JPH06318466A - Sheet secondary battery - Google Patents

Sheet secondary battery

Info

Publication number
JPH06318466A
JPH06318466A JP5129999A JP12999993A JPH06318466A JP H06318466 A JPH06318466 A JP H06318466A JP 5129999 A JP5129999 A JP 5129999A JP 12999993 A JP12999993 A JP 12999993A JP H06318466 A JPH06318466 A JP H06318466A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
positive electrode
current collector
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5129999A
Other languages
Japanese (ja)
Inventor
Toshishige Fujii
俊茂 藤井
Toshiyuki Osawa
利幸 大澤
Toshiyuki Kahata
利幸 加幡
Nobuo Katagiri
伸夫 片桐
Okitoshi Kimura
興利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5129999A priority Critical patent/JPH06318466A/en
Publication of JPH06318466A publication Critical patent/JPH06318466A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To enhance energy capacity and improve reliability by filling a frame partitioned by a sealing material on a current collector base with a prescribed coating material solution followed by drying. CONSTITUTION:A coating material solution in which an active material 2 is uniformly dispersed in an uniform solution consisting of an active material 1 and an organic solvent. In the coating material solution, in this case, the active material 2 with a specified particle size is homogeneously dispersed in the active material 1. The uniform coating material solution is continuously applied onto a current collector, whereby an electrode film for secondary battery positive electrode in which the active material 2 is uniformly dispersed in the active material 1 can be prepared. As the active material 1, for example, conductive polymer materials such as polyanilines and polyanilinoanilines are used, and as the active material 2, those having densities of 2.5 g/cm<2> or more are preferred to enhance volume energy density. Thus, energy capacity is enhanced, and reliability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シート状二次電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet type secondary battery.

【0002】[0002]

【従来技術】近年、リチウムを負極活物質として用いる
二次電池が、高エネルギー密度を有する二次電池として
注目され、その形状も電子機器の小型軽量化に伴い、小
型化しつつある。特にシート型リチウム二次電池におい
ては正極材料のサイクル特性、成形加工性、高エネルギ
ー密度化が重要な課題となる。一般に、正極活物質とし
ては、遷移金属カルコゲン化合物、導電性高分子を挙げ
ることができる。遷移金属カルコゲン化合物などの無機
活物質のみでは導電性が悪く、また自己成形性がないた
め、導電助剤、バインダーを大量に添加する必要がある
が、フレキシブルで高強度の電極を得るには不十分であ
る。そのために各種のスラリー塗料の調整、電極の作成
方法等が検討されている。フレキシブルな電極として
は、例えば軽量性、加工性などの利点を持つ導電性高分
子など成型性に優れた材料による正極電極の開発が進め
られている。導電性高分子の例としては、ポリアセチレ
ン(例えば、特開昭56−136489)、ポリピロー
ル(例えば、第25回電池討論会、講演要旨集、P25
61・1984)、ポリアニリン(例えば、電気科学協
会第50回大会、講演要旨集、P2281・1984)
などが報告されている。これらの導電性高分子は、10
0%の放電深度に対しても高いサイクル特性を示すなど
の利点があり、可溶性のものでは塗布により電極の作成
が可能である。一方、高エネルギー化のため、導電性高
分子と無機活物質の複合体電極が提案されている(例え
ば、特開昭63−102162)。この複合体電極の作
製法としては、(1)粉体状導電性高分子と粉体状無機
活物質を適量ずつ採取し、バインダーを添加して混合
し、集電体上に加圧成形する方法、(2)粉体状無機活
物質存在下で導電性高分子を化学的、あるいは電気的に
重合し複合体とする方法、等が提案されている。しか
し、このような電極を用いた電池の実装方法において
は、具体的な提案が示されていない。上記方法(1)に
おいては、フレキシブルなシート状電極の作製が困難で
あり、さらに期待される体積エネルギー密度を達成する
ことができない。また上記方法(2)においては、複合
体に取り込むことができる無機酸化物の量が限られてお
り、十分な体積エネルギー密度を得ることができない。
上記のように、目的とする体積エネルギー密度の高い二
次電池用正極の作製は、従来の方法では非常に困難であ
る。
2. Description of the Related Art In recent years, a secondary battery using lithium as a negative electrode active material has attracted attention as a secondary battery having a high energy density, and its shape has been reduced in size as electronic devices have become smaller and lighter. Particularly in sheet type lithium secondary batteries, the cycle characteristics of the positive electrode material, moldability, and high energy density are important issues. Generally, examples of the positive electrode active material include transition metal chalcogen compounds and conductive polymers. Inorganic active materials such as transition metal chalcogen compounds have poor electrical conductivity and do not have self-forming property, so it is necessary to add a large amount of conductive aids and binders, but this is not suitable for obtaining flexible and high-strength electrodes. It is enough. For this reason, various kinds of slurry paint preparations, electrode preparation methods, and the like are being studied. As a flexible electrode, for example, a positive electrode made of a material having excellent moldability such as a conductive polymer having advantages such as light weight and workability is being developed. Examples of the conductive polymer include polyacetylene (for example, JP-A-56-136489) and polypyrrole (for example, 25th Battery Symposium, Abstracts, P25).
61/1984), polyaniline (for example, 50th Conference of the Institute of Electrical Science, Proceedings, P2281 / 1984).
Have been reported. These conductive polymers have 10
There is an advantage that it exhibits high cycle characteristics even with a discharge depth of 0%, and when it is soluble, an electrode can be formed by coating. On the other hand, a composite electrode of a conductive polymer and an inorganic active material has been proposed for increasing energy (for example, Japanese Patent Laid-Open No. 63-102162). As the method for producing this composite electrode, (1) an appropriate amount of powdery conductive polymer and powdery inorganic active material are sampled, a binder is added and mixed, and pressure molding is performed on a current collector. A method, (2) a method of chemically or electrically polymerizing a conductive polymer in the presence of a powdery inorganic active material to form a composite, and the like have been proposed. However, no specific proposal has been shown in the battery mounting method using such electrodes. In the above method (1), it is difficult to manufacture a flexible sheet electrode, and it is not possible to achieve the expected volume energy density. Further, in the above method (2), the amount of the inorganic oxide that can be incorporated into the composite is limited, and a sufficient volume energy density cannot be obtained.
As described above, it is very difficult to produce a desired positive electrode for a secondary battery having a high volume energy density by a conventional method.

【0003】[0003]

【目的】本発明は、前記のような従来技術の問題点を解
消し、エネルギー容量の大きなシート状二次電池の信頼
性の向上を目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art and to improve the reliability of a sheet-shaped secondary battery having a large energy capacity.

【0004】[0004]

【構成】本発明の特徴の1つは、活物質(1)、活物質
(2)及び有機溶媒を混合した均一の塗料液を基板上に
塗布し、乾燥することにより二次電池用正極フィルムを
作製する場合に、平滑な膜を得るため、集電体基板上に
封止材で仕切られたフレーム内に前記塗料液を充填し、
乾燥させることにある。電極基材としては、安価であ
り、延展性、導電性とも高く、しかも前記塗料液または
スラリーの密着性に優れた銅またはアルミ等が好まし
い。しかし、銅またはアルミは電池の中において活物質
との密着性に優れるが、充放電を繰り返すことに伴い、
腐食しやすい。そのため銅またはアルミを基板として用
いる場合には電解液との直接接触を防ぐようにしなけれ
ばならない。仕切られたフレーム内に(1)液を流し込
みそのまま乾燥させると、膜は収縮し、そのフレームと
膜との界面部分から銅またはアルミのむき出し部が出現
し銅またはアルミが腐食する結果を生ずる場合がある。
そこで、本発明者らはこれら問題点を解消するために、
図2、3のように前記フレームを構成する封口材がその
下部(基板との接触面)の幅寸法(a)が上部(非接触
面)の幅寸法(b)よりも大にすることにより、前記塗
料液を乾燥させた際の収縮による銅またはアルミのむき
出し部の出現が生じないことを見い出した。本発明の特
徴のもう1つは、少なくとも一種類の電気化学的に酸化
還元反応を示しかつ有機溶媒に可溶な高分子材料〔以
下、活物質(1)〕、及び有機溶媒に不溶な粒子状電池
活物質〔以下、活物質(2)〕からなるフィルムを二次
電池用正極として使用する点にある。すなわち、活物質
(1)および有機溶媒からなる均一な溶液に活物質
(2)を均一に分散させた塗料液を作成し、その塗料液
より作製した活物質(1)中に、活物質(2)が特定の
粒子径で均質分散されたフィルムが、高い充放電高率で
充放電が行われることが見いだした。特に、前記の均一
な塗料液を集電体上に連続に塗布することにより、活物
質(1)中に活物質(2)が均一に分散されている二次
電池正極用電極フィルムが作製できる。活物質(1)と
しては、例えば、ポリアニリン類、ポリアニリノアニリ
ン類、ポリピロール類、ポリアセチレン類等導電性高分
子材料がある。これらの中でも、重量当りの電気容量が
比較的大きく、さらに比較的安定に充放電を行うことが
できるポリアニリンが好ましい。これら高分子材料は、
ポリアルキルチオフェン、ジメチルホルムアミド、N−
メチルピロリドン、テトラヒドロフラン等の有機溶媒に
溶解して使用される。活物質(2)については、体積エ
ネルギー密度を高めるために密度が2.5g/cm3
上であるものが望ましい。例えば、この条件を満たし、
さらに上記導電性高分子の電気化学的酸化還元反応を起
こす電位付近に放電曲線の平坦部を持つ、五酸化バナジ
ウムが好ましい。また、活物質(1)と十分な密着を持
たせエネルギー密度を高めると共に、塗料溶液の均質性
を高めるために、サイズは平均粒子径、最大粒子径がそ
れぞれ3μm以下、10μm以下、好ましくはそれぞれ
1μm以下、3μm以下である。
[Structure] One of the features of the present invention is to coat a substrate with a uniform coating solution containing a mixture of an active material (1), an active material (2) and an organic solvent, and dry it to form a positive electrode film for a secondary battery. In order to obtain a smooth film in the case of producing, the coating liquid is filled in a frame partitioned by a sealing material on the current collector substrate,
It is to dry. The electrode base material is preferably copper, aluminum or the like, which is inexpensive, has high spreadability and conductivity, and has excellent adhesion to the coating liquid or slurry. However, copper or aluminum has excellent adhesion to the active material in the battery, but with repeated charging and discharging,
Easy to corrode. Therefore, when copper or aluminum is used as the substrate, direct contact with the electrolytic solution must be prevented. (1) When the liquid is poured into the partitioned frame and dried as it is, the film shrinks, and a bare part of copper or aluminum appears at the interface between the frame and the film, resulting in corrosion of copper or aluminum. There is.
Therefore, in order to solve these problems, the present inventors have
As shown in FIGS. 2 and 3, the sealing material forming the frame has a lower width (a contact surface with the substrate) having a width dimension (a) larger than an upper (non-contact surface) width dimension (b). It has been found that the appearance of exposed portions of copper or aluminum does not occur due to shrinkage when the coating liquid is dried. Another feature of the present invention is that at least one kind of polymer material that exhibits an electrochemical redox reaction and is soluble in an organic solvent [hereinafter, active material (1)], and particles insoluble in an organic solvent. A film made of a battery-shaped battery active material [hereinafter, active material (2)] is used as a positive electrode for a secondary battery. That is, a coating solution is prepared by uniformly dispersing the active material (2) in a uniform solution of the active material (1) and an organic solvent, and the active material (1) is added to the active material (1) prepared from the coating solution. It was found that the film in which 2) was homogeneously dispersed with a specific particle size was charged and discharged at a high charge and discharge rate. In particular, an electrode film for a secondary battery positive electrode in which the active material (2) is uniformly dispersed in the active material (1) can be produced by continuously applying the above-mentioned uniform coating liquid onto the current collector. . Examples of the active material (1) include conductive polymer materials such as polyanilines, polyanilinoanilines, polypyrroles, and polyacetylenes. Among these, polyaniline is preferable because it has a relatively large electric capacity per weight and can be charged and discharged relatively stably. These polymeric materials are
Polyalkylthiophene, dimethylformamide, N-
It is used by dissolving it in an organic solvent such as methylpyrrolidone or tetrahydrofuran. The active material (2) preferably has a density of 2.5 g / cm 3 or more in order to increase the volume energy density. For example, if this condition is met,
Further, vanadium pentoxide having a flat portion of the discharge curve in the vicinity of the potential for causing the electrochemical redox reaction of the conductive polymer is preferable. Further, in order to have sufficient adhesion to the active material (1) to increase energy density and homogeneity of the coating solution, the average particle diameter and the maximum particle diameter are 3 μm or less and 10 μm or less, respectively, preferably, respectively. It is 1 μm or less and 3 μm or less.

【0005】本発明のシート状二次電池の電極フィルム
の作製に使用する活物質(1)、活物質(2)及び前記
のような有機溶媒を混合した均一で高濃度の塗料液の組
成は、溶媒に対する重量比において固形分が20%以上
含まれ、活物質(1)と活物質(2)の重量比は4:6
〜2:8、さらに塗料溶液の粘度が1000cpm以上
かつ10000cpm以下であることが望ましい。固形
分の溶媒に対する分散方法としては、ボールミル、バレ
ンミルなどを用いる方法があげられる。また、ポリアニ
リンの濃度は8%〜11%が特に好ましく、この濃度範
囲では、粘度は1000cpm〜10000cpmであ
る。粘度が1000cpm以下においては、活物質
(2)のフィラーが溶液中で沈降し、均一な塗料液が得
られない。また粘度が10000cpm以上では、粘度
が大き過ぎて塗料液として用いることができない。ま
た、この塗料液の作製は、溶液中の導電性高分子の変質
を避けるため不活性ガス雰囲気中で行うことが望まし
い。この均質な塗料液を任意の基板上、好ましくは集電
体基板上に、ワイヤーバー法、ブレードコーター法、ス
プレー法等により塗布し、それを乾燥させることによ
り、活物質(1)中に活物質(2)が均質に分散された
二次電池用正極フィルムを得ることができる。塗料液の
粘度、すなわち塗料液中の固形分濃度を上記の範囲で制
御することによって、少なくとも10μm以上300μ
m以下の厚さを持つ電極フィルムを得ることができる
が、20〜100μmの厚みで成膜することが好まし
い。上記のように作製したシート状薄型二次電池用正電
極はそのままそれを構成する集電体基板を電池の外装材
の少なくとも一部として用いることが出来、電池を構成
する部材の厚みを小さくすることが可能となり、かつ該
電池のエネルギー密度および信頼性を著しく向上させる
ことに成功した。
The composition of a uniform and high-concentration coating liquid obtained by mixing the active material (1), the active material (2) and the above-mentioned organic solvent used for preparing the electrode film of the sheet-shaped secondary battery of the present invention is The solid content is 20% or more in the weight ratio to the solvent, and the weight ratio of the active material (1) and the active material (2) is 4: 6.
It is desirable that the viscosity of the coating solution is 1000 cpm or more and 10000 cpm or less. As a method for dispersing the solid content in the solvent, a method using a ball mill, a barren mill or the like can be mentioned. The polyaniline concentration is particularly preferably 8% to 11%, and the viscosity is 1000 cpm to 10000 cpm in this concentration range. When the viscosity is 1000 cpm or less, the filler of the active material (2) precipitates in the solution and a uniform coating liquid cannot be obtained. When the viscosity is 10,000 cpm or more, the viscosity is too large to be used as a coating liquid. In addition, it is desirable that the preparation of this coating liquid is performed in an inert gas atmosphere in order to avoid alteration of the conductive polymer in the solution. This homogeneous coating solution is applied to any substrate, preferably a current collector substrate, by a wire bar method, a blade coater method, a spray method, or the like, and dried to activate the active material (1). It is possible to obtain a positive electrode film for a secondary battery in which the substance (2) is uniformly dispersed. By controlling the viscosity of the coating liquid, that is, the solid content concentration in the coating liquid within the above range, at least 10 μm or more and 300 μm or more
Although an electrode film having a thickness of m or less can be obtained, it is preferable to form a film having a thickness of 20 to 100 μm. The sheet-shaped thin secondary battery positive electrode manufactured as described above can be used as it is as the current collector substrate as at least a part of the battery exterior material, and the thickness of the members constituting the battery can be reduced. In addition, it has succeeded in significantly improving the energy density and reliability of the battery.

【0006】以下、本発明のシート状薄型二次電池の構
成を具体的に説明する。正極活物質(1)としては、前
記したような導電性高分子があげられ、また正極活物質
(2)としては、遷移金属のカルコゲン化合物である、
TiO2,Cr38,V25,V36,NiO2,MnO
2,CoO2およびMoO3等の酸化物、TiS2,V
2,FeS,およびMoS3などの硫化物ならびにNb
Se3などのセレン化合物、V,Mn,Co,Niとア
ルカリ金属との複合酸化物を液に分散しシート化したも
のがあげられる。前記正極形成成分には、必要に応じて
さらに導電助剤を添加することができる。このような導
電助剤としては、アセチレンブラック、アニリンブラッ
ク、活性炭、グラファイト粉末などの導電性炭素粉末、
PAN、ピッチ、セルロース、フェノールなどを出発原
料とした炭素体、炭素繊維、Ti、Sn、Inなどの金
属酸化物粉末、ステンレス、ニッケルなどの金属粉末、
繊維が挙げられる。これらの導電助剤に要求される特性
として高い電気伝導度に加え少ない添加量での効果が要
求される。また遷移金属のカルコゲン化物と導電性高分
子との複合体をシート化したものも用いることができ
る。負極を構成する負極活物質としては、Li,K,N
a等のアルカリ金属、LiとAl,Pb,Cd,Si,
Ca,In,Zn,Mgとの合金、ポリアセチレン、ポ
リチオフェン、ポリパラフェニレン、ポリピリジン、ポ
リフェニレンビニレン、ポリフェニレンキシリレン、ヘ
キサクロロブタジエンの還元重合体等の高分子材料、炭
素体、グラファイトを挙げることができる。
The structure of the sheet-shaped thin secondary battery of the present invention will be specifically described below. Examples of the positive electrode active material (1) include the above-mentioned conductive polymers, and examples of the positive electrode active material (2) are transition metal chalcogen compounds.
TiO 2, Cr 3 O 8, V 2 O 5, V 3 O 6, NiO 2, MnO
2 , oxides such as CoO 2 and MoO 3 , TiS 2 , V
Sulfides such as S 2 , FeS, and MoS 3 and Nb
Examples thereof include selenium compounds such as Se 3 and composite oxides of V, Mn, Co, Ni and an alkali metal dispersed in a liquid to form a sheet. A conductive auxiliary agent can be further added to the positive electrode forming component, if necessary. As such a conductive auxiliary agent, acetylene black, aniline black, activated carbon, conductive carbon powder such as graphite powder,
Carbon materials starting from PAN, pitch, cellulose, phenol, etc., carbon fibers, metal oxide powders of Ti, Sn, In, etc., metal powders of stainless steel, nickel, etc.,
Fibers. As the properties required for these conductive aids, in addition to high electrical conductivity, an effect with a small addition amount is required. A sheet formed of a composite of a transition metal chalcogenide and a conductive polymer can also be used. As the negative electrode active material constituting the negative electrode, Li, K, N
Alkali metals such as a, Li and Al, Pb, Cd, Si,
Examples thereof include alloys with Ca, In, Zn and Mg, polymer materials such as polyacetylene, polythiophene, polyparaphenylene, polypyridine, polyphenylene vinylene, polyphenylene xylylene, and a reduction polymer of hexachlorobutadiene, carbon bodies and graphite.

【0007】電解質としては電解質塩と溶媒からなる電
解液、固体電解質を例示できるが、液漏れ防止、正負極
間の密着、間隔を一定に保つために高分子固体電解質を
用いることが好ましい。電解液を使用する場合は、セパ
レーターに電解液を含有させて使用することが好まし
い。電解液の電解質塩としては、陰イオンとして、PF
6(−),SbF6(−),AsF6(−),SbCl
6(−)のようなVa族の元素のハロゲン化物アニオ
ン:BF4(−),BR4(−)(R:フェニル基、アル
キル基)のようなIIIa族の元素のハロゲン化物アニオ
ン;ClO4(−)のような過塩素酸アニオン;Cl
(−),Br(−),I(−)のようなハロゲンアニオ
ン、CF3SO3(−)等が例示できる。陽イオンとして
は、Li(+),Na(+),K(+)のようなアルカ
リ金属イオン、(R4N)(+)〔R:炭素数1〜20
の炭素水素基〕等が例示できる。〔前記(+)(−)は
それぞれプラスイオンとマイナスイオンを表わす。以下
同様である。〕 上記のドーバントを与える化合物の具体例としてはLi
PF6,LiSbF6,LiAsF6,LiClO4,Na
ClO4,KI,KPF6,KSbF6,KAsF6,KC
lO4,〔(n−Bu)4N〕(+)・CF3SO
3(−),〔(n−Bu)4N〕(+)・ClO
4(−),〔(n−Bu)4N〕(+)・BF4(−),
LiAlCl4,LiBF4,LiCF3SO3などを挙げ
ることができる。電解質溶液を構成する溶媒としては、
特に限定はされないが、比較的極性の大きい溶媒が好適
に用いられる。具体的には、プロピレンカーボネート、
エチレンカーボネート、ベンゾニトリル、アセトニトリ
ル、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、γ−ブチロラクトン、ジオキソラン、トリエチルフ
ォスフェート、トリエチルフォスファイト、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルフォ
キシド、ジオキサン、ジメトキシエタン、ポリエチレン
グリコール、スルフォラン、ジクロロエタン、クロルベ
ンゼン、ニトロベンゼン等の有機溶媒の1種又は2種以
上の混合物を挙げることができる。
As the electrolyte, an electrolyte solution and a solid electrolyte composed of an electrolyte salt and a solvent can be exemplified, but it is preferable to use a polymer solid electrolyte in order to prevent liquid leakage, adhere between positive and negative electrodes, and keep a constant interval. When the electrolytic solution is used, it is preferable to use the electrolytic solution in the separator. As the electrolyte salt of the electrolytic solution, PF is used as an anion.
6 (-), SbF 6 ( -), AsF 6 (-), SbCl
Ha-anion anion of Group Va element such as 6 (-): Hafion anion of Group IIIa element such as BF 4 (-), BR 4 (-) (R: phenyl group, alkyl group); ClO 4 Perchlorate anion such as (-); Cl
Examples thereof include halogen anions such as (−), Br (−), and I (−), CF 3 SO 3 (−), and the like. As cations, alkali metal ions such as Li (+), Na (+) and K (+), (R 4 N) (+) [R: carbon number 1 to 20]
Carbon hydrogen group] and the like. [The above (+) and (-) represent a positive ion and a negative ion, respectively. The same applies hereinafter. ] As a specific example of the compound which gives the above dovant, Li
PF 6, LiSbF 6, LiAsF 6 , LiClO 4, Na
ClO 4 , KI, KPF 6 , KSbF 6 , KAsF 6 , KC
10 4 , [(n-Bu) 4 N] (+) CF 3 SO
3 (-), [(n-Bu) 4 N] (+) · ClO
4 (−), [(n−Bu) 4 N] (+) · BF 4 (−),
LiAlCl 4, LiBF 4, and the like LiCF 3 SO 3. As the solvent constituting the electrolyte solution,
Although not particularly limited, a solvent having a relatively large polarity is preferably used. Specifically, propylene carbonate,
Ethylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, triethyl phosphate, triethyl phosphite, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane, Examples thereof include one kind or a mixture of two or more kinds of organic solvents such as dichloroethane, chlorobenzene, and nitrobenzene.

【0008】セパレーターとしては、電解質溶液のイオ
ン移動に対して低抵抗であり、かつ、溶液保持性に優れ
たものが用いられる。例えば、ガラス繊維フィルタ;ポ
リエステル、テフロン、ポリフロン、ポリプロピレン等
の高分子ポアフィルタ、不織布;あるいはガラス繊維と
これらの高分子からなる不織布を用いることができる。
セパレーターは、前記したように融着性フィルムとして
兼用することができる。
As the separator, one having a low resistance to the movement of ions of the electrolyte solution and an excellent solution holding property is used. For example, a glass fiber filter; a polymer pore filter such as polyester, Teflon, polyflon, or polypropylene; a non-woven fabric; or a non-woven fabric composed of glass fiber and these polymers can be used.
The separator can also serve as the fusible film as described above.

【0009】固体電解質としては無機系、有機系のもの
が挙げられるが、フレキシビリテイなどの点で有機系の
ものが例示される。例えば、無機系では、例えばAgC
l,AgBr,AgI,LiIなどの金属ハロゲン化
物、RbAg45,RbAg44CN等が挙げられる。
又、有機系では、ポリエチレンオキサイド、ポリプロピ
レンオキサイド、ポリフッ化ビニリデン、ポリアクリル
アミド等をポリマーマトリックスとして先に述べた電解
質塩をポリマーマトリックス中に溶解せしめた複合体、
あるいはこれらの架橋体、低分子量ポリエチレンオキサ
イド、クラウンエーテルなどのイオン解離基をポリマー
主鎖にグラフト化した高分子電解質あるいは高分子量重
合体に電解液を含有させた高分子固体電解質が挙げら
れ、固体電解質はそれのみで使用しても良いが、電流密
度の均一化、短絡の防止を目的としてセパレーターと複
合して使用することが好ましい。
Examples of the solid electrolyte include inorganic and organic ones, and organic ones are exemplified in terms of flexibility and the like. For example, in an inorganic system, for example, AgC
1, metal halides such as AgBr, AgI and LiI, RbAg 4 I 5 and RbAg 4 I 4 CN.
In organic systems, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylamide, etc. are used as the polymer matrix, and the electrolyte salt described above is dissolved in the polymer matrix to form a composite.
Or these crosslinked products, low molecular weight polyethylene oxide, polymer electrolytes ion-dissociating groups such as crown ether grafted to the polymer main chain or polymer solid electrolytes containing a high molecular weight polymer containing an electrolytic solution, solid The electrolyte may be used alone, but it is preferably used in combination with a separator for the purpose of making the current density uniform and preventing a short circuit.

【0010】集電体としては、ニッケル、チタン、銅、
ステンレス鋼、アルミニウム等のような金属フィルム
を、集電体と同時に基板として用いることが好ましく、
特に銅は安価であり延展性、導電性が高いため最も好ま
しい。
As the current collector, nickel, titanium, copper,
It is preferable to use a metal film such as stainless steel or aluminum as a substrate together with the current collector.
In particular, copper is most preferable because it is inexpensive and has high spreadability and conductivity.

【0011】本発明の電池で用いる隔壁(フレーム)と
しては、絶縁体で電池要素と反応性がなく集電体あるい
は外装と接着可能なものが用いられる。具体的にはポリ
エチレン、ポリプロピレン、ナイロン、ポリエステル等
の樹脂層及び接着層とから構成される。接着層としては
変性ポリエチレン、変性ポリプロピレン等の熱融着性樹
脂、エポキシ系、アクリル系、セラミック系接着剤が例
示できる。これらの中から樹脂層としてポリエチレン、
ポリプロピレン、接着層として変性ポリエチレン、変性
ポリプロピレンの組合せが集電体との接着性、安定性の
点で最も好ましい。
As the partition wall (frame) used in the battery of the present invention, an insulating material which has no reactivity with the battery element and can be adhered to the current collector or the exterior is used. Specifically, it is composed of a resin layer of polyethylene, polypropylene, nylon, polyester or the like and an adhesive layer. Examples of the adhesive layer include heat-fusible resins such as modified polyethylene and modified polypropylene, epoxy-based, acrylic-based, and ceramic-based adhesives. Of these, polyethylene as the resin layer,
The combination of polypropylene and modified polyethylene or modified polypropylene as the adhesive layer is the most preferable from the viewpoint of adhesiveness to the current collector and stability.

【0012】[0012]

【実施例】本発明の一実施例を図面に基づいて説明刷
る。図1に示すように140×140mm、厚さ30μ
mの銅箔(4)上に、外形140×140mmで、厚さ
350μmのポリプロピレン隔壁(5)を熱融着により
接着した。この時、図2、図3の(4)と(5)との接
着面の断面図に示すようにフレームの幅寸法は(a)部
を7mm、(b)部を5mmとした。次に、N−メチル
ピロリドンに13wt%の濃度になるようにポリアニリ
ン粉末(以下PAN1)を溶解し、平均粒子径1μmの
五酸化バナジウム粉末(以下V25)をPAN1に対し
PAN1/V25=3/7の重量比で上記溶液に混合し
たものを電極フィルム形成塗布液(1)とした。この塗
布液(1)を上記のフレームで仕切られた基板上に液の
厚みが300μmになるように注ぎ、液面が平らになっ
たのを確認後100℃で30分間乾燥することにより正
極(6)を得た。3MLiBF4/(プロピレンカーボ
ネート+ジメトキシエタン)(体積比7:3)の電解液
80%、エトキシジエチレングリコールアクリレートを
19.2%、メチルベンゾイルフォーメートを0.8%
混合した高分子固体電解質組成物を正極(6)に浸透
後、25μmのポリプロピレンポアフィルター(商品名
セルガード)を積層し、高圧水銀灯を照射し、正極
(6)上に電解質を積層したものを正極部材(7)とし
た。一方、140×140mm,厚さ30μmの銅板
(8)上に導電性接着剤で100μmのLi(9)を貼
り合せ、Li上に上述した高分子固体電解質組成物を塗
布した後、高圧水銀灯を照射し、Li上に電解質を積層
した。図4に示すように正極/電解質を積層した正極部
材(7)と負極(Li)/電解質を積層した集電体基板
付き負極(10)とを貼り合せ隔壁部分を熱融着し封止
を行い、140mm×140mm×0.50mmのシー
ト状薄型電池を作成した。本電池を3.7Vまで充電
後、50mA 2.5Vまで放電を行ったところ、15
0mAhの放電の容量が得られた。その後、本電池の折
り曲げ試験を行ったが、特にその性能に変化はみられな
かった。
An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, 140 × 140 mm, thickness 30μ
A polypropylene partition wall (5) having an outer diameter of 140 × 140 mm and a thickness of 350 μm was adhered onto the copper foil (4) having a thickness of m by heat fusion. At this time, as shown in the cross-sectional views of the bonding surfaces of (4) and (5) in FIGS. 2 and 3, the width dimension of the frame was set to 7 mm at (a) and 5 mm at (b). Next, polyaniline powder (hereinafter PAN1) was dissolved in N-methylpyrrolidone to a concentration of 13 wt%, and vanadium pentoxide powder (hereinafter V 2 O 5 ) having an average particle size of 1 μm was mixed with PAN1 / V 2 A mixture of the above solutions in a weight ratio of O 5 = 3/7 was used as an electrode film forming coating solution (1). This coating solution (1) was poured onto the substrate partitioned by the frame so that the thickness of the solution was 300 μm, and after confirming that the surface of the solution became flat, it was dried at 100 ° C. for 30 minutes to obtain a positive electrode ( 6) was obtained. 80% electrolyte solution of 3M LiBF 4 / (propylene carbonate + dimethoxyethane) (volume ratio 7: 3), 19.2% ethoxydiethylene glycol acrylate, 0.8% methylbenzoyl formate
After permeating the mixed polymer solid electrolyte composition into the positive electrode (6), a 25 μm polypropylene pore filter (trade name Celgard) was laminated, irradiated with a high pressure mercury lamp, and the electrolyte was laminated on the positive electrode (6). The member (7) was used. On the other hand, 100 μm Li (9) was attached to a copper plate (8) having a thickness of 140 × 140 mm and a thickness of 30 μm with a conductive adhesive, and the polymer solid electrolyte composition described above was applied onto Li, and then a high pressure mercury lamp was used. Irradiation was performed to stack an electrolyte on Li. As shown in FIG. 4, a positive electrode member (7) having a positive electrode / electrolyte layer laminated thereon and a negative electrode (Li) / a negative electrode with a current collector substrate (10) having an electrolyte layer laminated together are heat-sealed to seal the partition wall portion. Then, a sheet-shaped thin battery of 140 mm × 140 mm × 0.50 mm was prepared. This battery was charged to 3.7V and then discharged to 50mA 2.5V.
A discharge capacity of 0 mAh was obtained. After that, a bending test of this battery was conducted, but no particular change was observed in its performance.

【0013】[0013]

【効果】本発明によると、加工性に優れ、体積エネルギ
ー密度が高くエネルギー容量の大きな二次電極用正極を
使用し、また、それを構成する集電体基板を電池の外装
材の少なくとも一部として用いることにより、エネルギ
ー密度が著しく向上したシート状薄型電池が得られた。
According to the present invention, a positive electrode for a secondary electrode having excellent workability, high volume energy density and high energy capacity is used, and a current collector substrate constituting the positive electrode is used as at least a part of a battery exterior material. As a result, a sheet-shaped thin battery having a significantly improved energy density was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】銅箔4とその周辺部を封止するポリプロピレン
隔壁5を示す図である。
FIG. 1 is a diagram showing a copper foil 4 and a polypropylene partition wall 5 that seals a peripheral portion thereof.

【図2】銅箔4と該銅箔上に設けた封止部材5の断面図
である。
FIG. 2 is a cross-sectional view of a copper foil 4 and a sealing member 5 provided on the copper foil.

【図3】銅箔4と該銅箔上に設けた封止部材5の断面図
である。
FIG. 3 is a cross-sectional view of a copper foil 4 and a sealing member 5 provided on the copper foil.

【図4】正極部材7と該正極部材と貼り合わせる集電体
基板付き負極10を示す図である。
FIG. 4 is a diagram showing a positive electrode member 7 and a negative electrode 10 with a collector substrate that is bonded to the positive electrode member.

【符号の説明】[Explanation of symbols]

4 銅箔 5 ポリプロピレン隔壁 7 正極部材 8 集電体基板 9 Li 10 集電体基板付き負極 4 Copper foil 5 Polypropylene partition wall 7 Positive electrode member 8 Current collector substrate 9 Li 10 Negative electrode with current collector substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片桐 伸夫 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 木村 興利 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuo Katagiri 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (72) Kouri Kimura 1-3-6 Nakamagome, Ota-ku, Tokyo Stock company Ricoh

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および電解質を少なくとも具
備するシート状二次電池において、正極が導電性高分子
フィルムと該電池の外装材の少なくとも一部を構成する
集電体基板とよりなるものであって、かつ基板は、それ
と電解質が直接に接触しないように、その周辺部に封止
材により封口部となるフレームを設けたものであること
を特徴とする二次電池。
1. A sheet-shaped secondary battery comprising at least a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode comprises a conductive polymer film and a current collector substrate which constitutes at least a part of an exterior material of the battery. The secondary battery is characterized in that the substrate is provided with a frame serving as a sealing portion by a sealing material in the peripheral portion so that the substrate and the electrolyte do not come into direct contact with each other.
【請求項2】 第1項記載の二次電池用正極の導電性高
分子フィルム中に粒子状電池活物質が均質に分散された
フィルムであることを特徴とする二次電池。
2. A secondary battery, which is a film in which a particulate battery active material is uniformly dispersed in the conductive polymer film of the positive electrode for a secondary battery according to claim 1.
【請求項3】 集電体基板上に設けたフレームを形成す
る封止材の下部(基板との接触面)の幅寸法(a)が、
上部の幅寸法(b)よりも大である請求項1記載の二次
電池。
3. The width dimension (a) of the lower portion (contact surface with the substrate) of the sealing material forming the frame provided on the current collector substrate is
The secondary battery according to claim 1, which is larger than the width dimension (b) of the upper portion.
【請求項4】 集電体基板が銅またはアルミニウムで構
成されたものである請求項1記載の二次電池。
4. The secondary battery according to claim 1, wherein the current collector substrate is made of copper or aluminum.
JP5129999A 1993-05-06 1993-05-06 Sheet secondary battery Pending JPH06318466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5129999A JPH06318466A (en) 1993-05-06 1993-05-06 Sheet secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5129999A JPH06318466A (en) 1993-05-06 1993-05-06 Sheet secondary battery

Publications (1)

Publication Number Publication Date
JPH06318466A true JPH06318466A (en) 1994-11-15

Family

ID=15023649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5129999A Pending JPH06318466A (en) 1993-05-06 1993-05-06 Sheet secondary battery

Country Status (1)

Country Link
JP (1) JPH06318466A (en)

Similar Documents

Publication Publication Date Title
US5489492A (en) Composite sheet electrode
US5436091A (en) Solid state electrochemical cell having microroughened current collector
EP0396324B1 (en) Cells
KR100496090B1 (en) Anode for lithium secondary battery and lithium secondary battery
KR100332080B1 (en) Solid electrolyte and battery
US5011501A (en) Process for making a solid state cell
JP2004079327A (en) Non-aqueous secondary battery, positive electrode for secondary battery, and its manufacturing method
JP3917754B2 (en) Lithium battery
JP3062203B2 (en) Electrochemical element
JPH1167214A (en) Lithium secondary battery
JP4845245B2 (en) Lithium battery
JP4297472B2 (en) Secondary battery
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
US6051339A (en) Lithiated polyvanadate cathodes and batteries containing such cathodes
JP2001052710A (en) Primer-coated collector for battery, battery comprising the same and its manufacture
JPH07134987A (en) Positive electrode member for secondary battery and secondary battery using the member
JP2000003728A (en) Lithium secondary battery and manufacture thereof
JPH06318466A (en) Sheet secondary battery
JP2010205739A (en) Lithium battery
JPH0864200A (en) Electrode for secondary battery and secondary battery using this electrode
JP3471097B2 (en) Polymer electrode, method for producing polymer electrode, and lithium secondary battery
JP3512502B2 (en) Rechargeable battery
JP3409093B2 (en) Electrode for secondary battery and battery using the same
JP3588131B2 (en) Positive electrode for secondary battery and secondary battery using the electrode
JP2002324581A (en) Solid electrolyte battery