JPH06275621A - Wiring structure of semiconductor integrated circuit - Google Patents

Wiring structure of semiconductor integrated circuit

Info

Publication number
JPH06275621A
JPH06275621A JP6541493A JP6541493A JPH06275621A JP H06275621 A JPH06275621 A JP H06275621A JP 6541493 A JP6541493 A JP 6541493A JP 6541493 A JP6541493 A JP 6541493A JP H06275621 A JPH06275621 A JP H06275621A
Authority
JP
Japan
Prior art keywords
film
wiring
wiring structure
semiconductor integrated
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6541493A
Other languages
Japanese (ja)
Other versions
JP3261196B2 (en
Inventor
Hideaki Ono
秀昭 小野
Tadashi Nakano
正 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP06541493A priority Critical patent/JP3261196B2/en
Publication of JPH06275621A publication Critical patent/JPH06275621A/en
Application granted granted Critical
Publication of JP3261196B2 publication Critical patent/JP3261196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To provide the wiring structure of a semiconductor integrated circuit wherein the diffusion of Cu to an insulating film or a substrate is prevented, when Cu wiring is used. CONSTITUTION:A BPSG insulating film 12 of 5000Angstrom in thickness is formed on the surface of an Si substrate 10, and a Ta50W50 film 14 is grown to be 600Angstrom thick on the whole surface of the insulating film 12. A Cu film 16 is grown to be 5000Angstrom thick on the surface of the Ta50W50 film 14. Abase film 14a and a wiring 16a are formed by pattern the Ta50W50 film 14 and the Cu film 16. By a CVD method, W is selectively grown to be 400Angstrom thick only on the outer surface of the Cu wiring 16a, and a W coating film 18 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路(LS
I)の配線構造体に関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor integrated circuit (LS).
The wiring structure of I).

【0002】[0002]

【従来の技術】現在、半導体集積回路の配線の材料とし
てはAl、またはAlにSiやCuなどを添加したAl
合金が使用されている。このような配線は、Alが主な
材料として使用されているため、配線の許容電流密度は
(2〜3)×105 A/cm2以下に制限されている。
この理由は、この配線に上記許容電流密度を越える電流
を流すと、エレクトロマイグレーションによりこの配線
が断線してしまうためである。高い電流密度で電流を流
すために、配線材料としてAl中に0.1〜5%のCu
を添加したAl−Cu合金が使用されることがある。し
かし、許容し得る電流密度は改善されるものの配線の比
抵抗は増加し、発熱に伴う信頼性低下の問題が生じる。
2. Description of the Related Art At present, as a wiring material of a semiconductor integrated circuit, Al or Al obtained by adding Si or Cu to Al is used.
Alloys are used. Since Al is mainly used for such wiring, the allowable current density of the wiring is limited to (2 to 3) × 10 5 A / cm 2 or less.
The reason for this is that if a current exceeding the permissible current density is applied to this wiring, the wiring will be broken due to electromigration. In order to pass a current with a high current density, 0.1 to 5% Cu is contained in Al as a wiring material.
An Al-Cu alloy added with may be used. However, although the allowable current density is improved, the specific resistance of the wiring is increased, which causes a problem of reliability deterioration due to heat generation.

【0003】一方、配線の耐エレクトロマイグレーショ
ン性を向上させるために、Al配線やAl合金配線に代
えて、耐エレクトロマイグレーション性が高い実質的に
CuからなるCu配線を用いることが提案されている。
On the other hand, in order to improve the electromigration resistance of the wiring, it has been proposed to replace the Al wiring or the Al alloy wiring with Cu wiring which is substantially made of Cu and has high electromigration resistance.

【0004】[0004]

【発明が解決しようとする課題】しかしCuは、Alに
比べるとSi(基板)又はSiO2 (絶縁膜)中へ拡散
しやすく、このためトランジスタの正常な動作を妨げる
という問題が生じる。この問題を解決するために、金属
質バリア膜によりCuの拡散を防止する技術が提案され
てきたが(例えば、バリア材料=TiN:1992春応
用物理学会30p−ZH−6、特開昭53−11608
9号公報、特開昭63−73645号公報、特開昭63
−156341号公報、特開平1−204449号公報
参照)、Cuがこの金属質バリア膜を経由してSi又は
SiO2 へ拡散することを完全には防止できず、十分な
効果があげられていない。
However, Cu is more likely to diffuse into Si (substrate) or SiO 2 (insulating film) than Al, which causes a problem that the normal operation of the transistor is hindered. In order to solve this problem, a technique of preventing Cu diffusion by a metallic barrier film has been proposed (for example, barrier material = TiN: 1992 Spring Applied Physics Society 30p-ZH-6, JP-A-53-53). 11608
No. 9, JP-A-63-73645, JP-A-63.
No. 156341, JP-A-1-204449), it is not possible to completely prevent Cu from diffusing into Si or SiO 2 through the metallic barrier film, and a sufficient effect is not obtained. .

【0005】本発明は、上記事情に鑑み、Cu配線を使
用した場合、絶縁膜や基板へのCuの拡散を防止する半
導体集積回路の配線構造体を提供することを目的とす
る。
In view of the above circumstances, it is an object of the present invention to provide a wiring structure for a semiconductor integrated circuit which prevents diffusion of Cu into an insulating film or a substrate when Cu wiring is used.

【0006】[0006]

【課題を解決するための手段】本発明者は上記目的を達
成するために、種々の実験・研究を行った結果、 (1)Ta−W合金膜でCu配線の上部又は側面部を被
覆したり、Ta−W合金膜をCu配線の下地にすること
により、絶縁膜や基板へのCuの拡散を防止できる (2)Ta、W、又はTa−W合金にMo、Nb、P
d、Pb等の元素を添加した合金膜を、Cu配線の下
地、又は上部若しくは側面部の被覆にすることにより、
絶縁膜や基板へのCuの拡散を防止できることを見い出
し本発明をなすに至った。
The present inventor has conducted various experiments and researches in order to achieve the above-mentioned object. As a result, (1) a Cu-W alloy film is coated on the upper or side surface of a Cu wiring. Alternatively, the diffusion of Cu into the insulating film or the substrate can be prevented by using the Ta-W alloy film as the base of the Cu wiring. (2) Mo, Nb, P in Ta, W, or Ta-W alloy.
By using an alloy film to which an element such as d or Pb is added as a base of the Cu wiring or covering the upper or side surface of the Cu wiring,
The inventors have found that Cu can be prevented from diffusing into the insulating film and the substrate, and have completed the present invention.

【0007】具体的には、本発明の第1の半導体集積回
路の配線構造体は、Ta−W合金膜をCu配線の下地又
は被覆にしたことを特徴とするものである。また、本発
明の第2の半導体集積回路の配線構造体は、Mo及び/
又はNbをTa−W合金に15原子%以下添加したTa
−W系合金膜を、Cu配線の下地、又は上部若しくは側
面部の被覆にしたことを特徴とするものである。
Specifically, the wiring structure of the first semiconductor integrated circuit according to the present invention is characterized in that the Ta-W alloy film is used as an underlayer or coating of Cu wiring. The wiring structure of the second semiconductor integrated circuit according to the present invention is Mo and / or
Alternatively, Ta obtained by adding Nb to Ta-W alloy in an amount of 15 atomic% or less
It is characterized in that the --W-based alloy film is used as a base of Cu wiring or as a coating on the upper or side surfaces.

【0008】さらに、本発明の第3の半導体集積回路の
配線構造体は、Mo、Nb、及びTiから選ばれた1つ
以上の金属をTaに15原子%以下添加したTa系合金
膜を、Cu配線の下地、又は上部若しくは側面部の被覆
にしたことを特徴とするものである。さらにまた、本発
明の第4の半導体集積回路の配線構造体は、Mo、N
b、Pd、及びPbから選ばれた1つ以上の金属をWに
15原子%以下添加したW系合金膜を、Cu配線の下
地、又は上部若しくは側面部の被覆にしたことを特徴と
するものである。
Further, the third semiconductor integrated circuit wiring structure of the present invention comprises a Ta-based alloy film in which one or more metals selected from Mo, Nb and Ti are added to Ta in an amount of 15 atomic% or less. It is characterized in that the base of the Cu wiring or the coating of the upper portion or the side surface portion is formed. Furthermore, the wiring structure of the fourth semiconductor integrated circuit according to the present invention is Mo, N
A W-based alloy film in which one or more metals selected from b, Pd, and Pb are added to W in an amount of 15 atomic% or less is used as a base of Cu wiring or a coating on the upper or side surface of the Cu wiring. Is.

【0009】[0009]

【作用】先ず、本発明の第1の半導体集積回路の配線構
造体の作用について説明する。W、Taは熱処理の際に
Cuとの反応が非常に小さく、Cuが固溶しにくいた
め、Cu配線の比抵抗上昇を抑えることができ、さら
に、W、Taの自己拡散係数は、Ti、Cr、Mo、N
b等のこれまで検討されてきた遷移金属の自己拡散係数
より小さく、これらの遷移金属よりCuに対する拡散防
止効果に優れている。ところで、Ta−W二元系合金は
全ての組成において完全に固溶した合金を形成する。こ
のような二元系合金によって薄膜を形成すると、この薄
膜は、Ta又はW単体で形成された薄膜に比べて、結晶
粒が微細化して膜密度が増加する。また、通常の二元系
合金では多数の化合物が形成されるため、この化合物が
薄膜中に偏析し、この偏析した化合物がバリア層の欠陥
となってCuが容易に拡散するが、Ta−W合金の場合
にはそのような化合物が形成されないためCuは容易に
拡散できず、バリア効果の劣化の問題は生じない。従っ
て、本発明の第1の半導体集積回路の配線構造体では、
Cuに対する拡散防止効果が飛躍的に向上する。
First, the operation of the wiring structure of the first semiconductor integrated circuit according to the present invention will be described. Since W and Ta have a very small reaction with Cu during heat treatment and Cu is difficult to form a solid solution, it is possible to suppress an increase in the specific resistance of Cu wiring. Furthermore, the self-diffusion coefficient of W and Ta is Ti, Cr, Mo, N
It is smaller than the self-diffusion coefficient of the transition metals that have been studied up to now, such as b, and is superior to these transition metals in the effect of preventing diffusion of Cu. By the way, the Ta-W binary alloy forms a solid solution alloy in all compositions. When a thin film is formed from such a binary alloy, the thin film has finer crystal grains and a higher film density than a thin film formed from Ta or W alone. Moreover, since many compounds are formed in a normal binary alloy, this compound segregates in the thin film, and the segregated compound becomes a defect of the barrier layer and Cu easily diffuses. In the case of an alloy, since such a compound is not formed, Cu cannot easily diffuse and the problem of deterioration of the barrier effect does not occur. Therefore, in the wiring structure of the first semiconductor integrated circuit of the present invention,
The effect of preventing diffusion of Cu is dramatically improved.

【0010】次に、本発明の第2乃至第4の半導体集積
回路の配線構造体の作用について説明する。Mo、Nb
等はW、Ta、及びW−Ta合金に完全に固溶するた
め、化合物は形成されない。このため、W、Ta、又は
W−Ta合金で形成された薄膜中では化合物の偏析が生
じない一方、Ta、W、又はW−Ta合金で形成された
薄膜の結晶粒がMo又はNb等の添加により微細化され
膜密度が増加し、Cuに対する拡散防止効果が向上する
ものと考えられる。加えて、結晶粒の微細化に伴って粒
界拡散長が長くなることもバリア性向上の要因であると
考えられる。しかしながら、添加されるMo、Nb等の
自己拡散係数はW、Taに比べて小さく、Mo、Nb等
を多量に添加すると拡散防止効果の劣化が生じるため、
Mo、Nb等の添加量は15原子%以下に限定される。
以上説明したように、Ta、W、又はW−Ta合金にM
o、Nb等を添加することにより、Cuに対する拡散防
止効果が向上する。
Next, the operation of the wiring structure of the second to fourth semiconductor integrated circuits of the present invention will be described. Mo, Nb
Etc. are completely dissolved in W, Ta, and W-Ta alloys, so that no compound is formed. Therefore, the segregation of the compound does not occur in the thin film formed of W, Ta, or W-Ta alloy, while the crystal grains of the thin film formed of Ta, W, or W-Ta alloy are such as Mo or Nb. It is considered that the addition makes the particles finer, increases the film density, and improves the effect of preventing diffusion of Cu. In addition, it is considered that the increase in the grain boundary diffusion length as the crystal grains become finer is also a factor for improving the barrier property. However, the self-diffusion coefficient of added Mo, Nb, etc. is smaller than that of W, Ta, and the addition of a large amount of Mo, Nb, etc. causes deterioration of the diffusion prevention effect.
The addition amount of Mo, Nb, etc. is limited to 15 atomic% or less.
As explained above, M is added to Ta, W, or W-Ta alloy.
By adding o, Nb, etc., the effect of preventing diffusion of Cu is improved.

【0011】[0011]

【実施例】以下、本発明の実施例について説明する。先
ず、表1に、Ta−W合金膜、Ta膜、W膜それぞれの
Cuに対するバリア性を比較した実験結果を示す。この
実験は、Cu/M/Si(Mは、Ta、Ta99.9
0.1 、Ta5050、Ta0.199.9、又はWを表す。)
積層膜を拡散熱処理し、Si表面のCu濃度をSIMS
(Secondary−Ion Mass Spect
roscopy二次イオン質量分析)で測定することに
より行った。これらの多層膜は、Si基板上にTa膜、
W膜、又はTa−W合金膜をそれぞれRFマグネトロン
スパッタリングによって600Å堆積させ、さらにこの
Ta膜、W膜、又はTa−W合金膜上に、CuをRFマ
グネトロンスパッタリングによって5000Å堆積させ
て形成した。その後、この多層膜にH2 ガス雰囲気中で
600℃×1hの熱処理を施し、Si基板表面のCu濃
度を測定した。
EXAMPLES Examples of the present invention will be described below. First, Table 1 shows the experimental results comparing the barrier properties against Cu of the Ta-W alloy film, the Ta film, and the W film. In this experiment, Cu / M / Si (M is Ta, Ta 99.9 W
0.1 , Ta 50 W 50 , Ta 0.1 W 99.9 , or W is represented. )
The laminated film is subjected to diffusion heat treatment, and the Cu concentration on the Si surface is measured by SIMS.
(Secondary-Ion Mass Spec
Roscopy secondary ion mass spectrometry). These multilayer films are Ta film on Si substrate,
A W film or a Ta-W alloy film was deposited by RF magnetron sputtering to 600 L, respectively, and Cu was further deposited on the Ta film, W film or Ta-W alloy film by RF magnetron sputtering to form 5000 L. Then, this multilayer film was heat-treated at 600 ° C. for 1 h in an H 2 gas atmosphere, and the Cu concentration on the surface of the Si substrate was measured.

【0012】[0012]

【表1】 ──────────────────────────────────── バリア材料 Cu濃度(相対値) 比較例1 Ta 3.39x104 実施例1 Ta99.90.1 1.05x104 実施例2 Ta5050 5.44x103 実施例3 Ta0.199.9 9.01x103 比較例2 W 2.19x104 ──────────────────────────────────── 表1から明らかなように、Ta、W単体に比べてTa−
W合金のバリア効果が優れていることがわかる。
[Table 1] ──────────────────────────────────── Barrier material Cu concentration (relative value) Comparative example 1 Ta 3.39x10 4 Example 1 Ta 99.9 W 0.1 1.05x10 4 Example 2 Ta 50 W 50 5.44x10 3 Example 3 Ta 0.1 W 99.9 9.01x10 3 Comparative Example 2 W 2.19x10 4 ─── ───────────────────────────────── As is clear from Table 1, compared with Ta and W alone, Ta-
It can be seen that the W alloy has an excellent barrier effect.

【0013】次に、図1を参照して、本発明の配線構造
体とその製造方法の一例を説明する。図1は、本発明の
配線構造体の製造方法の一例を示す断面図である。図1
(a)に示されるように、Si基板10の表面に500
0ÅのBPSG(Borophosphosilica
te glass)の絶縁膜12を形成し、この絶縁膜
12の全表面に、Ta5050膜14を、全圧2mTor
rのAr雰囲気中でRFマグネトロンスパッタリングに
よって成膜速度10Å/sで600Å成長させる。この
Ta5050膜14の表面にCu膜16を、全圧2mTo
rrのAr雰囲気中でRFマグネトロンスパッタリング
によって成膜速度60Å/sで5000Å成長させる。
その後、図1(b)に示されるように、Ta5050膜1
4とCu膜16をパターニングして下地膜14aとCu
配線16aを形成した。さらにその後、図1(c)に示
されるように、CVD法によって下地膜14aとCu配
線16aの外面にのみWを選択的に400Å成長させ、
W被覆膜18を形成する。このW被覆膜18は、試料温
度を200〜400℃としWF6 ガスとH2 ガスの混合
ガスを成膜室へ供給し、この混合ガスのガス圧を1To
rr以下にして形成する。この成膜方法によると、界面
反応が律速になり、Cu配線16aと下地膜14aの外
面のみにWを選択成長させることができる。ここで、こ
の配線構造体を多層化するためには、W被覆膜18上に
SiO2 等の絶縁膜を設け、この絶縁膜の上に上記した
配線構造体を同様の方法で作製すればよい。
Next, with reference to FIG. 1, an example of the wiring structure of the present invention and a method of manufacturing the same will be described. FIG. 1 is a sectional view showing an example of a method for manufacturing a wiring structure according to the present invention. Figure 1
As shown in (a), 500 is formed on the surface of the Si substrate 10.
0Å BPSG (Borophosphosilica
te glass) insulating film 12 is formed, and Ta 50 W 50 film 14 is formed on the entire surface of this insulating film 12 at a total pressure of 2 mTorr.
In an Ar atmosphere of r, 600 Å is grown at a film forming rate of 10 Å / s by RF magnetron sputtering. A Cu film 16 is formed on the surface of the Ta 50 W 50 film 14 at a total pressure of 2 mTo.
Growing 5000 Å at a film forming rate of 60 Å / s by RF magnetron sputtering in an Ar atmosphere of rr.
Then, as shown in FIG. 1 (b), Ta 50 W 50 film 1
4 and the Cu film 16 are patterned to form the base film 14a and the Cu film.
The wiring 16a was formed. After that, as shown in FIG. 1C, W is selectively grown by 400 Å only on the outer surfaces of the base film 14a and the Cu wiring 16a by the CVD method.
The W coating film 18 is formed. The W coating film 18 has a sample temperature of 200 to 400 ° C. and supplies a mixed gas of WF 6 gas and H 2 gas to the film forming chamber, and the gas pressure of the mixed gas is 1 To.
It is formed below rr. According to this film forming method, the interface reaction becomes rate-determining, and W can be selectively grown only on the outer surfaces of the Cu wiring 16a and the base film 14a. Here, in order to make this wiring structure multi-layered, an insulating film such as SiO 2 is provided on the W coating film 18, and the above wiring structure is formed on this insulating film by the same method. Good.

【0014】次に、図2に、W、Ta5050合金にM
o、Nbを種々の割合で添加して形成した膜のCuに対
するバリア性を比較した実験結果を示す。この実験は、
Cu/M/Si(M=W100-x Mox 、W100-x Nb
x 、W100- x (Mo50Nb50x 、(Ta5050
100-x Mox 、(Ta5050100-x Nbx 、(Ta50
50100-x (Mo50Nb50x )積層膜を拡散熱処理
し、Si表面のCu濃度をSIMSにより測定すること
により行った。これらの多層膜は、Si基板上にバリア
材料合金膜をRFマグネトロンスパッタリングによって
600Å堆積させ、さらにCuをRFマグネトロンスパ
ッタリングによって5000Å堆積して形成した。その
後、この多層膜にH2 雰囲気中で600℃×1hの熱処
理を施し、Si表面のCu濃度を測定した。
Next, referring to FIG. 2, W, Ta 50 W 50 alloy and M
The experimental result which compared the barrier property with respect to Cu of the film formed by adding various ratios of o and Nb is shown. This experiment
Cu / M / Si (M = W 100-x Mo x , W 100-x Nb
x , W 100- x (Mo 50 Nb 50 ) x , (Ta 50 W 50 )
100-x Mo x , (Ta 50 W 50 ) 100-x Nb x , (Ta 50
W 50) 100-x (Mo 50 Nb 50) x) laminated film to diffusion heat treatment, the Cu concentration of the Si surface was carried out by measuring by SIMS. These multilayer films were formed by depositing a barrier material alloy film on the Si substrate by RF magnetron sputtering by 600 Å and further by depositing Cu by RF magnetron sputtering on 5000 Å. Then, this multilayer film was heat-treated at 600 ° C. for 1 h in an H 2 atmosphere, and the Cu concentration on the Si surface was measured.

【0015】この図から明らかなように、W、Ta−W
合金へのNb、Moの添加効果が認められる。また、N
b、Moを15原子%以上添加すると、Cu濃度が再び
増加し、Cuに対するバリア性の劣化が認められた。ま
た、Mo、Nb、及びTiから選ばれた1つ以上の金属
を15原子%以下添加したTa系合金に対するMo、N
b、Tiの添加効果、Wに対するPd、Pbの添加効果
についても同様の傾向になる。
As is clear from this figure, W, Ta-W
The effect of adding Nb and Mo to the alloy is recognized. Also, N
When b and Mo were added in an amount of 15 atomic% or more, the Cu concentration increased again, and deterioration of the barrier property against Cu was observed. Also, Mo, N for Ta-based alloys containing one or more metals selected from Mo, Nb, and Ti in an amount of 15 atomic% or less.
A similar tendency is observed in the effect of adding b and Ti and the effect of adding Pd and Pb to W.

【0016】次に、図3を参照して、本発明の配線構造
体とその製造方法の他の例を説明する。図3は、本発明
による配線構造体の製造方法の他の例を示す断面図であ
る。図3(a)に示されるように、Si基板20の表面
に5000ÅのBPSの絶縁膜22を形成し、この絶縁
膜22の全表面に、Cu膜の下地になる(Ta50 50
95(Mo50Nb505 膜24を、全圧2mTorrのA
r雰囲気中でRFマグネトロンスパッタリングによって
成膜速度10Å/sで600Å成長させる。この(Ta
505095(Mo50Nb505 膜24の表面に、Cu膜
26を全圧2mTorrのAr雰囲気中でRFマグネト
ロンスパッタリングによって成膜速度60Å/sで50
00Å成長させる。その後、図3(b)に示されるよう
に、(Ta505095(Mo50Nb505 膜24とCu
膜26をパターニングして下地膜24aとCu配線26
aを形成する。さらにその後、図3(c)に示されるよ
うに、WをCVD法によって下地膜24aとCu配線2
6aの外面にのみ選択的に400Å成長させ、W被覆膜
28を形成する。このW被覆膜28は、試料温度を20
0〜400℃としWF6 ガスとH2 ガスの混合ガスを成
膜室へ供給し、この混合ガスのガス圧を1Torr以下
にして形成する。この成膜方法によると、界面反応が律
速となり、WをCu配線26aと下地膜24aの外面の
みに選択成長させることができる。ここで、この配線構
造体を多層化するためには、W被覆膜28上にSiO2
等の絶縁膜を設け、この絶縁膜の上に上記した配線構造
体を同様に作製すればよい。
Next, referring to FIG. 3, the wiring structure of the present invention.
Another example of the body and the manufacturing method thereof will be described. FIG. 3 shows the present invention.
FIG. 6 is a cross-sectional view showing another example of the method for manufacturing the wiring structure by
It As shown in FIG. 3A, the surface of the Si substrate 20.
5,000 Å BPS insulation film 22 is formed on the
The entire surface of the film 22 serves as the base of the Cu film (Ta50W 50)
95(Mo50Nb50)Five Membrane 24 is A with a total pressure of 2 mTorr.
RF magnetron sputtering in an atmosphere
Grow at 600Å at a film forming rate of 10Å / s. This (Ta
50W50)95(Mo50Nb50)Five Cu film on the surface of the film 24
26 RF magnet in Ar atmosphere with total pressure of 2 mTorr
50 at a deposition rate of 60Å / s by long sputtering
00Å Grow. Then, as shown in FIG.
To (Ta50W50)95(Mo50Nb50)Five Membrane 24 and Cu
The film 26 is patterned to form the base film 24a and the Cu wiring 26.
a is formed. After that, as shown in Fig. 3 (c).
As described above, W is formed by the CVD method on the base film 24a and the Cu wiring 2.
The W coating film is selectively grown only on the outer surface of 6a by 400Å.
28 is formed. The W coating film 28 has a sample temperature of 20.
0 ~ 400 ℃ and WF6 Gas and H2 Gas mixture
The gas pressure of this mixed gas is 1 Torr or less.
To form. According to this film forming method, the interface reaction is controlled.
The speed becomes W and the W of the outer surface of the Cu wiring 26a and the base film 24a is changed.
It can be selectively grown. Where this wiring structure
To make the structure multi-layered, SiO is formed on the W coating film 28.2 
An insulating film such as the above is provided, and the wiring structure described above is provided on this insulating film.
The body may be made similarly.

【0017】[0017]

【発明の効果】以上説明したように本発明の半導体集積
回路の配線構造体は、バリア性の良好なTa−W合金、
Ta系合金、W系合金、又はTa−W系合金をCu配線
の下地又は被覆にしているため、Cuの拡散を十分に抑
制した配線構造体である。したがって、本発明により、
比抵抗がAlより小さく耐エレクトロマイグレーション
に優れた、工業的意義が非常に大きいCu配線が実現で
きる。
As described above, the wiring structure of the semiconductor integrated circuit according to the present invention is a Ta-W alloy having a good barrier property,
Since a Ta-based alloy, a W-based alloy, or a Ta-W-based alloy is used as the underlayer or coating of the Cu wiring, it is a wiring structure in which Cu diffusion is sufficiently suppressed. Therefore, according to the present invention,
It is possible to realize a Cu wiring having a specific resistance smaller than that of Al and excellent in electromigration resistance and having a great industrial significance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の配線構造体の製造方法の一例を示す断
面図である。
FIG. 1 is a cross-sectional view showing an example of a method for manufacturing a wiring structure of the present invention.

【図2】W、Ta5050合金にMo、Nbを種々の割合
で添加して形成した膜のCuに対するバリア性を比較し
た実験結果を表すグラフである。
FIG. 2 is a graph showing experimental results comparing barrier properties against Cu of films formed by adding Mo and Nb to W and Ta 50 W 50 alloys at various ratios.

【図3】本発明の配線構造体の製造方法の他の例を示す
断面図である。
FIG. 3 is a cross-sectional view showing another example of the method for manufacturing the wiring structure of the present invention.

【符号の説明】[Explanation of symbols]

10,20 Si基板 12,22 絶縁膜 14 Ta5050膜 14a,24a 下地膜 16,26 Cu膜 16a,26a Cu配線 18,28 W被覆膜 24 (Ta505095(Mo50Nb50510, 20 Si substrate 12, 22 Insulating film 14 Ta 50 W 50 film 14a, 24a Underlayer film 16, 26 Cu film 16a, 26a Cu wiring 18, 28 W coating film 24 (Ta 50 W 50 ) 95 (Mo 50 Nb) 50 ) 5 membranes

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ta−W合金膜をCu配線の下地又は被
覆にしたことを特徴とする半導体集積回路の配線構造
体。
1. A wiring structure for a semiconductor integrated circuit, wherein a Ta—W alloy film is used as an underlayer or a coating of Cu wiring.
【請求項2】 Mo及び/又はNbをTa−W合金に1
5原子%以下添加したTa−W系合金膜を、Cu配線の
下地又は被覆にしたことを特徴とする半導体集積回路の
配線構造体。
2. A Ta-W alloy containing Mo and / or Nb 1
A wiring structure for a semiconductor integrated circuit, comprising a Ta-W alloy film added at 5 atomic% or less as an underlayer or coating of Cu wiring.
【請求項3】 Mo、Nb、及びTiから選ばれた1つ
以上の金属をTaに15原子%以下添加したTa系合金
膜を、Cu配線の下地又は被覆にしたことを特徴とする
半導体集積回路の配線構造体。
3. A semiconductor integrated device characterized in that a Ta-based alloy film, in which one or more metals selected from Mo, Nb, and Ti are added to Ta in an amount of 15 atomic% or less, is used as a base or coating of Cu wiring. Circuit wiring structure.
【請求項4】 Mo、Nb、Pd、及びPbから選ばれ
た1つ以上の金属をWに15原子%以下添加したW系合
金膜を、Cu配線の下地又は被覆にしたことを特徴とす
る半導体集積回路の配線構造体。
4. A W-based alloy film in which one or more metals selected from Mo, Nb, Pd, and Pb are added to W in an amount of 15 atomic% or less is used as a base or coating of Cu wiring. A wiring structure for a semiconductor integrated circuit.
JP06541493A 1993-03-24 1993-03-24 Wiring structure of semiconductor integrated circuit Expired - Fee Related JP3261196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06541493A JP3261196B2 (en) 1993-03-24 1993-03-24 Wiring structure of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06541493A JP3261196B2 (en) 1993-03-24 1993-03-24 Wiring structure of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH06275621A true JPH06275621A (en) 1994-09-30
JP3261196B2 JP3261196B2 (en) 2002-02-25

Family

ID=13286363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06541493A Expired - Fee Related JP3261196B2 (en) 1993-03-24 1993-03-24 Wiring structure of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP3261196B2 (en)

Also Published As

Publication number Publication date
JP3261196B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP3353874B2 (en) Semiconductor device and manufacturing method thereof
JP3865599B2 (en) Method for forming an amorphous conductive diffusion barrier
US5506449A (en) Interconnection structure for semiconductor integrated circuit and manufacture of the same
US5378660A (en) Barrier layers and aluminum contacts
US6121685A (en) Metal-alloy interconnections for integrated circuits
US6229211B1 (en) Semiconductor device and method of manufacturing the same
EP0794568A2 (en) Blanket-selective deposition of cvd aluminum and reflectivity improvement using a self-aligning ultra-thin layer
US6410986B1 (en) Multi-layered titanium nitride barrier structure
US20150333006A1 (en) Manufacturing method of semiconductor device and semiconductor device
JP3325720B2 (en) Semiconductor device and manufacturing method thereof
JP3672941B2 (en) Wiring structure for semiconductor integrated circuit
KR20030020986A (en) Sputtering target
JPH06310509A (en) Wiring structure of semiconductor integrated circuit
US20030227068A1 (en) Sputtering target
US7135399B2 (en) Deposition method for wiring thin film
Abe et al. Texture and electromigration performance in damascene interconnects formed by reflow sputtered Cu film
KR930001311A (en) Metal wiring layer formation method of a semiconductor device
JPH06140398A (en) Integrated circuit device
JPH06275621A (en) Wiring structure of semiconductor integrated circuit
JPH06318595A (en) Manufacture of wiring structure of semiconductor integrated circuit
JPH06275620A (en) Wiring structure of semiconductor integrated circuit
KR100250455B1 (en) Method of manufacturing metal line of semiconductor device using copper thin film
US20040203230A1 (en) Semiconductor device having multilayered conductive layers
JPH06275622A (en) Manufacture of wiring structure
JPH06318594A (en) Wiring structure of semiconductor integrated circuit and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees