JPH06318593A - Wiring structure of semiconductor integrated circuit - Google Patents

Wiring structure of semiconductor integrated circuit

Info

Publication number
JPH06318593A
JPH06318593A JP10822193A JP10822193A JPH06318593A JP H06318593 A JPH06318593 A JP H06318593A JP 10822193 A JP10822193 A JP 10822193A JP 10822193 A JP10822193 A JP 10822193A JP H06318593 A JPH06318593 A JP H06318593A
Authority
JP
Japan
Prior art keywords
wiring
film
thickness
barrier film
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10822193A
Other languages
Japanese (ja)
Inventor
Hideaki Ono
秀昭 小野
Tadashi Nakano
正 中野
Hiroshi Yamamoto
浩 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10822193A priority Critical patent/JPH06318593A/en
Publication of JPH06318593A publication Critical patent/JPH06318593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To provide a wiring structure of a semiconductor integrated circuit wherein diffusion of Cu into an insulating film or a substrate can be prevented and application of a fine LSI wiring is possible, when a Cu wiring is used. CONSTITUTION:An insulating film 12 is formed on the surface of an Si substrate 10, and a W film 14 of 1000Angstrom in thickness is formed on the whole surface of the insulating film 12. A Cu film 16 is grown on the surface of the W film 14. A substratum film 14a and a Cu wiring 16a are formed by patterning the W film 14 and the Cu film 16. A W film is selectively grown 100-500Angstrom thick only on the outer surfaces of the substratum film 14a and the Cu wiring 16a by a CVD method, and a W coating film 18 is formed. The thickness of the substratum film 14a is made larger than or equal to twice and smaller than or equal to ten times the thickness of the W coating film 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路(LS
I)の配線構造体に関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor integrated circuit (LS).
The wiring structure of I).

【0002】[0002]

【従来の技術】現在、半導体集積回路の配線の材料とし
てはAl、またはAlにSiやCuなどを添加したAl
合金が使用されている。このような配線は、Alが主な
材料として使用されているため、配線の許容電流密度は
(2〜3)×105 A/cm2以下に制限されている。
この理由は、この配線に上記許容電流密度を越える電流
を流すと、エレクトロマイグレーションによりこの配線
が断線してしまうためである。高い電流密度で電流を流
すために、配線材料としてAl中に0.1〜5%のCu
を添加したAl−Cu合金が使用されることがあるが、
エレクトロマイグレーションに対する耐性は満足できる
ものではない。しかも、許容しうる電流密度は改善され
るものの配線の比抵抗は増加し、発熱に伴う信頼性低下
の問題が生じる。
2. Description of the Related Art At present, as a wiring material of a semiconductor integrated circuit, Al or Al obtained by adding Si or Cu to Al is used.
Alloys are used. Since Al is mainly used for such wiring, the allowable current density of the wiring is limited to (2 to 3) × 10 5 A / cm 2 or less.
The reason for this is that if a current exceeding the permissible current density is applied to this wiring, the wiring will be broken due to electromigration. In order to pass a current with a high current density, 0.1 to 5% Cu is contained in Al as a wiring material.
Although an Al-Cu alloy added with may be used,
Resistance to electromigration is unsatisfactory. Moreover, although the allowable current density is improved, the specific resistance of the wiring is increased, which causes a problem of reliability deterioration due to heat generation.

【0003】一方、配線の耐エレクトロマイグレーショ
ン性を向上させるために、Al配線やAl合金配線に代
えて、耐エレクトロマイグレーション性が高く、抵抗が
低い実質的にCuからなるCu配線を用いることが提案
されている。
On the other hand, in order to improve the electromigration resistance of the wiring, it is proposed to use Cu wiring which is substantially made of Cu, which has high electromigration resistance and low resistance, instead of Al wiring or Al alloy wiring. Has been done.

【0004】[0004]

【発明が解決しようとする課題】しかしCuは、Alに
比べるとSi(基板)又はSiO2 (絶縁膜)中へ拡散
しやすく、このためトランジスタの正常な動作を妨げる
という問題が生じる。この問題を解決するために、各種
のバリア膜によりCuの拡散を防止する技術が提案され
てきた(例えば、1992年春応用物理学会30p−Z
H−6、特開昭63−156341号公報参照)。とこ
ろが、これらバリア膜の抵抗はCuより高く、しかもC
uは配線幅が0.25μm程度以下の微細なLSIにお
いて用いられるため、Cu配線の周囲の全てにバリア膜
を均一に形成すると、配線の実効抵抗が上昇し、Cu配
線を利用するメリットが減少するという問題がある。
However, Cu is more likely to diffuse into Si (substrate) or SiO 2 (insulating film) than Al, which causes a problem that the normal operation of the transistor is hindered. In order to solve this problem, a technique of preventing diffusion of Cu by various barrier films has been proposed (for example, Spring 1992 Japan Society of Applied Physics 30p-Z).
H-6, see JP-A-63-156341). However, the resistance of these barrier films is higher than that of Cu, and C
Since u is used in a fine LSI with a wiring width of about 0.25 μm or less, if a barrier film is uniformly formed all around the Cu wiring, the effective resistance of the wiring increases and the merit of using the Cu wiring decreases. There is a problem of doing.

【0005】本発明は、上記事情に鑑み、Cu配線を使
用した場合に、絶縁膜や基板へのCuの拡散を防止しで
き、しかも、微細なLSI配線に対応できる半導体集積
回路の配線構造体を提供することを目的とする。
In view of the above circumstances, the present invention can prevent the diffusion of Cu into the insulating film and the substrate when Cu wiring is used, and further can cope with fine LSI wiring. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明者は、Si基板に
Cuが到達するまでの距離が、Cuの拡散によるトラン
ジスタの誤動作に大きく影響することに着目し、種々の
実験・研究を行った結果、Cu配線の下地バリア膜の厚
さが有効にCuの拡散を防止できる厚さであると、Cu
配線の上部や側面部のバリア膜の厚さが、配線の下地バ
リア膜厚より薄くても十分なバリア効果が得られること
を見い出した。また、多層配線構造体において、上層配
線のバリア膜の厚さは、下層配線のバリア膜の厚さより
薄くても十分なバリア効果が得られることを見い出し
た。
The inventors of the present invention have conducted various experiments and studies focusing on the fact that the distance until Cu reaches the Si substrate has a great influence on the malfunction of the transistor due to the diffusion of Cu. As a result, if the thickness of the underlying barrier film of the Cu wiring is a thickness that can effectively prevent the diffusion of Cu, Cu
It has been found that a sufficient barrier effect can be obtained even if the thickness of the barrier film on the upper and side surfaces of the wiring is thinner than the underlying barrier film thickness of the wiring. Further, in the multilayer wiring structure, it has been found that a sufficient barrier effect can be obtained even if the barrier film of the upper layer wiring is thinner than the barrier film of the lower layer wiring.

【0007】具体的には、上記目的を達成するための本
発明の第1の半導体集積回路の配線構造体は、Cu配線
が形成された半導体集積回路の配線構造体において、C
u配線の下地バリア膜の厚さが、該Cu配線の上部バリ
ア膜の厚さもしくは側面バリア膜の厚さの2倍以上10
倍以下であることを特徴とするものである。上記目的を
達成するための本発明の第2の半導体集積回路の配線構
造体は、多層のCu配線が形成された半導体集積回路の
配線構造体において、上層のCu配線のバリア膜の厚さ
が、下層のCu配線のバリア膜の厚さの1/10倍以下
であることを特徴とするものである。
Specifically, a wiring structure of a first semiconductor integrated circuit according to the present invention for achieving the above object is a wiring structure of a semiconductor integrated circuit in which Cu wiring is formed.
The thickness of the underlying barrier film of the u wiring is at least twice the thickness of the upper barrier film or the side surface barrier film of the Cu wiring 10
It is characterized by being less than twice. A wiring structure of a second semiconductor integrated circuit according to the present invention for achieving the above object is a wiring structure of a semiconductor integrated circuit in which a multilayer Cu wiring is formed, in which a barrier film of an upper Cu wiring has a thickness of The thickness is less than 1/10 of the thickness of the barrier film of the lower Cu wiring.

【0008】ここで、前記バリア膜は、W含有合金、T
a含有合金、これら合金の窒化物、硼化物、及び炭化物
から選ばれた材料から形成された膜であることが好まし
い。
Here, the barrier film is a W-containing alloy, T
It is preferably a film formed from a material containing an a-containing alloy, a nitride of these alloys, a boride, and a carbide.

【0009】[0009]

【作用】次に、本発明の基礎となった実験について、図
面を参照して説明する。試料として、配線幅0.2μ
m、配線間隔0.2μmのCu配線と、種々の材料で形
成された、このCu配線のバリア膜とを備えた配線構造
体を使用した。Cu配線の下地バリア膜の厚さに対する
上部バリア膜の厚さもしくは側面バリア膜の厚さの比を
nとし、また、上層のCu配線のバリア膜の厚さに対す
る下層のCu配線のバリア膜の厚さの比をmとし、膜厚
比n、mの値を変化させて、膜厚比n、mに対するCu
汚染によるトランジスタ不良率とバリア膜による配線間
の短絡不良率を調べた。この結果を、図1〜3に示す。
図1はバリア膜厚nとCu汚染によるトランジスタ不良
率の関係を示すグラフ、図2はバリア膜厚比nとCu配
線どうしの短絡不良率の関係を示すグラフ、図3は多層
配線における上下のバリア膜厚比とCu汚染によるトラ
ンジスタ不良率の関係を示すグラフである。
Next, the experiment which is the basis of the present invention will be described with reference to the drawings. Wiring width 0.2μ as sample
A wiring structure provided with a Cu wiring having a wiring width of 0.2 μm and a barrier film of the Cu wiring formed of various materials was used. The ratio of the thickness of the upper barrier film or the thickness of the side barrier film to the thickness of the underlying barrier film of the Cu wiring is set to n, and the barrier film of the lower Cu wiring to the thickness of the barrier film of the upper Cu wiring is The thickness ratio is m, and the values of the film thickness ratios n and m are changed to obtain Cu for the film thickness ratios n and m.
The transistor failure rate due to contamination and the short circuit failure rate between wirings due to the barrier film were investigated. The results are shown in FIGS.
1 is a graph showing the relationship between the barrier film thickness n and the transistor defect rate due to Cu contamination. FIG. 2 is a graph showing the relationship between the barrier film thickness ratio n and the short circuit defect ratio between Cu wirings. FIG. 6 is a graph showing a relationship between a barrier film thickness ratio and a transistor defect rate due to Cu contamination.

【0010】図1,2に示されるように、Cu配線の側
面のバリア膜の厚さを減少させた場合、Cuの拡散によ
るトランジスタ不良率はn>10で増加し、配線の側面
のバリア膜厚の増加に伴いn<2で配線間の短絡不良が
増加する。従って、Cuの拡散を効果的に抑制し、配線
間の短絡不良の少ないバリア膜厚比nの範囲は2以上1
0以下に限定される。
As shown in FIGS. 1 and 2, when the thickness of the barrier film on the side surface of the Cu wiring is reduced, the transistor defect rate due to Cu diffusion increases with n> 10, and the barrier film on the side surface of the wiring is increased. As the thickness increases, short circuit defects between wirings increase with n <2. Therefore, the range of the barrier film thickness ratio n is 2 or more and 1 which effectively suppresses the diffusion of Cu and causes less short circuit defects between wirings.
Limited to 0 or less.

【0011】図3に示されるように、多層配線における
上層Cu配線と下層Cu配線のバリア膜厚を比較した場
合において、Cuの拡散を十分に抑制しトランジスタ動
作が正常である下層のCu配線構造体を有するときは、
上層Cu配線のバリア膜厚は下層Cu配線のバリア膜の
1/10以上でCuの拡散を抑制することが実験的に明
らかになった。
As shown in FIG. 3, when the barrier film thicknesses of the upper Cu wiring and the lower Cu wiring in the multilayer wiring are compared, the Cu wiring structure of the lower layer in which the diffusion of Cu is sufficiently suppressed and the transistor operation is normal. When you have a body,
It was experimentally clarified that the barrier film thickness of the upper Cu wiring is 1/10 or more of the barrier film of the lower Cu wiring to suppress Cu diffusion.

【0012】以上説明したように、本発明の第1の半導
体集積回路の配線構造体では、Cu配線の下地バリア膜
の厚さが、Cu配線の上部バリア膜の厚さもしくは側面
バリア膜の厚さの2倍以上10倍以下であり、また、本
発明の第2の半導体集積回路の配線構造体では、上層の
Cu配線のバリア膜の厚さが、下層のCu配線のバリア
膜の厚さの1/10倍以上である。このように、バリア
膜の厚さを、Cu配線の場所に応じて変化させることに
より、不必要なバリア材料の材料費の削減になるばかり
でなく、特に、配線側面部のバリア膜厚の減少により、
0.25μm以下の微細な配線構造体のLSIに対して
も絶縁不良の低減が可能になると共にCuの拡散を防止
できる配線を実現できることが可能となる。
As described above, in the wiring structure of the first semiconductor integrated circuit of the present invention, the thickness of the underlying barrier film of the Cu wiring is equal to the thickness of the upper barrier film of the Cu wiring or the thickness of the side surface barrier film. 2 times or more and 10 times or less, and in the wiring structure of the second semiconductor integrated circuit of the present invention, the thickness of the barrier film of the Cu wiring in the upper layer is the thickness of the barrier film of the Cu wiring in the lower layer. 1/10 times or more. In this way, by changing the thickness of the barrier film according to the location of the Cu wiring, not only is the material cost of the unnecessary barrier material reduced, but especially, the barrier film thickness on the side surface portion of the wiring is reduced. Due to
Insulation defects can be reduced even for an LSI having a fine wiring structure of 0.25 μm or less, and it is possible to realize a wiring capable of preventing Cu diffusion.

【0013】[0013]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図4は、本発明によるCu配線構造体の製造方法
の一例を示す断面図である。図4(a)に示されるよう
に、Si基板10の表面に3000ÅのBPSG(Bo
rophosphosilicate glass)の
絶縁膜12を形成する。この絶縁膜12の全表面に、全
圧2mTorrのAr雰囲気中でRFマグネトロンスパ
ッタリングにより、成膜速度10Å/sで膜厚1000
ÅのW膜14を形成する。このW膜14の表面に、全圧
2mTorrのAr雰囲気中でRFマグネトロンスパッ
タリングにより、Cu膜16を成膜速度60Å/sで8
000Å成長させる。その後、図4(b)に示されるよ
うに、W膜14とCu膜16をパターニングして下地膜
14aとCu配線16aを形成する。さらにその後、図
4(c)に示されるように、CVD法により下地膜14
aとCu配線16aの外面のみにW膜を選択的に100
Å〜500Å成長させてW被覆膜18を形成する。この
W被覆膜18は、試料温度を200〜400℃にし、W
6 とH2 の混合ガスを成膜室へ供給し、この混合ガス
の圧力を1Torr以下にして形成する。この成膜方法
によると界面反応が律速になり、下地膜14aとCu配
線16aの外面のみにWを選択成長させることができ
る。ここで、この配線構造体を多層化するためには、W
被覆膜18上にSiO2 膜などの絶縁膜を形成し、この
絶縁膜の上に上記した配線構造体を同様の方法で作製す
ればよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a sectional view showing an example of a method for manufacturing a Cu wiring structure according to the present invention. As shown in FIG. 4A, 3000 Å BPSG (Bo
An insulating film 12 of a phosphosilicate glass is formed. A film thickness of 1000 is formed on the entire surface of the insulating film 12 by RF magnetron sputtering at a total pressure of 2 mTorr in an Ar atmosphere at a deposition rate of 10 Å / s.
The W film 14 of Å is formed. A Cu film 16 is formed on the surface of the W film 14 by RF magnetron sputtering in an Ar atmosphere at a total pressure of 2 mTorr at a film forming rate of 60 Å / s.
Grow 000Å. After that, as shown in FIG. 4B, the W film 14 and the Cu film 16 are patterned to form a base film 14a and a Cu wiring 16a. After that, as shown in FIG. 4C, the base film 14 is formed by the CVD method.
a and W film selectively on the outer surfaces of the Cu wiring 16a
The W coating film 18 is formed by growing Å to 500Å. The W coating film 18 has a sample temperature of 200 to 400 ° C.
A mixed gas of F 6 and H 2 is supplied to the film forming chamber, and the pressure of this mixed gas is set to 1 Torr or less. According to this film forming method, the interface reaction becomes rate-determining, and W can be selectively grown only on the outer surfaces of the base film 14a and the Cu wiring 16a. Here, in order to make this wiring structure multi-layered, W
An insulating film such as a SiO 2 film may be formed on the coating film 18, and the wiring structure described above may be formed on the insulating film by the same method.

【0014】[0014]

【発明の効果】以上説明したように本発明の半導体集積
回路の配線構造体によれば、Cuの拡散を防止できるW
膜を拡散バリア膜として用い、さらに、Cuの拡散の度
合いに応じてバリア膜の厚さを変化させるようにしたた
め、拡散の影響を受けずにバリア材料コストを低減でき
ることが可能となった。さらに、0.25μm以下の微
細なLSI配線の側面のバリア膜厚を、配線下部のバリ
ア膜厚より薄くすることが可能となったので、Cu配線
同士の導通による歩留り向上を実現できた。したがっ
て、本発明により、比抵抗がAl合金より小さく耐エレ
クトロマイグレーションに優れた、工業的意義が非常に
大きいCu配線を実現できる。
As described above, according to the wiring structure of the semiconductor integrated circuit of the present invention, it is possible to prevent Cu diffusion.
Since the film is used as a diffusion barrier film and the thickness of the barrier film is changed according to the degree of diffusion of Cu, it is possible to reduce the barrier material cost without being affected by the diffusion. Furthermore, since the barrier film thickness on the side surface of the fine LSI wiring of 0.25 μm or less can be made thinner than the barrier film thickness under the wiring, improvement in yield due to conduction between Cu wirings can be realized. Therefore, according to the present invention, it is possible to realize a Cu wiring which has a smaller specific resistance than an Al alloy and is excellent in electromigration resistance and has a great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

【図1】バリア膜厚比nとCu汚染によるトランジスタ
不良率の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a barrier film thickness ratio n and a transistor defect rate due to Cu contamination.

【図2】バリア膜厚比nとCu配線どうしの短絡不良率
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a barrier film thickness ratio n and a short circuit defect rate between Cu wirings.

【図3】多層配線における上下のバリア膜厚比とCu汚
染によるトランジスタ不良率の関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the upper and lower barrier film thickness ratios of multilayer wiring and the transistor defect rate due to Cu contamination.

【図4】本発明によるCu配線構造体の製造方法の一例
を示す断面図である。
FIG. 4 is a cross-sectional view showing an example of a method for manufacturing a Cu wiring structure according to the present invention.

【符号の説明】[Explanation of symbols]

10 Si基板 12 絶縁膜 14 W膜 14a 下地膜 16 Cu膜 16a Cu配線 18 W被覆膜 10 Si substrate 12 Insulating film 14 W film 14a Underlayer film 16 Cu film 16a Cu wiring 18 W Coating film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cu配線が形成された半導体集積回路の
配線構造体において、 Cu配線の下地バリア膜の厚さが、該Cu配線の上部バ
リア膜の厚さもしくは側面バリア膜の厚さの2倍以上1
0倍以下であることを特徴とする半導体集積回路の配線
構造体。
1. In a wiring structure of a semiconductor integrated circuit in which Cu wiring is formed, the thickness of the underlying barrier film of the Cu wiring is 2 times the thickness of the upper barrier film or the side surface barrier film of the Cu wiring. More than 1
A wiring structure of a semiconductor integrated circuit, which is 0 times or less.
【請求項2】 多層のCu配線が形成された半導体集積
回路の配線構造体において、 上層のCu配線のバリア膜の厚さが、下層のCu配線の
バリア膜の厚さの1/10倍以上であることを特徴とす
る半導体集積回路の配線構造体。
2. In a wiring structure of a semiconductor integrated circuit in which a multilayer Cu wiring is formed, the thickness of the barrier film of the upper Cu wiring is 1/10 times or more the thickness of the barrier film of the lower Cu wiring. A wiring structure for a semiconductor integrated circuit, comprising:
【請求項3】 前記バリア膜が、W含有合金、Ta含有
合金、これら合金の窒化物、硼化物、及び炭化物から選
ばれた材料から形成された膜であることを特徴とする請
求項1又は2記載の半導体集積回路の配線構造体。
3. The barrier film is a film formed from a material selected from W-containing alloys, Ta-containing alloys, nitrides, borides, and carbides of these alloys. 2. The wiring structure of the semiconductor integrated circuit according to 2.
JP10822193A 1993-05-10 1993-05-10 Wiring structure of semiconductor integrated circuit Pending JPH06318593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10822193A JPH06318593A (en) 1993-05-10 1993-05-10 Wiring structure of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10822193A JPH06318593A (en) 1993-05-10 1993-05-10 Wiring structure of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH06318593A true JPH06318593A (en) 1994-11-15

Family

ID=14479117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10822193A Pending JPH06318593A (en) 1993-05-10 1993-05-10 Wiring structure of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH06318593A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351671A (en) * 2005-06-14 2006-12-28 Alps Electric Co Ltd Wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351671A (en) * 2005-06-14 2006-12-28 Alps Electric Co Ltd Wiring board
JP4613103B2 (en) * 2005-06-14 2011-01-12 アルプス電気株式会社 Wiring board

Similar Documents

Publication Publication Date Title
US5963827A (en) Method for producing via contacts in a semiconductor device
JP4425432B2 (en) Manufacturing method of semiconductor device
US5506449A (en) Interconnection structure for semiconductor integrated circuit and manufacture of the same
US5798301A (en) Method of manufacturing metal interconnect structure for an integrated circuit with improved electromigration reliability
US5278448A (en) Semiconductor device and method of fabricating the same
US4680612A (en) Integrated semiconductor circuit including a tantalum silicide diffusion barrier
JPH0936230A (en) Manufacture of semiconductor device
US5344797A (en) Method of forming interlevel dielectric for integrated circuits
JP3325720B2 (en) Semiconductor device and manufacturing method thereof
US6569756B1 (en) Method for manufacturing a semiconductor device
JPH0897209A (en) Semiconductor device and its manufacture
JPH05144811A (en) Thin film semiconductor device and manufacture thereof
KR100562630B1 (en) Copper vias in low-k technology
JPH06310509A (en) Wiring structure of semiconductor integrated circuit
US5851920A (en) Method of fabrication of metallization system
JPH06318593A (en) Wiring structure of semiconductor integrated circuit
US6509649B1 (en) Semiconductor device and fabricating method thereof
US6083830A (en) Process for manufacturing a semiconductor device
JPH03110842A (en) Deposition of film
JPH06318594A (en) Wiring structure of semiconductor integrated circuit and its manufacture
KR100250455B1 (en) Method of manufacturing metal line of semiconductor device using copper thin film
JPH06140401A (en) Integrated circuit device
JPH06275622A (en) Manufacture of wiring structure
JPH06275621A (en) Wiring structure of semiconductor integrated circuit
US6309963B1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000912