JPH06318503A - Conductive composition for ceramic semiconductor - Google Patents

Conductive composition for ceramic semiconductor

Info

Publication number
JPH06318503A
JPH06318503A JP10699893A JP10699893A JPH06318503A JP H06318503 A JPH06318503 A JP H06318503A JP 10699893 A JP10699893 A JP 10699893A JP 10699893 A JP10699893 A JP 10699893A JP H06318503 A JPH06318503 A JP H06318503A
Authority
JP
Japan
Prior art keywords
powder
conductive composition
weight
parts
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10699893A
Other languages
Japanese (ja)
Inventor
Masahiro Matsuo
正弘 松尾
Kiyoshi Nakano
清 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP10699893A priority Critical patent/JPH06318503A/en
Publication of JPH06318503A publication Critical patent/JPH06318503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a conductive composition for a ceramic semiconductor in which its resistance can be reduced and at the same time the film strength of an electrode can be increased, by reducing a material cost, increasing a working temperature, avoiding a bad influence on a ceramic semiconductor and at the same time further improving ohmic contact. CONSTITUTION:In the case of constituting a conductive composition which is made of an Ag powder and at least one of base metals such Zn and Zn-Sb, a very fine Ag powder is added to all Ag components in the range of 20 to 80 parts by weight, where the particle diameter of the Ag powder is 2 to 10mum and the particle diameter of the very fine Ag power is 0.1 to 0.5mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正の抵抗温度特性を有
する磁器半導体に付与される導電性組成物に関し、詳細
には材料コストの低減,使用温度の向上,及び磁器半導
体への悪影響を回避しながら、オーミック性接触をさら
に向上でき、かつ電極の膜強度を向上できるようにした
導電性組成物の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive composition applied to a porcelain semiconductor having a positive resistance temperature characteristic, and more specifically, it reduces the material cost, improves the operating temperature, and adversely affects the porcelain semiconductor. The present invention relates to a structure of a conductive composition that can further improve ohmic contact while avoiding it and can improve the film strength of an electrode.

【0002】[0002]

【従来の技術】電気抵抗値が温度によって変化する正の
抵抗温度特性を有するチタン酸バリウム系磁器半導体に
は、整流性のない低抵抗のオーミック性接触が得られる
電極を付与する必要がある。このような電極に採用され
る導電性組成物として、従来、In−Ga合金,Niの
無電解メッキ,オーミック性を有する金属とAgとの混
合物,あるいはスパッタリングによる電極膜形成法等が
採用されている。
2. Description of the Related Art A barium titanate-based porcelain semiconductor having a positive resistance-temperature characteristic whose electric resistance value changes depending on temperature must be provided with an electrode capable of obtaining a low resistance ohmic contact without rectification. As a conductive composition used for such an electrode, an In-Ga alloy, electroless plating of Ni, a mixture of a metal having an ohmic property and Ag, or an electrode film forming method by sputtering has been conventionally used. There is.

【0003】上記In−Ga合金は、略理想的なオーミ
ック接触が得られるものの、高価なGaを使用すること
から材料コストが上昇し、しかも200℃程度の温度で
酸化し易くオーミック性が失われるという欠点がある。
また上記Niメッキでは、メッキ処理時に磁器半導体の
特性を劣化させ易く、抵抗の経時劣化が大きいという問
題がある。
Although the above-mentioned In-Ga alloy can obtain a substantially ideal ohmic contact, the material cost increases due to the use of expensive Ga, and the ohmic property is easily lost at a temperature of about 200 ° C. There is a drawback that.
Further, the Ni plating has a problem that the characteristics of the porcelain semiconductor are easily deteriorated during the plating process, and the resistance is largely deteriorated with time.

【0004】一方、上記オーミック性を有する金属とA
gとの混合物に類するものとして、従来、AgとZn,
Zn−Sb,Sn,Al等の混合物を300〜700℃
で焼き付けてなる電極が提案されている(例えば、特公
昭49−18158号公報,特公昭55−26561号
公報参照)。この電極によれば、比較的安価なZn等の
卑金属を使用することから上記In−Ga合金に比べて
材料コストを低減できる。しかも電極の焼き付け温度が
高いことから200℃以上で使用してもオーミック性が
失われることはないので、オーミック性,耐環境性,生
産性を向上できる。またメッキ処理することもないの
で、磁器半導体への悪影響を回避できる。
On the other hand, the above ohmic metal and A
As a kind of mixture with g, conventionally, Ag and Zn,
A mixture of Zn-Sb, Sn, Al and the like is added at 300 to 700 ° C.
An electrode formed by baking is proposed (see, for example, Japanese Patent Publication No. 49-18158 and Japanese Patent Publication No. 55-26561). According to this electrode, since a relatively inexpensive base metal such as Zn is used, the material cost can be reduced as compared with the above In—Ga alloy. Moreover, since the baking temperature of the electrode is high, the ohmic property is not lost even when the electrode is used at 200 ° C. or higher, so that the ohmic property, environment resistance and productivity can be improved. Moreover, since no plating treatment is performed, it is possible to avoid adverse effects on the porcelain semiconductor.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のAgとZn,Zn−Sb等の卑金属との混合物で
は、さらに低抵抗の磁器半導体に電極として付与する場
合、In−Ga合金に比較してオーミック接触性が不充
分であり、抵抗値が高いという問題がある。また上記従
来の組成物は低温焼成することから、電極の膜強度が低
いという問題もある。
However, when the conventional mixture of Ag and a base metal such as Zn or Zn-Sb is applied as an electrode to a porcelain semiconductor having a lower resistance, it is compared with the In-Ga alloy. There is a problem that the ohmic contact is insufficient and the resistance value is high. Further, since the above conventional composition is fired at a low temperature, there is a problem that the film strength of the electrode is low.

【0006】本発明は上記従来の状況に鑑みてなされた
もので、AgとZn,Zn−Sb等の卑金属との混合物
を採用する際の、オーミック性接触を向上して抵抗値を
さらに小さくでき、かつ電極の膜強度を向上できる磁器
半導体用導電性組成物を提供することを目的としてい
る。
The present invention has been made in view of the above conventional circumstances, and when employing a mixture of Ag and a base metal such as Zn or Zn-Sb, ohmic contact can be improved to further reduce the resistance value. Moreover, it is an object of the present invention to provide a conductive composition for a porcelain semiconductor which can improve the film strength of an electrode.

【0007】[0007]

【課題を解決するための手段】本件発明者らは、Agと
卑金属とからなる混合物のオーミック性,膜強度を改善
するために検討したところ、この導電物を構成するAg
について着目した。即ち、従来のAg粉末は比較的粒径
が小さいことから、低温で焼成する際に焼結し難くなっ
ており、これがオーミック性,膜強度に影響を与えてい
る。このため上記Ag成分の一部を、低温焼成での焼結
性に富んだ微細なAg粉末に置換することによって、接
触抵抗を低減でき、かつ膜強度を向上できることに想到
し、本発明を成したものである。
Means for Solving the Problems The inventors of the present invention have studied to improve the ohmic property and film strength of a mixture of Ag and a base metal.
I focused on. That is, since the conventional Ag powder has a relatively small particle size, it is difficult to sinter when firing at a low temperature, which affects ohmic properties and film strength. Therefore, it was conceived that contact resistance can be reduced and film strength can be improved by replacing a part of the Ag component with a fine Ag powder having a high sinterability at low temperature firing. It was done.

【0008】そこで本発明は、Ag粉と、Zn,Zn−
Sb等の卑金属の少なくとも1つとからなる磁器半導体
用導電性組成物において、全Ag成分に対して微細Ag
粉末を20〜80重量部の範囲で添加したことを特徴と
している。
Therefore, according to the present invention, Ag powder and Zn, Zn-
In a conductive composition for a porcelain semiconductor, which is composed of at least one base metal such as Sb, fine Ag based on all Ag components
It is characterized in that the powder was added in the range of 20 to 80 parts by weight.

【0009】ここで、上記Ag粉末,微細Ag粉末と
は、具体的に例えばAg粉末の粒径が2〜10μmのも
のをいい、また上記微細Ag粉末の粒径が0.1〜0.
5μmのものをいう。ここで、Ag粉末および微細Ag
粉末の粒径を上記した範囲に限定したのは、この範囲を
外れるとオーミック性接触が保たれないからである。
Here, the above-mentioned Ag powder and fine Ag powder specifically refer to, for example, Ag powder having a particle size of 2 to 10 μm, and the fine Ag powder having a particle size of 0.1 to 0.
5 μm. Here, Ag powder and fine Ag
The particle size of the powder is limited to the above range because ohmic contact cannot be maintained outside this range.

【0010】さらに、上記導電性組成物は、上記Ag成
分を50〜95重量部,Zn,Zn−Sb等の卑金属を
5〜50重量部,低融点ガラスフリットを2〜20重量
部から構成するのが好ましい。ここでAg成分を50〜
15重量部としたのは、50重量部未満では膜の導電率
が低下し、95重量部を越えるとオーミック性接触が保
たれなくなるからである。またZn,Zn−Sb等の卑
金属を5〜50重量部としたのは、5重量部未満では、
磁器半導体と電極との間にショットキーバリヤをはじめ
とする整流性が発現することになり、抵抗値が著しく大
きくなり、一方50重量部を越えると、卑金属の酸化が
進行するとともにAg成分の量がすくなくなるため、膜
抵抗が増大する。さらに抵融点ガラスフリットを2〜2
0重量部としたのは、2重量部未満では電極の焼き付け
が充分に行えず、接触抵抗の増大と膜強度の低下をもた
らし、一方20重量部を越えると導電性が低下するから
である。
Further, the conductive composition comprises 50 to 95 parts by weight of the Ag component, 5 to 50 parts by weight of a base metal such as Zn and Zn-Sb, and 2 to 20 parts by weight of a low melting point glass frit. Is preferred. Here, the Ag component is 50-
The reason why the amount is 15 parts by weight is that if the amount is less than 50 parts by weight, the conductivity of the film is lowered, and if it exceeds 95 parts by weight, ohmic contact cannot be maintained. Further, the reason why the base metal such as Zn and Zn-Sb is set to 5 to 50 parts by weight is that if less than 5 parts by weight,
A rectifying property such as a Schottky barrier is developed between the porcelain semiconductor and the electrode, and the resistance value remarkably increases. On the other hand, when it exceeds 50 parts by weight, the base metal is oxidized and the amount of the Ag component is increased. The film resistance increases because the film is not scraped. Further, a low melting point glass frit is added to 2 to 2
The reason why the amount is 0 parts by weight is that if the amount is less than 2 parts by weight, the electrode cannot be sufficiently baked, resulting in an increase in contact resistance and a decrease in film strength, while if the amount exceeds 20 parts by weight, the conductivity is lowered.

【0011】[0011]

【作用】本発明に係る磁器半導体用導電性組成物によれ
ば、Ag成分全体に対して微細Ag粉末を20〜80重
量部の範囲で添加したので、低温焼成における焼結を改
善でき、ひいてはオーミック性接触を向上して抵抗値を
さらに小さくできるとともに、電極の膜強度を向上で
き、品質に対する信頼性を向上できる。その結果、材料
コストの低減,使用温度の向上,及び磁器半導体への悪
影響を回避しながら、In−Ga合金と略同等の電気的
特性が得られる。
According to the conductive composition for a porcelain semiconductor of the present invention, since the fine Ag powder is added in the range of 20 to 80 parts by weight with respect to the total Ag component, it is possible to improve the sintering during low temperature firing, and thus The ohmic contact can be improved to further reduce the resistance value, the film strength of the electrode can be improved, and the reliability of quality can be improved. As a result, while reducing the material cost, improving the operating temperature, and avoiding adverse effects on the porcelain semiconductor, the electrical characteristics substantially equivalent to those of the In-Ga alloy can be obtained.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。本実施例
では、本発明の磁器半導体に付与される導電性組成物の
効果を確認するために行った実験について説明する。
EXAMPLES Examples of the present invention will be described below. In this example, an experiment conducted to confirm the effect of the conductive composition applied to the porcelain semiconductor of the present invention will be described.

【0013】[0013]

【表1】 [Table 1]

【0014】まず、本実験に採用した試料について説明
する。この実験は、表1に示すように、従来から使用さ
れているAg粉末,及び本発明の特徴をなす微細Ag粉
末を所定量混合してなるAg成分と、Zn,又はZn3
Sb2 と、結合剤としてのPbO−Si O2 −B2 3
系低融点ガラスフリットとをこれらの総量が略80重量
部となるように調合した。またバインダとして20重量
部の樹脂成分と溶剤とを加えて混合した後、分散させて
電極ペーストを作成した。
First, the sample used in this experiment will be described. In this experiment, as shown in Table 1, a Ag component formed by mixing a conventionally used Ag powder and a predetermined amount of fine Ag powder, which is a feature of the present invention, with Zn or Zn 3
And Sb 2, PbO-Si O 2 -B 2 O 3 as a binder
A low fusing-point glass frit was prepared so that the total amount thereof was about 80 parts by weight. Further, 20 parts by weight of a resin component as a binder and a solvent were added and mixed, and then dispersed to prepare an electrode paste.

【0015】次に、図1に示すように、チタン酸バリウ
ムを主成分とする磁器半導体1を用い、この磁器半導体
1の両主面に上記電極ペーストを印刷,乾燥させた後、
トップ温度420℃のトンネル炉で焼き付けて電極2を
形成した。このようにして得られた試料の電極2の表面
に、Ag粉末80重量部とバインダとして20重量部の
樹脂成分,溶剤とからなるペーストを印刷,乾燥させて
第2層電極3を形成した。そして、上記電極2のみ形成
した各試料,及び第2層電極3を形成した各試料の電極
と磁器半導体との間で生じる接触抵抗値Ωを4端子法で
測定した。なお、整流性がないことを予め正逆方向の抵
抗を測定して確認した。
Next, as shown in FIG. 1, a porcelain semiconductor 1 containing barium titanate as a main component is used. After printing and drying the electrode paste on both main surfaces of the porcelain semiconductor 1,
The electrode 2 was formed by baking in a tunnel furnace having a top temperature of 420 ° C. On the surface of the electrode 2 of the sample thus obtained, a paste comprising 80 parts by weight of Ag powder and 20 parts by weight of a resin component as a binder and a solvent was printed and dried to form the second layer electrode 3. Then, the contact resistance value Ω generated between the electrode of each sample in which only the electrode 2 was formed and each sample in which the second layer electrode 3 was formed and the porcelain semiconductor was measured by the 4-terminal method. In addition, it was confirmed by measuring resistance in the forward and reverse directions in advance that there was no rectifying property.

【0016】また、試料No.5,10は、微細Ag粉
末のみからなるもの、試料1,6は、従来のAg粉末か
らなるものである。また試料No.11〜14のものは
いずれもAg粉末、微細Agの粒径が大きすぎたり小さ
すぎたりするものである。これらの各試料についても同
様の測定を行った。
Sample No. Samples 5 and 10 are made of only fine Ag powder, and samples 1 and 6 are made of conventional Ag powder. In addition, sample No. All of Nos. 11 to 14 are particles of Ag powder or fine Ag which are too large or too small. The same measurement was performed for each of these samples.

【0017】[0017]

【表2】 [Table 2]

【0018】表2は、その測定結果を示す。表中、第1
欄Aは上記電極2のみ形成した各試料の抵抗値を示し、
第2欄Bは上記した第2層の電極3を形成した各試料の
抵抗値を示す。
Table 2 shows the measurement results. First in the table
Column A shows the resistance value of each sample in which only the electrode 2 is formed,
The second column B shows the resistance value of each sample in which the above-mentioned second layer electrode 3 is formed.

【0019】表2において、Ag粉末のみ用いた従来試
料No. 1,6の場合は、接触抵抗値が高くなっている。
また、微細Ag粉末のみ用いた試料No. 5,10の場合
は、吸油量の増大にともなってペーストの粘度が高くな
ることから印刷性が劣化し、このため抵抗値が大きくな
っている。なお、一般的にオーミック電極として用いら
れるIn−Ga合金電極では、接触抵抗値は0.467 Ωで
あった。
In Table 2, in the case of the conventional sample Nos. 1 and 6 using only Ag powder, the contact resistance value is high.
Further, in the case of Sample Nos. 5 and 10 using only the fine Ag powder, the viscosity of the paste increases with the increase of the oil absorption amount, and thus the printability deteriorates, and thus the resistance value increases. The contact resistance value of the In-Ga alloy electrode generally used as the ohmic electrode was 0.467 Ω.

【0020】これに対して、Ag成分全体に対する微細
Ag粉末の割合を20〜80重量部の範囲内とした本実
施例の試料No. 2〜4,及びNo. 7〜9の場合は、何れ
の試料も接触抵抗値が低くなっており、オーミック性が
改善されている。このように微細Ag粉末の添加量を全
Ag成分に対して20〜80重量部とすることにより抵
抗値を低減できることがわかる。なお、本発明において
使用できるガラスフリットの組成は、PbO−Si O2
−B2 3 系に限定されず、抵融点ガラスであれば同様
な効果が得られる。
On the other hand, in the case of Sample Nos. 2 to 4 and Nos. 7 to 9 of this example, in which the ratio of the fine Ag powder to the total Ag component was within the range of 20 to 80 parts by weight. Sample No. 1 also has a low contact resistance value and has improved ohmic properties. Thus, it is understood that the resistance value can be reduced by setting the addition amount of the fine Ag powder to 20 to 80 parts by weight with respect to the total Ag component. The composition of the glass frit can be used in the present invention, PbO-Si O 2
Not limited to -B 2 O 3 system, similar effects can be obtained if抵融point glass.

【0021】[0021]

【発明の効果】以上のように本発明に係る磁器半導体用
導電性組成物によれば、全Ag成分に対して微細Ag粉
末を20〜80重量部の範囲で添加したので、材料コス
トの低減,使用温度の向上,及び磁器半導体への悪影響
を回避しながら、オーミック性接触を向上して抵抗値を
小さくできるとともに、電極の膜強度を向上できる効果
がある。
As described above, according to the conductive composition for a porcelain semiconductor according to the present invention, since the fine Ag powder is added in the range of 20 to 80 parts by weight to the total Ag component, the material cost can be reduced. The effect of improving ohmic contact to reduce the resistance value and improving the film strength of the electrode while improving the operating temperature and avoiding adverse effects on the porcelain semiconductor is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による磁器半導体用導電性組
成物の効果を確認するために行った実験を説明するため
の図である。
FIG. 1 is a diagram for explaining an experiment conducted to confirm the effect of a conductive composition for a porcelain semiconductor according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 磁器半導体 2 オーミック電極(導電性組成物) 1 Porcelain semiconductor 2 Ohmic electrode (conductive composition)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ag粉末と、Zn,Zn−Sb等の卑金
属の少なくとも1つとからなる磁器半導体用導電性組成
物において、全Ag成分に対して微細Ag粉末を20〜
80重量部の範囲で添加したことを特徴とする磁器半導
体用導電性組成物。
1. A conductive composition for a porcelain semiconductor, which comprises Ag powder and at least one of base metals such as Zn and Zn—Sb, and the fine Ag powder is contained in an amount of 20 to 20 with respect to all Ag components.
A conductive composition for a porcelain semiconductor, which is added in a range of 80 parts by weight.
【請求項2】 請求項1において、上記Ag粉末の粒径
が2〜10μmであり、これに対する上記微細Ag粉末
の粒径が0.1〜0.5μmであることを特徴とする磁
器半導体用導電性組成物。
2. The porcelain semiconductor according to claim 1, wherein the particle size of the Ag powder is 2 to 10 μm, and the particle size of the fine Ag powder is 0.1 to 0.5 μm. Conductive composition.
【請求項3】 請求項1又は2において、Ag成分が5
0〜95重量部,Zn,Zn−Sb等の卑金属が5〜5
0重量部,低融点ガラスフリットが2〜20重量部から
なることを特徴とする磁器半導体用導電性組成物。
3. The Ag component according to claim 1 or 2,
0 to 95 parts by weight, 5 to 5 base metals such as Zn and Zn-Sb
A conductive composition for a porcelain semiconductor, which comprises 0 parts by weight and 2 to 20 parts by weight of a low-melting-point glass frit.
JP10699893A 1993-05-07 1993-05-07 Conductive composition for ceramic semiconductor Pending JPH06318503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10699893A JPH06318503A (en) 1993-05-07 1993-05-07 Conductive composition for ceramic semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10699893A JPH06318503A (en) 1993-05-07 1993-05-07 Conductive composition for ceramic semiconductor

Publications (1)

Publication Number Publication Date
JPH06318503A true JPH06318503A (en) 1994-11-15

Family

ID=14447895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10699893A Pending JPH06318503A (en) 1993-05-07 1993-05-07 Conductive composition for ceramic semiconductor

Country Status (1)

Country Link
JP (1) JPH06318503A (en)

Similar Documents

Publication Publication Date Title
KR970008549B1 (en) Silver-rich conductor compositions for high thermal cycled and aged adhesion
JP4244466B2 (en) Conductive paste and semiconductor ceramic electronic component using the same
US6136230A (en) Electrically conductive paste and glass substrate having a circuit thereon
JPH0773731A (en) Thick film conductive paste composition
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JPS58178903A (en) Conductive paste
JP2973558B2 (en) Conductive paste for chip-type electronic components
US5562972A (en) Conductive paste and semiconductor ceramic components using the same
JPH06318503A (en) Conductive composition for ceramic semiconductor
JP2717054B2 (en) Thick film thermistors and compositions for thick film thermistors
JP2550630B2 (en) Copper paste for conductive film formation
JP2631010B2 (en) Thick film copper paste
JP2001118424A (en) Copper alloy powder for conductive paste
JP3376717B2 (en) Conductive composition for external electrode of electronic component and ceramic electronic component formed using the same
JPH0950904A (en) Electrically conductive paste and ntc thermistor using it
JPH09275002A (en) Thick-film resistor and chip resistor using the resistor and its manufacture
JPH07105719A (en) Conductive paste and resistor element
JP2503974B2 (en) Conductive paste
JP3178532B2 (en) Semiconductor porcelain electronic components
JP2709728B2 (en) Porcelain electronic components
JP2842926B2 (en) Metallized structure for ceramic
JPH0850806A (en) Composition for thick film conductor
JPH0370361B2 (en)
JPH09139112A (en) Thick film conductor composition
JPH03263391A (en) Paste for copper thick-film conductor and copper thick-film circuit board

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020305