JP3384930B2 - Method for producing photocatalyst-coated metal plate - Google Patents

Method for producing photocatalyst-coated metal plate

Info

Publication number
JP3384930B2
JP3384930B2 JP14658796A JP14658796A JP3384930B2 JP 3384930 B2 JP3384930 B2 JP 3384930B2 JP 14658796 A JP14658796 A JP 14658796A JP 14658796 A JP14658796 A JP 14658796A JP 3384930 B2 JP3384930 B2 JP 3384930B2
Authority
JP
Japan
Prior art keywords
metal plate
tio
layer
sio
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14658796A
Other languages
Japanese (ja)
Other versions
JPH09310185A (en
Inventor
真一 鴨志田
勝久 大崎
成寿 鈴木
節子 小浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP14658796A priority Critical patent/JP3384930B2/en
Publication of JPH09310185A publication Critical patent/JPH09310185A/en
Application granted granted Critical
Publication of JP3384930B2 publication Critical patent/JP3384930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、有機物や水の分解に有
効な光触媒作用を呈する光触媒被覆金属板の製造方法に
関する。 【0002】 【従来の技術】光触媒粒子に、バンドギャップ以上のエ
ネルギーをもつ波長の光を照射すると、光励起によって
伝導帯に電子が、価電子帯に正孔が生じる。この光励起
により発生した正孔の持つ強い酸化力は、有機物や水の
分解等に利用されている。しかし、光触媒を粒子状態の
ままで使用することは、その取扱いや回収を困難にし、
流出や飛散が避けられない。そのため、光触媒は、金属
等の基板に固定して使用されている。このような金属板
としては、金属板に光触媒を直接被覆したものが特開平
3−8448号公報に、高反射率表面をもつ担体上に光
透過性のよい電価分離層を設けた後で光触媒粒子を担持
させたものが特開平7−88367号公報に紹介されて
いる。基板に対する光触媒の固定には、基板上で光触媒
粒子を400℃以上の温度で焼結して焼き付ける方法,
加熱分解で光触媒となる物質を400℃程度の温度に加
熱した基板上に吹き付ける方法等が採用されている。ま
た、基板に光触媒粒子とフッ素系ポリマーとの混合物を
積層,圧着する方法,光触媒粒子を懸濁させた樹脂塗料
を付着させる方法等も知られている。 【0003】 【発明が解決しようとする課題】従来の方法で光触媒層
を設けようとすると、十分な光触媒活性を呈する光触媒
被覆金属板を得ることができなかった。たとえば、樹脂
等に混合して光触媒粒子を塗布すると、光触媒表面の一
部が樹脂等で覆われるため、光触媒粒子の全表面を触媒
作用面として使用できない。他方、加熱焼付けにより光
触媒のみで金属板を被覆することもできるが、この方法
では、形成された光触媒被覆層の触媒活性が著しく低下
する。また、特開平7−88367号公報のように鏡面
仕上げした金属板等の高反射率金属板を基板に使用する
ものでは、エチレン分解等の特殊な用途に使用可能に過
ぎず、金属板を鏡面仕上げするにはかなりコスト高とな
るため、建材等に使用される通常の金属板には適用でき
ない。 【0004】 【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、SiO2質の下
地層を形成することにより、鏡面仕上げを必要とするこ
となく、通常の金属板を基板として使用し、十分な触媒
活性を呈する光触媒被覆金属板を得ることを目的とす
る。 【0005】本発明の製造方法は、その目的を達成する
ため、X−Si(OR)3 (ただし、Xはビニル基,エポ
キシ基,アミノ基又はメルカプト基を有する基もしくは
メチル基を示し、Rはアルキル基を示す)の構造をもつ
シランカップリング剤又はSiO2ゾルを金属板表面に
塗布し熱処理によってSiO2前駆体又はSiO2からな
る下地層を形成した後、有機チタン化合物又はチタニア
ゾルを塗布し、400〜850℃で熱処理し、金属板か
らの金属拡散をSiO2下地層で抑制しながらTiO2
金属板に焼き付けることを特徴とする。有機チタン化合
物には、チタンアルコキシド又はチタンβジケトネート
が使用される。 【0006】シラン化合物又はSiO2ゾルを金属板表
面に塗布した後、好ましくは150〜850℃で熱処理
するとき、Si−Oの網目構造をもつ親水性又は親油性
の被覆層が金属板の表面に形成される。このSiO2
被覆層を下地としてTiO2層を形成するとき、触媒活
性を低下させることなく光触媒被覆層が形成される。シ
ラン化合物,SiO2ゾル,有機チタン化合物,TiO2
ゾル等は、浸漬,スプレー,泳動電着等の方法で基体の
金属板表面に施される。 【0007】 【作用】本発明者等は、金属板にTiO2層を直接形成
する場合に触媒活性が低下する原因を種々調査した。そ
の結果、TiO2層を形成する加熱処理時に、金属板か
ら金属が拡散することによって電子,正孔の再結合中心
がTiO2層中に形成されることに原因があるとの結論
を得た。すなわち、TiO2系の光触媒では、光による
励起が不純物によって大きな影響を受ける。不純物によ
る悪影響は、金属の種類によっても異なるが、0.1モ
ル%以下でも現れる。そこで、本発明においては、金属
板からの金属拡散を抑制するために金属板表面にSiO
2層を形成している。SiO2層は、加熱処理時に基板か
ら拡散する金属の拡散速度を遅くし、その上に形成され
る光触媒層が本来もつ光触媒作用を良好に維持する。 【0008】 【実施の形態】下地層のシラン化合物中の反応基として
親水基をもつものを使用し、150〜400℃で加熱処
理することにより金属板表面に親水性のあるSiO2
膜を形成する。水系TiO2ゾルを用いてSiO2質下地
層の上にTiO2コーティングを施すと、濡れ性が良く
均一なコーティングを施すことができる。600〜85
0℃で加熱処理すると、TiO2系皮膜の密着性が向上
すると共に、下地層に含まれる有機物が消失し、SiO
2からなる均質な下地層が形成される。他方、反応基と
して親油基をもつシラン化合物を使用すると、150〜
400℃の加熱処理で表面に親油基をもつ皮膜が形成さ
れる。チタンアルコキシド等の有機チタン化合物を有機
溶媒に溶解させた溶液を用いて下地層の上にTiO2
ーティングを施すと、濡れ性が良好で均一なコーティン
グが施される。コーティング後、400〜850℃で加
熱処理すると、TiO2系皮膜の密着性が向上すると共
に、下地層に含まれる有機物が消失し、SiO2からな
る均質な下地層が形成される。 【0009】下地層形成時に850℃を超える温度で熱
処理すると、形成されたSiO2層にクラックが生じ易
い。SiO2層にクラックが生成すると、皮膜が剥離し
易くなり、長期間にわたって安定した油分解特性が持続
しない。また、150℃に達しない熱処理温度では、金
属板に対する密着性が劣り、衝撃や異物等との接触によ
って被覆層が金属板から容易に剥離する。表層形成時に
850℃を超える温度で熱処理すると、TiO2層がア
ナターゼ構造からルチル構造に変化し、光触媒としての
機能が損なわれる。しかし、400℃に達しない熱処理
温度では、密着性が劣り、衝撃や異物等との接触によっ
て被覆層が金属板から容易に剥離する。この点、特開平
7−88367号公報で開示されている方法では、シリ
カ層形成時には150℃で3時間乾燥させ、TiO2
形成時にはTiO2単独ではなくシリカバインダーを2
0%含有させ、150℃で3〜6時間乾燥させ、場合に
よっては500℃で1時間の焼成を行っている。この方
法では、長時間の処理が必要であると共に、TiO2
の密着性を上げるためのシリカバインダーを必要とする
ため、触媒活性がTiO2単独より低下する。 【0010】 【実施例1】板厚0.6mmのSUS430ステンレス
鋼板を基板としシランカップリング液に浸漬し、0.1
m/秒の速度で引き上げ、100〜900℃で10分間
加熱した。これにより、基板表面に膜厚0.15μmの
SiO2層が形成された。なお、シランカップリング液
としては、親水基をもつシランカップリング剤としてN-
β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピ
ルトリメトキシシラン塩酸塩を使用し、エタノールを用
いて濃度20%に調製したものを使用した。次いで、水
系TiO2ゾルに浸漬し、0.5m/秒の速度で引き上
げ、乾燥後に600〜900℃で2分間焼成した。形成
されたTiO2層は、1.2μmの厚みをもっていた。 【0011】処理された各試料について、膜の密着性及
び油分解特性を調査した。密着性は、碁盤目テープ剥離
試験で調査し、全く剥離しないものを○,僅かでも剥離
したものを×として評価した。油分解特性試験では、2
mg/cm2のサラダ油を塗布した後、ブラックライト
を照射し、8mW/cm2のUV強度で油分解し、重量
変化を測定した。そして、ガラス基板上のTiO2膜と
同じ油分解特性を示し、TiO2膜がアナターゼ構造を
もつものを○,ガラス基板上のTiO2膜と同じ油分解
特性を示すものの、TiO2膜がルチル構造をもつもの
を△,ガラス基板上のTiO2膜よりも油分解特性が低
下したものを×として評価した。例として、試験番号4
の試験片にサラダ油を2mg/cm2塗布した後、紫外
線強度8mW/cm2のブラックライトを照射し、照射
時間と油分解率との関係を調査した。その結果、試験番
号4では、図1に示すようにガラス基板上にTiO2
1.2μmの膜厚で形成したものとほぼ同じ油分解特性
を示した。 【0012】 【0013】 【実施例2】板厚0.6mmのSUS430ステンレス
鋼板を基板とし、シランカップリング浴に浸漬し、0.
1m/秒の速度で引き上げ、100〜900℃で10分
間加熱した。カップリング浴としては、親油基をもつシ
ランカップリング剤としてビニルトリメトキシシランを
使用し、イソプロパノールで濃度20%に調製したもの
を使用した。次いで、1Mチタンテトライソプロポキシ
ド−0.2M HCl−0.5M H2O−15Mエタノー
ル溶液に浸漬し、0.2m/分の速度で引き上げ、30
0〜900℃で1分間焼成した。焼成後の試験片表面を
観察すると、膜厚0.15μmのSiO2層,膜厚0.3
μmのTiO2層が形成されていた。得られた皮膜の密
着性及び油分解特性を、処理条件との関係で表2に示
す。なお、表2における油分解特性は、表1と同様に評
価した。 【0014】【0015】 【実施例3】板厚0.4mmのSUS430ステンレス
鋼板を基板として、SiO2ゾルをスプレーコーティン
グした後、500℃で5分間焼成しSiO2層を形成し
た。次いで、水系TiO2ゾルをスプレーコーティング
して乾燥した後、700℃で2分間焼成した。得られた
被覆材は、SiO2層が0.3μmの膜厚,TiO2層が
4μmの膜厚をもっていた。この被覆金属板を使用して
実施例1と同様な条件下で油分解特性を調査した結果、
ガラス基板上に膜厚4μmのTiO2層を被覆したもの
と同じ油分解特性を示した。 【0016】 【実施例4】板厚0.5mmの溶融アルミニウムめっき
鋼板を金属基体とし、メチルトリメトキシシランのシラ
ンカップリング剤に浸漬した。カップリング液から0.
1m/秒の速度で引き上げ、200℃で20分間乾燥さ
せた。その後、1Mチタンアセチルアセトネート−0.
2M HCl−0.5M H2O−15M エタノール溶液
に浸漬し、0.2m/分の速度で引き上げ、500℃で
1分間焼成した。得られた被覆材は、0.15μmのS
iO2層及び0.3μmのTiO2層をもっていた。この
被覆金属板を使用して実施例1と同様な条件下で油分解
特性を調査した結果、ガラス基板上に膜厚0.3μmの
TiO2層を被覆したものと同じ油分解特性を示した。 【0017】比較例1: 水系TiO2ゾルにSUS430ステンレス鋼を浸漬
し、0.5m/秒の速度で引き上げることによりTiO2
コーティングを施した。そして、乾燥後、700℃で2
分間焼成し、光触媒被覆金属板を作成した。この光触媒
被覆金属板の触媒活性を調査するため、サラダ油2mg
/cm2を塗布した状態でブラックライトを照射する油
分解実験に供した。その結果、図1に示すように、ガラ
ス基板上に被覆された同一膜厚のTiO2層に比較して
油分解特性が著しく低下した。 比較例2: 1M チタンテトライソプロポキシド−0.2M HCl
−0.5M H2O−15M エタノールの組成をもつゾル
ゲル浴にSUS430ステンレス鋼を浸漬し、0.2m
/秒の速度で引き上げることによりTiO2コーティン
グを施した。そして、乾燥後、700℃で2分間焼成し
て光触媒被覆金属板を作成した。この光触媒被覆金属板
の触媒活性を調査するため、サラダ油2mg/cm2
塗布した状態でブラックライトを照射する油分解実験に
供した。その結果、図1に示すように、ガラス基板上に
被覆された同一膜厚のTiO2層に比較して油分解特性
が著しく低下した。 【0018】 【発明の効果】以上に説明したように、本発明では、S
iO2層を介してTiO2層を形成しているので、TiO
2層形成時に高温加熱されても素地金属板からTiO2
への金属拡散がSiO2層で抑制され、触媒活性の低下
がないTiO2層が金属板表面に形成される。このよう
にして得られた光触媒被覆金属板は、高位に安定した触
媒活性を長期間持続し、厨房用器具,多数の人が出入り
する建築物用の建材等として衛生面に関する要求が高い
用途に使用される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a photocatalyst-coated metal plate exhibiting a photocatalytic action effective for decomposing organic substances and water. 2. Description of the Related Art When photocatalytic particles are irradiated with light having a wavelength having energy equal to or greater than the band gap, electrons are generated in a conduction band and holes are generated in a valence band by photoexcitation. The strong oxidizing power of holes generated by the photoexcitation is used for decomposition of organic substances and water. However, using the photocatalyst in a particulate state makes its handling and recovery difficult,
Outflow and scattering are inevitable. Therefore, the photocatalyst is used by being fixed to a substrate such as a metal. As such a metal plate, one in which a photocatalyst is directly coated on a metal plate is disclosed in JP-A-3-8448, after a light-transmissive charge-separation layer is provided on a carrier having a high reflectance surface. One supporting photocatalyst particles is introduced in JP-A-7-88367. For fixing the photocatalyst to the substrate, a method of sintering and baking the photocatalyst particles at a temperature of 400 ° C. or more on the substrate,
A method of spraying a substance which becomes a photocatalyst by thermal decomposition onto a substrate heated to a temperature of about 400 ° C. or the like is employed. Further, a method of laminating and pressing a mixture of photocatalyst particles and a fluoropolymer on a substrate, a method of attaching a resin paint in which the photocatalyst particles are suspended, and the like are also known. [0003] When a photocatalyst layer is provided by a conventional method, a photocatalyst-coated metal plate exhibiting sufficient photocatalytic activity cannot be obtained. For example, when the photocatalyst particles are applied by being mixed with a resin or the like, a part of the photocatalyst surface is covered with the resin or the like, so that the entire surface of the photocatalyst particles cannot be used as a catalytic surface. On the other hand, the metal plate can be coated with only the photocatalyst by heating and baking, but in this method, the catalytic activity of the formed photocatalyst coating layer is significantly reduced. Further, when a high-reflectance metal plate such as a metal plate having a mirror finish is used for a substrate as disclosed in Japanese Patent Application Laid-Open No. 7-88367, the metal plate can be used only for special purposes such as decomposition of ethylene and the like. Since the cost of finishing is considerably high, it cannot be applied to ordinary metal plates used for building materials and the like. SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem, and requires a mirror finish by forming an SiO 2 base layer. An object of the present invention is to obtain a photocatalyst-coated metal plate exhibiting sufficient catalytic activity without using a normal metal plate as a substrate. According to the production method of the present invention, X-Si (OR) 3 (where X represents a group having a vinyl group, an epoxy group, an amino group or a mercapto group or a methyl group, A silane coupling agent or a SiO 2 sol having a structure of (a) represents an alkyl group) is applied to the surface of the metal plate, and an SiO 2 precursor or a titania sol is applied after forming an SiO 2 precursor or an SiO 2 underlayer by heat treatment. Then, heat treatment is performed at 400 to 850 ° C., and TiO 2 is baked on the metal plate while diffusion of the metal from the metal plate is suppressed by the SiO 2 underlayer. As the organic titanium compound, titanium alkoxide or titanium β-diketonate is used. When a silane compound or a SiO 2 sol is applied to the surface of a metal plate and then heat-treated at preferably 150 to 850 ° C., a hydrophilic or lipophilic coating layer having a Si—O network structure is formed on the surface of the metal plate. Formed. When the TiO 2 layer is formed using this SiO 2 -based coating layer as a base, the photocatalytic coating layer is formed without lowering the catalytic activity. Silane compound, SiO 2 sol, organic titanium compound, TiO 2
The sol or the like is applied to the surface of the base metal plate by a method such as dipping, spraying, or electrophoresis. The present inventors have conducted various investigations on the cause of a decrease in catalytic activity when a TiO 2 layer is directly formed on a metal plate. As a result, it was concluded that during heat treatment for forming the TiO 2 layer, the metal is diffused from the metal plate to form recombination centers of electrons and holes in the TiO 2 layer. . That is, in the TiO 2 -based photocatalyst, excitation by light is greatly affected by impurities. The adverse effect due to impurities varies depending on the type of metal, but appears even at 0.1 mol% or less. Therefore, in the present invention, in order to suppress metal diffusion from the metal plate, SiO 2
Two layers are formed. The SiO 2 layer slows down the diffusion rate of the metal diffused from the substrate during the heat treatment, and favorably maintains the photocatalytic action inherent to the photocatalytic layer formed thereon. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrophilic SiO 2 film is formed on the surface of a metal plate by using a substrate having a hydrophilic group as a reactive group in a silane compound and subjecting it to heat treatment at 150 to 400 ° C. I do. When a TiO 2 coating is applied on the SiO 2 underlayer using an aqueous TiO 2 sol, a uniform coating with good wettability can be applied. 600-85
When heat treatment is performed at 0 ° C., the adhesion of the TiO 2 -based film is improved, and at the same time, the organic substances contained in the underlayer disappear, and
A homogeneous underlayer consisting of 2 is formed. On the other hand, when a silane compound having a lipophilic group is used as a reactive group,
A film having a lipophilic group is formed on the surface by the heat treatment at 400 ° C. When a TiO 2 coating is applied on the underlayer using a solution in which an organic titanium compound such as titanium alkoxide is dissolved in an organic solvent, a uniform coating with good wettability is applied. When the coating is heated at 400 to 850 ° C. after the coating, the adhesion of the TiO 2 -based film is improved, and the organic substances contained in the underlayer disappear, so that a uniform underlayer made of SiO 2 is formed. If the heat treatment is performed at a temperature exceeding 850 ° C. during the formation of the underlayer, cracks tend to occur in the formed SiO 2 layer. When cracks are formed in the SiO 2 layer, the film is easily peeled off, and stable oil decomposition characteristics are not maintained for a long period of time. At a heat treatment temperature of not higher than 150 ° C., the adhesion to the metal plate is poor, and the coating layer is easily peeled off from the metal plate by impact or contact with foreign matter. If heat treatment is performed at a temperature exceeding 850 ° C. during the formation of the surface layer, the TiO 2 layer changes from an anatase structure to a rutile structure, and the function as a photocatalyst is impaired. However, if the heat treatment temperature does not reach 400 ° C., the adhesion is inferior, and the coating layer is easily peeled off from the metal plate by contact with impact or foreign matter. In this regard, in the method disclosed in Japanese Patent Application Laid-Open No. 7-88367, the silica layer is dried at 150 ° C. for 3 hours, and the TiO 2 layer is formed not by TiO 2 alone but by silica binder.
It contains 0%, is dried at 150 ° C. for 3 to 6 hours, and is sometimes baked at 500 ° C. for 1 hour. In this method, a long-time treatment is required, and a silica binder for improving the adhesion of the TiO 2 layer is required, so that the catalytic activity is lower than that of TiO 2 alone. EXAMPLE 1 A SUS430 stainless steel sheet having a thickness of 0.6 mm was used as a substrate and immersed in a silane coupling solution to obtain a SUS430 stainless steel sheet having a thickness of 0.1 mm.
It was pulled up at a speed of m / sec and heated at 100 to 900 ° C. for 10 minutes. As a result, a SiO 2 layer having a thickness of 0.15 μm was formed on the substrate surface. As the silane coupling solution, N-silane as a silane coupling agent having a hydrophilic group was used.
β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride was used and its concentration was adjusted to 20% using ethanol. Next, it was immersed in an aqueous TiO 2 sol, pulled up at a speed of 0.5 m / sec, dried, and baked at 600 to 900 ° C. for 2 minutes. The formed TiO 2 layer had a thickness of 1.2 μm. For each of the treated samples, the adhesiveness and oil decomposition characteristics of the film were investigated. Adhesion was evaluated by a cross-cut tape peeling test. A sample that did not peel at all was evaluated as ○, and a sample that slightly peeled was evaluated as ×. In the oil decomposition property test, 2
After applying mg / cm 2 of salad oil, it was irradiated with black light to decompose oil at a UV intensity of 8 mW / cm 2 and the change in weight was measured. Then, show the same oil breakdown characteristics as TiO 2 film on a glass substrate, ○ those TiO 2 film has an anatase structure, while indicating same oil breakdown characteristics as TiO 2 film on a glass substrate, is TiO 2 film rutile Those having a structure were evaluated as Δ, and those having a lower oil decomposition property than the TiO 2 film on the glass substrate were evaluated as ×. As an example, test number 4
Was coated with 2 mg / cm 2 of salad oil, and then irradiated with black light having an ultraviolet intensity of 8 mW / cm 2 to investigate the relationship between irradiation time and oil decomposition rate. As a result, in Test No. 4, as shown in FIG. 1, the same oil decomposition characteristics as those obtained by forming TiO 2 to a thickness of 1.2 μm on a glass substrate were exhibited. [0012] EXAMPLE 2 A SUS430 stainless steel plate having a thickness of 0.6 mm was used as a substrate and immersed in a silane coupling bath.
It was pulled up at a speed of 1 m / sec and heated at 100 to 900 ° C. for 10 minutes. As the coupling bath, one prepared by using vinyltrimethoxysilane as a silane coupling agent having a lipophilic group and adjusting the concentration to 20% with isopropanol was used. Then immersed in 1M titanium tetraisopropoxide -0.2M HCl-0.5M H 2 O- 15M ethanol solution, pulled up at 0.2 m / min, 30
It baked at 0-900 degreeC for 1 minute. Observation of the surface of the test piece after sintering revealed that the SiO 2 layer had a thickness of 0.15 μm and a thickness of 0.3.
A μm TiO 2 layer was formed. Table 2 shows the adhesion and oil decomposition characteristics of the obtained film in relation to the processing conditions. The oil decomposition characteristics in Table 2 were evaluated in the same manner as in Table 1. [0014] EXAMPLE 3 Using a SUS430 stainless steel plate having a thickness of 0.4 mm as a substrate, a SiO 2 sol was spray-coated and then baked at 500 ° C. for 5 minutes to form an SiO 2 layer. Next, the aqueous TiO 2 sol was spray-coated and dried, and then baked at 700 ° C. for 2 minutes. In the obtained coating material, the SiO 2 layer had a thickness of 0.3 μm and the TiO 2 layer had a thickness of 4 μm. As a result of examining oil decomposition characteristics using the coated metal plate under the same conditions as in Example 1,
It exhibited the same oil decomposition characteristics as those obtained by coating a glass substrate with a 4 μm-thick TiO 2 layer. Example 4 A hot-dip aluminum-plated steel sheet having a thickness of 0.5 mm was used as a metal substrate and immersed in a silane coupling agent of methyltrimethoxysilane. 0.1 from the coupling solution.
It was pulled up at a speed of 1 m / sec and dried at 200 ° C. for 20 minutes. After that, 1M titanium acetylacetonate-0.
Immersed in 2M HCl-0.5M H 2 O- 15M ethanol solution, pulled up at 0.2 m / min, and baked for 1 minute at 500 ° C.. The obtained coating material has 0.15 μm S
It had an TiO 2 layer and a 0.3 μm TiO 2 layer. Using this coated metal plate, the oil decomposition characteristics were examined under the same conditions as in Example 1. As a result, the oil decomposition characteristics were the same as those obtained by coating a glass substrate with a TiO 2 layer having a thickness of 0.3 μm. . [0017] Comparative Example 1: aqueous TiO 2 sol was immersed SUS430 stainless steel, TiO 2 by pulling up at a speed of 0.5 m / sec
Coating was applied. Then, after drying, 2
It was baked for minutes to prepare a photocatalyst-coated metal plate. To investigate the catalytic activity of this photocatalyst-coated metal plate, 2 mg of salad oil
/ Cm 2 was applied to an oil decomposition experiment in which black light was irradiated. As a result, as shown in FIG. 1, the oil decomposition characteristics were significantly reduced as compared with the TiO 2 layer of the same thickness coated on the glass substrate. Comparative Example 2: 1 M titanium tetraisopropoxide-0.2 M HCl
Immersing the SUS430 stainless steel in the sol-gel bath having a composition of -0.5M H 2 O-15M ethanol, 0.2 m
The TiO 2 coating was applied by pulling up at a rate of / s. Then, after drying, baking was performed at 700 ° C. for 2 minutes to prepare a photocatalyst-coated metal plate. In order to investigate the catalytic activity of this photocatalyst-coated metal plate, it was subjected to an oil decomposition experiment in which black light was irradiated with 2 mg / cm 2 of salad oil applied. As a result, as shown in FIG. 1, the oil decomposition characteristics were significantly reduced as compared with the TiO 2 layer of the same thickness coated on the glass substrate. As described above, according to the present invention, S
Because through the iO 2 layers to form a TiO 2 layer, TiO
Metal diffusion during two layers formed from base metal plate be high temperature heating to TiO 2 layer is suppressed by the SiO 2 layer, decrease in catalytic activity is not TiO 2 layer is formed on the metal plate surface. The photocatalyst-coated metal plate obtained in this way has a high and stable catalytic activity for a long period of time, and is used for applications requiring high sanitary requirements, such as kitchen appliances and building materials for buildings where many people enter and leave. used.

【図面の簡単な説明】 【図1】 金属板表面にSiO2層を介してTiO2層を
被覆したものの油分解特性を、直接TiO2層を形成し
た金属板及びガラス基板の油分解特性と比較したグラフ
BRIEF DESCRIPTION OF THE DRAWINGS] [Figure 1] metal plate surface oil breakdown characteristics but coated with TiO 2 layer through the SiO 2 layer, the oil degradation properties of the metal plate and the glass substrate to the direct TiO 2 layer and Graph compared

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小浦 節子 千葉県市川市高谷新町7番1号 日新製 鋼株式会社技術研究所内 (56)参考文献 特開 平7−171408(JP,A) 特開 平6−278241(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 1/00 - 35/00 C09D 1/00 - 201/10 B01J 21/00 - 35/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Setsuko Koura 7-1 Takayashinmachi, Ichikawa-shi, Chiba Nisshin Steel Co., Ltd. Technical Research Institute (56) References JP-A-7-171408 (JP, A) Kaihei 6-278241 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B32B 1/00-35/00 C09D 1/00-201/10 B01J 21/00-35/02

Claims (1)

(57)【特許請求の範囲】 【請求項1】 X−Si(OR)3 (ただし、Xはビニル
基,エポキシ基,アミノ基又はメルカプト基を有する基
もしくはメチル基を示し、Rはアルキル基を示す)の構
造をもつシランカップリング剤又はSiO2ゾルを金属
板表面に塗布し熱処理によってSiO2前駆体又はSi
2からなる下地層を形成した後、有機チタン化合物又
はチタニアゾルを塗布し、400〜850℃で熱処理
し、金属板からの金属拡散をSiO2下地層で抑制しな
がらTiO2を金属板に焼き付けることを特徴とする光
触媒被覆金属板の製造方法。
(57) [Claims 1] X-Si (OR) 3 (where X is a group having a vinyl group, an epoxy group, an amino group or a mercapto group)
Or a methyl group, R represents SiO 2 precursor or Si by applying a heat treatment with a silane coupling agent or SiO 2 sol having a structure of an alkyl group) in the metal plate surface
After forming a base layer made of O 2 , an organic titanium compound or titania sol is applied and heat-treated at 400 to 850 ° C., and TiO 2 is baked on the metal plate while suppressing metal diffusion from the metal plate with the SiO 2 base layer. A method for producing a photocatalyst-coated metal plate, comprising:
JP14658796A 1996-05-16 1996-05-16 Method for producing photocatalyst-coated metal plate Expired - Fee Related JP3384930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14658796A JP3384930B2 (en) 1996-05-16 1996-05-16 Method for producing photocatalyst-coated metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14658796A JP3384930B2 (en) 1996-05-16 1996-05-16 Method for producing photocatalyst-coated metal plate

Publications (2)

Publication Number Publication Date
JPH09310185A JPH09310185A (en) 1997-12-02
JP3384930B2 true JP3384930B2 (en) 2003-03-10

Family

ID=15411093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14658796A Expired - Fee Related JP3384930B2 (en) 1996-05-16 1996-05-16 Method for producing photocatalyst-coated metal plate

Country Status (1)

Country Link
JP (1) JP3384930B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304382B2 (en) * 1997-12-24 2009-07-29 住友金属工業株式会社 Highly reflective surface-treated plate with excellent contamination resistance
JP3912976B2 (en) * 2000-06-20 2007-05-09 三菱重工業株式会社 Method for producing titanium substrate having photocatalyst film and method for hydrophilizing titanium substrate surface
FR2879479B1 (en) * 2004-12-17 2007-11-09 Armines Ass Loi De 1901 AMORPHOUS COMPOSITE STRUCTURES FOR PHOTOCATALYSIS
JP5081543B2 (en) * 2007-09-04 2012-11-28 日本曹達株式会社 Method for producing photocatalyst carrying structure and photocatalyst carrying structure obtained by the method
JP6643808B2 (en) * 2015-03-19 2020-02-12 大日製罐株式会社 Metal can manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278241A (en) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd Building material
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same

Also Published As

Publication number Publication date
JPH09310185A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
CZ2001378A3 (en) Process for producing material exhibiting photocatalytic activity and apparatus for making the same
JPH1043069A (en) Stain preventing plate
JP3773087B2 (en) Photocatalytic functional member
TW201238655A (en) Photocatalyst coated body and photocatalyst coating liquid
JP3384930B2 (en) Method for producing photocatalyst-coated metal plate
CN102653639A (en) Composite titanium dioxide photocatalyst sol coating material component and coating method thereof
JP5118067B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
JP3961097B2 (en) Blind slat manufacturing method
JP2002346393A (en) Photocatalyst and method for manufacturing the same
JP3514943B2 (en) Antifouling method and antifouling article using photocatalyst
JP4112691B2 (en) Surface hydrophilic substrate
JP3384945B2 (en) Painted metal sheet excellent in stain resistance and method for producing the same
JP2000017229A (en) Substrate film for photocatalytic film, formation thereof and article comprising base material having photocatalytic film formed using substrate film for photocatalytic film
JP2003306992A (en) Antifouling panel building material
JP3678227B2 (en) Photocatalytic coating composition for metal substrate, photocatalytic metal material obtained using the same, and method for producing photocatalytic metal material
JP3371096B2 (en) Embossed stainless steel plate with excellent photocatalytic activity and no color unevenness
JPH10278168A (en) Photocatalytic film and its manufacture
JP3371104B2 (en) Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and method for producing the same
TWI433895B (en) Super hydrophilic hybrid titania photocatalyst and its application methods without light irradiation or with insufficient light irradiation condition
JP2001031483A (en) Production of ceramic building material having photocatalytic function
JP4090030B2 (en) Photocatalyst-coated metal plate excellent in stain resistance and coating film adhesion and method for producing the same
JP2001145971A (en) Laminate, and method and equipment of manufacturing the same
JP3989668B2 (en) Method for producing functional member
JP2010099645A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2003306563A (en) Stainproof film and method for manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

LAPS Cancellation because of no payment of annual fees