, it is possible to provide a small and low-cost air purification means.

【0037】[0037]

【実施例】〔実施例1〕ディスパ−ジョンには光触媒酸
化チタン微粒子(粒径7nm,比重3.84)の含有量
40重量%のポリテトラフルオロエチレン粉末(粒径
0.3μm,比重2.20)の水分散液を使用し、支持
基材には厚み60μmのアルミニウム箔を使用した。こ
のアルミニウム箔をディスパ−ジョンに浸漬し、引上げ
て100℃で乾燥したうえで390℃×2分で焼成し
て、光触媒層の空隙率が12.2%,厚さが7μmのシ
−ト状光触媒シ−トを得た。このシ−ト状光触媒シ−ト
を10cm×100cmに裁断し、10cm×10cm
の外郭寸法のブリ−ツに加工して光触媒シ−トとした。
この光触媒シ−トを4w,管長11.5cmのブラック
ブル−ライトを挾んで2枚配設し、各光触媒シ−トとブ
ラックブル−ライトとの距離を3cmとして空気浄化用
ユニットを製作した。この空気浄化用ユニットを恒常的
に悪臭が感知される一般家庭8軒のトイレ(床面積は約
0.9m×1.8m)に設置して空気浄化を行ったとこ
ろ、設置1日後から恒常的な悪臭が消えたところが六
軒、設置2日後から恒常的な悪臭が消えたところが2軒
であった。
[Example 1] Polytetrafluoroethylene powder (particle diameter: 0.3 µm, specific gravity: 2.0 μm) containing 40% by weight of photocatalytic titanium oxide fine particles (particle diameter: 7 nm, specific gravity: 3.84) was used in the dispersion. The aqueous dispersion of 20) was used, and an aluminum foil having a thickness of 60 μm was used as the supporting substrate. This aluminum foil is immersed in a dispersion, pulled up, dried at 100 ° C., and fired at 390 ° C. × 2 minutes to form a sheet having a photocatalytic layer having a porosity of 12.2% and a thickness of 7 μm. A photocatalyst sheet was obtained. This sheet-shaped photocatalyst sheet was cut into 10 cm × 100 cm, and 10 cm × 10 cm.
A photocatalyst sheet was formed by processing into a belt having the outer dimensions of (1).
Two photocatalyst sheets were arranged with a 4 w, 11.5 cm long black blue light sandwiched therebetween, and the distance between each photocatalyst sheet and the black blue light was 3 cm to produce an air purification unit. When this air purification unit was installed in eight ordinary household toilets (floor area is about 0.9m x 1.8m) where the odor is constantly sensed, air purification was performed. There were six places where the bad odor disappeared, and two places where the constant odor disappeared two days after installation.

【0038】〔実施例2〕支持基材に厚さ0.6mm,
坪量30g/m2の炭素繊維フェルトを使用した以外、
実施例1と同様にしてシ−ト状光触媒シ−トを得、この
シ−ト状光触媒シ−トに、銅カルボキシメチルセルロ−
スを主成分とする脱臭シ−ト(興人社製クリ−ンスカ
イ)を積層し、これを10cm×100cmに裁断し、
10cm×10cmの外郭寸法のブリ−ツに加工し、両
端にフックを取付て光触媒シ−トとした。この光触媒シ
−トを使用して実施例1と同様にして空気浄化用ユニッ
トを製作し、これを恒常的に悪臭が感知される薬品庫
(床面積は約0.9m×1.8m)に設置して空気浄化
を行ったところ、設置5時間後から恒常的な悪臭が消臭
した。
Example 2 A supporting base material having a thickness of 0.6 mm
Other than using a carbon fiber felt having a basis weight of 30 g / m 2 ,
A sheet-like photocatalyst sheet was obtained in the same manner as in Example 1. Copper carboxymethyl cellulose was added to the sheet-like photocatalyst sheet.
Deodorizing sheet (Clean Sky manufactured by Kojin Co., Ltd.) is cut and cut into 10 cm x 100 cm.
A photocatalyst sheet was formed by processing into a beam having an outer dimension of 10 cm × 10 cm and hooks attached to both ends. Using this photocatalyst sheet, an air purifying unit was manufactured in the same manner as in Example 1, and this was placed in a chemical storage (floor area: about 0.9 mx 1.8 m) where the odor was constantly sensed. When the device was installed and air purification was performed, a constant odor was eliminated after 5 hours from the installation.

【0039】〔比較例1〕実施例1に対し、水ディスパ
−ジョン中のポリテトラフルオロエチレンを溶融粘度が
104ポアズのパ−フルオロアルキルビニルエ−テル−
テトラフルオロエチレン共重合体に置換した以外、実施
例1と同じとした。光触媒層の気孔率は1%であった。
実施例1と同様にしてトイレの脱臭を試みたところ、満
足できる脱臭は行えなかった。
Comparative Example 1 In comparison with Example 1, polytetrafluoroethylene in a water dispersion was prepared by melting perfluoroalkylvinyl ether having a melt viscosity of 10 4 poise.
Example 1 was the same as Example 1 except that the copolymer was replaced with a tetrafluoroethylene copolymer. The porosity of the photocatalyst layer was 1%.
When an attempt was made to deodorize the toilet in the same manner as in Example 1, satisfactory deodorization was not performed.

【0040】〔実施例3〕実施例1に対し、光触媒層の
空隙率が3.1%,厚さが7μmのシ−ト状光触媒シ−
トを得、他は実施例1と同様にして光触媒シ−トを製作
した。実施例1と同様にしてトイレの脱臭を試みたとこ
ろ、実施例1よりも低い脱臭効率であったが、比較例1
よりも満足できる結果であった。
Example 3 A sheet-like photocatalyst sheet having a porosity of the photocatalyst layer of 3.1% and a thickness of 7 μm in comparison with Example 1.
A photocatalyst sheet was produced in the same manner as in Example 1 except for the above. When the deodorization of the toilet was attempted in the same manner as in Example 1, the deodorization efficiency was lower than that of Example 1, but Comparative Example 1
The results were more satisfactory.

【0041】このように比較例1が実施例1〜3に較べ
脱臭性能に劣るのは、パ−フルオロアルキルビニルエ−
テル−テトラフルオロエチレン共重合体が光触媒微粒子
によく加熱融着し、光触媒微粒子の表面の大部分がパ−
フルオロアルキルビニルエ−テル−テトラフルオロエチ
レン共重合体で覆われること、パ−フルオロアルキルビ
ニルエ−テル−テトラフルオロエチレン共重合体の溶融
粘度が低く焼成時に粉末形態を保持し難く、焼結粉末間
に間隙が残存し難いこと等によると推定される。
As described above, Comparative Example 1 was inferior in deodorizing performance as compared with Examples 1 to 3 because of perfluoroalkyl vinyl ether.
The ter-tetrafluoroethylene copolymer is well heated and fused to the photocatalyst fine particles, and most of the surface of the photocatalyst fine particles is
It is covered with a fluoroalkyl vinyl ether-tetrafluoroethylene copolymer, and the melt viscosity of the perfluoroalkyl vinyl ether-tetrafluoroethylene copolymer is low, so that it is difficult to maintain the powder form at the time of sintering. It is presumed that gaps are unlikely to remain between them.

【0042】〔実施例4〕糸太さ0.5mm、網目寸法
2.5mm×2.5mmの平織ガラスクロス(空孔率は
約30%)をメッシュ状支持基材として使用し、この支
持基材を実施例1で使用したディスパ−ジョンと同じデ
ィスパ−ジョンに浸漬後、110℃×60秒で水分を除
去したうえで370℃×100秒で焼成し光触媒層を形
成して通気性光触媒シ−トを得た。通気性光触媒シ−ト
の厚みは0.55mm、酸化チタン微粒子の付着量は9
0g/m2であった。
Example 4 A plain woven glass cloth (porosity: about 30%) having a yarn thickness of 0.5 mm and a mesh size of 2.5 mm × 2.5 mm was used as a mesh-like supporting base material. After the material was immersed in the same dispersion as used in Example 1, water was removed at 110 ° C. for 60 seconds, and then fired at 370 ° C. for 100 seconds to form a photocatalyst layer. -Obtained. The thickness of the breathable photocatalyst sheet is 0.55 mm, and the adhesion amount of titanium oxide fine particles is 9
It was 0 g / m 2 .

【0043】〔比較例2〕実施例4に対しディスパ−ジ
ョン中のポリテトラフルオロエチレンを、パ−フルオロ
アルキルビニルエ−テル−テトラフルオロエチレン共重
合体に置換した以外、比較例1と同じとした。
Comparative Example 2 Comparative Example 2 was the same as Comparative Example 1 except that polytetrafluoroethylene in the dispersion was replaced with a perfluoroalkylvinyl ether-tetrafluoroethylene copolymer. did.

【0044】これらの実施例品及び比較例品のそれぞれ
について、内容積2m3の密閉容器内に10Wのブラッ
クライトと試料面積200mm×300mmに切り取っ
て円弧状に形成した通気性光触媒シ−トとを10cmの
距離を隔ててセットし、容器内にアセトアルデヒドを濃
度が10ppmとなるように注入し、ブラックライト点
灯後でのアルデヒド濃度をガスクロマトグラフで測定す
る試験を行ったところ(シ−ト上での紫外線強度は1m
W/cm2)、180分後でのアルデヒド濃度は、実施
例4の場合3ppmであったが、比較例2の場合は実施
例4の場合の約3倍の高濃度であった。
For each of the products of Examples and Comparative Examples, a 10 W black light and a gas permeable photocatalyst sheet cut into a sample area of 200 mm × 300 mm and formed into an arc shape in a closed container having an internal volume of 2 m 3 were prepared. Was set at a distance of 10 cm, acetaldehyde was injected into the container so as to have a concentration of 10 ppm, and a test was performed in which the aldehyde concentration after black light was turned on was measured by gas chromatography (on the sheet). UV intensity of 1m
W / cm 2 ), the aldehyde concentration after 180 minutes was 3 ppm in Example 4, but was about 3 times higher in Comparative Example 2 than in Example 4.

【0045】[0045]

【発明の効果】本発明に係る空気浄化用ユニットにおい
ては、光触媒微粒子とバインダ−樹脂との間に微細空隙
が存在し、その空隙を経て外部の空気が光触媒微粒子の
ほぼ全面に接触して流通する光触媒シ−トを使用してい
るから、活性光触媒微粒子の酸化脱臭効率を向上でき
る。また、光触媒シ−トにおける光触媒微粒子が樹脂バ
インダ−内に抱き込まれ、かつ樹脂自体が難分解性であ
るから、光触媒微粒子の安定な担持が保証できる。従っ
て、長期にわたり高効率で脱臭できる。
In the air purifying unit according to the present invention, a fine gap exists between the photocatalyst fine particles and the binder resin, and external air comes into contact with almost the entire surface of the photocatalytic fine particles through the gap. Since the photocatalyst sheet is used, the efficiency of oxidative deodorization of the active photocatalyst fine particles can be improved. Further, since the photocatalyst fine particles in the photocatalyst sheet are held in the resin binder and the resin itself is hardly decomposable, stable loading of the photocatalyst fine particles can be guaranteed. Therefore, it is possible to deodorize with high efficiency over a long period.

【0046】特に、請求項3の空気浄化用ユニットにお
いては、通気性光触媒シ−トの曲げ加工による多重構造
で通過空気を光触媒体に多回接触させ得、空気が通気性
光触媒シ−トのメッシュを通過する際に撹拌させ得、通
気性光触媒シ−トの裏面側に通過した空気を反射ミラ−
による反射紫外線でその裏面側を励起して浄化できる、
等により、更に空気浄化効率を高めて空気浄化装置の小
型・低コスト化を図ることができる。
In particular, in the air purifying unit according to the third aspect, the passing air can be brought into contact with the photocatalyst multiple times in a multi-layered structure by bending the air permeable photocatalyst sheet, and the air is supplied to the air permeable photocatalyst sheet. It can be stirred when passing through the mesh, and the air passing on the back side of the air permeable photocatalyst sheet is reflected by a reflection mirror.
Can be purified by exciting its back side with reflected ultraviolet light by
Thus, the air purification efficiency can be further increased, and the size and cost of the air purification device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において使用する光触媒シ−トを示す図
面である。
FIG. 1 is a drawing showing a photocatalyst sheet used in the present invention.

【図2】本発明において使用する通気性光触媒シ−トを
示す図面である。
FIG. 2 is a view showing a gas permeable photocatalyst sheet used in the present invention.

【図3】本発明に係る空気浄化用ユニットの一例を示す
図面である。
FIG. 3 is a drawing showing an example of an air purification unit according to the present invention.

【図4】本発明に係る空気浄化用ユニットの別例を示す
図面である。
FIG. 4 is a drawing showing another example of the air purification unit according to the present invention.

【図5】本発明に係る空気浄化用ユニットの上記とは別
の異なる例を示す図面である。
FIG. 5 is a drawing showing another example of the air purification unit according to the present invention, which is different from the above.

【図6】本発明に係る空気浄化用ユニットの上記とは別
の異なる例を示す図面である。
FIG. 6 is a drawing showing another example of the air purification unit according to the present invention, which is different from the above.

【符号の説明】[Explanation of symbols]

11 支持基材 12 光触媒層 1 光触媒シ−ト 2 紫外線発生器 DESCRIPTION OF SYMBOLS 11 Support base material 12 Photocatalyst layer 1 Photocatalyst sheet 2 UV generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ポリテトラフルオロエチレン樹脂の焼成層
に光触媒微粒子が分散されその樹脂と光触媒微粒子との
間に微小空隙が形成された光触媒層を支持基材上に有す
る光触媒シ−トが紫外線発生器に対する受光領域内に配
設されていることを特徴とする空気浄化用ユニット。
1. A photocatalyst sheet having a photocatalyst layer on a supporting base material in which fine particles of photocatalyst are dispersed in a baked layer of polytetrafluoroethylene resin and fine voids are formed between the resin and the fine particles of photocatalyst generates ultraviolet light. An air purifying unit, which is disposed in a light receiving region for a device.
【請求項2】ポリテトラフルオロエチレン樹脂の焼成層
に光触媒微粒子が分散されその樹脂と光触媒微粒子との
間に微小空隙が形成された光触媒層を支持基材上に有す
る光触媒シ−トと活性炭、ゼオライト、または銅カルボ
キシルメチルセルロ−スの一種または二種以上を主成分
とする脱臭シ−トとの積層体が紫外線発生器に対する受
光領域内に配設されていることを特徴とする空気浄化用
ユニット。
2. A photocatalyst sheet and activated carbon having a photocatalyst layer having a photocatalyst layer in which a fine void is formed between the resin and the photocatalyst fine particles, wherein the photocatalyst fine particles are dispersed in a fired layer of polytetrafluoroethylene resin. Characterized in that a laminate with zeolite or a deodorizing sheet containing one or more of copper carboxymethyl cellulose as a main component is disposed in a light receiving region for an ultraviolet ray generator for air purification. unit.
【請求項3】ポリテトラフルオロエチレン樹脂の焼成層
に光触媒微粒子が分散されその樹脂と光触媒微粒子との
間に微小空隙が形成された光触媒層をメッシュ状または
孔開支持基材上に有する通気性光触媒シ−トが紫外線発
生器に対する受光領域内に曲げ加工して配設されている
ことを特徴とする空気浄化用ユニット。
3. A gas permeable layer having a photocatalyst layer in which fine particles of photocatalyst are dispersed in a fired layer of polytetrafluoroethylene resin and fine voids are formed between the resin and the photocatalyst fine particles on a mesh-like or perforated support substrate. An air purification unit, characterized in that a photocatalyst sheet is disposed in a light receiving region for an ultraviolet ray generator by bending.
【請求項4】光触媒層の空隙率が7%以上とされている
請求項1〜3何れか記載の空気浄化用ユニット。
4. The air purification unit according to claim 1, wherein the porosity of the photocatalyst layer is 7% or more.
JP10234958A 1997-10-23 1998-08-05 Air cleaning unit Pending JPH11188085A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10234958A JPH11188085A (en) 1997-10-23 1998-08-05 Air cleaning unit
EP99107320A EP0978690A3 (en) 1998-08-05 1999-04-20 Air cleaning unit
KR1019990013945A KR20000016856A (en) 1998-08-05 1999-04-20 Air cleaning unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30938797 1997-10-23
JP9-309387 1997-10-23
JP10234958A JPH11188085A (en) 1997-10-23 1998-08-05 Air cleaning unit

Publications (1)

Publication Number Publication Date
JPH11188085A true JPH11188085A (en) 1999-07-13

Family

ID=26531868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10234958A Pending JPH11188085A (en) 1997-10-23 1998-08-05 Air cleaning unit

Country Status (1)

Country Link
JP (1) JPH11188085A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000708A (en) * 2000-06-26 2002-01-08 Kurihara Kogyo:Kk Deodorizing device and pet tool having deodorizing device
JP2002085534A (en) * 2000-09-18 2002-03-26 Anzai Kantetsu:Kk Deodorizing and cleaning element and deodorizing and cleaning unit using the same as well as deodorizing and cleaning system using the same
JP2003053143A (en) * 2001-08-10 2003-02-25 Bitsugu Sons:Kk Photocatalytic member, base material to be used in the member and method for manufacturing the member
JP2014532256A (en) * 2011-09-06 2014-12-04 ピュアダイム エルエルシー Enhanced photocatalytic cell
KR20210024589A (en) * 2018-07-26 2021-03-05 몰레쿠울, 인크. Fluid Filtration Systems and Methods of Use
KR102412779B1 (en) * 2022-01-04 2022-06-24 주식회사 오션파라다이스 Air sterilizer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000708A (en) * 2000-06-26 2002-01-08 Kurihara Kogyo:Kk Deodorizing device and pet tool having deodorizing device
JP2002085534A (en) * 2000-09-18 2002-03-26 Anzai Kantetsu:Kk Deodorizing and cleaning element and deodorizing and cleaning unit using the same as well as deodorizing and cleaning system using the same
JP2003053143A (en) * 2001-08-10 2003-02-25 Bitsugu Sons:Kk Photocatalytic member, base material to be used in the member and method for manufacturing the member
US9457122B2 (en) 2010-09-07 2016-10-04 Puradigm, Llc Enhanced photo-catalytic cells
JP2014532256A (en) * 2011-09-06 2014-12-04 ピュアダイム エルエルシー Enhanced photocatalytic cell
KR20210024589A (en) * 2018-07-26 2021-03-05 몰레쿠울, 인크. Fluid Filtration Systems and Methods of Use
KR102412779B1 (en) * 2022-01-04 2022-06-24 주식회사 오션파라다이스 Air sterilizer

Similar Documents

Publication Publication Date Title
KR20000016856A (en) Air cleaning unit
CN1960769B (en) Method for decomposing harmful substance and apparatus for decomposing harmful substance
JPH11188085A (en) Air cleaning unit
JP2009078058A (en) Air cleaning apparatus
JPH1147558A (en) Air cleaning process
JP4787253B2 (en) Alumina coating forming method, alumina fiber, and gas treatment apparatus equipped with the same
JPH1147256A (en) Deodorizing apparatus
JP2001029441A (en) Photocatalyst deodorizing filter
JP2000107276A (en) Air cleaner
JP2008073571A (en) Photocatalyst-supported ceramic foam and its manufacturing method
JPH0515488B2 (en)
KR20210014472A (en) Window system comprising visible light active photocatalyst for air cleaning
KR20010098845A (en) Gas adsorbent and using method thereof
US5834069A (en) In situ method for metalizing a semiconductor catalyst
JP2000093808A (en) Photocatalyst sheet and photocatalyst sheet structure
JP2004016832A (en) Photocatalyst filter
JP2000051334A (en) Air permeable photocatalyst sheet and air cleaning unit
JPWO2002051454A1 (en) Apparatus and method for treating contaminated air
JPH11276906A (en) Air permeable photocatalytic sheet and its utilization
JP2000176294A (en) Gas permeable photocatalyst structure body and method for using the same
JP4573560B2 (en) Photocatalytic functional material production method and photocatalytic functional material produced by this method
JPH11197220A (en) Polytetrafluoroethylene porous tube containing photocatalyst and stink eliminator
JP2004135689A (en) Filter for gas removal using photocatalyst and method of manufacturing the same
JP4300444B2 (en) Toxic gas treatment equipment
JPH11128630A (en) Solar irradiation system air cleaning element and cleaning of air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307