JP3588131B2 - Positive electrode for secondary battery and secondary battery using the electrode - Google Patents
Positive electrode for secondary battery and secondary battery using the electrode Download PDFInfo
- Publication number
- JP3588131B2 JP3588131B2 JP13000093A JP13000093A JP3588131B2 JP 3588131 B2 JP3588131 B2 JP 3588131B2 JP 13000093 A JP13000093 A JP 13000093A JP 13000093 A JP13000093 A JP 13000093A JP 3588131 B2 JP3588131 B2 JP 3588131B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- secondary battery
- active material
- current collector
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、二次電池正極、特に扁平型二次電池用正極及びそれを用いた扁平型電池に関する。
【0002】
【従来技術】
近年、電子機器の小型化、ポータブル化にともない、その電源である電池にも軽薄短小の要求から、高エネルギー密度の非水二次電池が要望されている。しかしながら、これら非水二次電池には解決されていない問題が多く、とくに集電体に関しては問題が多い。従来より非水二次電池の正極集電体としてはステンレス鋼、ニッケル等の耐食性の合金あるいは金属ホイルが用いられていた。しかしながら、これらの合金、金属は固く、延展性に欠け、又導電性が充分でないため正極集電体として用いるためにはある程度の厚みを必要とし、そのためエネルギー密度は低くなってしまっていた。又活物質と集電体との密着性も充分でなく、電池の内部インピーダンスも高くなってしまっていた。
二次電池用正極活物質は、従来型から、LiMnO2、LiCoO2等の無機系活物質が用いられているが、フレキシブルな電極への加工が難しい。またフレキシブル電極として得られるポリピロール、ポリアニリン等の導電性高分子材料が提案されているが、これら導電性高分子は体積当たりのエネルギー密度が小さいという欠点を有していた。これを解決する手段として無機系活物質と導電性高分子の混合物を加圧成型により電極を作製しエネルギー密度を向上した二次電池が提案されている(特開昭63−102162)。しかしながら、これらの正極は単に無機系活物質と導電性高分子の混合物であるためフレキシビリティーに欠け、エネルギー密度も期待されるほど大きくはなく、又サイクル寿命も充分でない。
可溶性導電性高分子を溶媒に溶解し、金属基板上に塗布したものが、酸化、還元反応を起こしうることが知られているが、この電極活物質は緻密なフィルム状であるため、薄膜状態では酸化、還元反応を起こしうるが、二次電池用電極等の厚いフィルムでは酸化、還元反応に伴うイオンのフィルム内の拡散が遅いため、二次電池用電極として用いることはできなかった。
【0003】
【目的】
本発明は、エネルギー密度が高く、フレキシブルで、かつ内部インピーダンスの低い二次電池、特に扁平型二次電池および前記特性を有する二次電池を得るための正極の提供を目的とする。
【0004】
【問題を解決するための手段】
本発明者らは、鋭意検討を重ねた結果、集電体に銅または銅合金を用い、導電性高分子フィルム中に正極活物質として無機系活物質フィラーを均一に分散して含有する導電性高分子フィルムとの緻密な複合体を正極として用いることにより、電池用電極のような厚い状態においてもイオンの拡散が充分早いことを見出した。また、それを用いた二次電池がエネルギー密度が高く、フレキシブルで、かつ内部インピーダンスの低い二次電池、特に扁平型二次電池であることを見出した。溶媒可溶性導電性高分子の溶液に無機系活物質フィラーを分散させた溶液を、例えば銅からなる正極集電体上に塗布し、溶媒を除去する場合、他の材質の集電体にくらべ飛躍的にエネルギー密度が高く、かつ内部インピーダンスの低い二次電池を提供できる。またこのとき銅の正極集電体が外装の一部を構成する場合、優れた性能を有する扁平型二次電池が得られることを見出した。特に高分子固体電解質を用いた固体扁平型二次電池において、本正極を用いることにより優れた性能の二次電池を提供することができることを見出した。また、さらに負極として負極活物質に炭素材料、負極集電体に銅を用いて扁平型二次電池を構成することにより、エネルギー密度が高く、サイクル寿命、充放電の高い扁平型二次電池を提供できることを見出した。
【0005】
本発明の正極集電体に用いる銅あるいは銅合金としては、厚さ0.1〜50μm、好ましくは1〜40μm、さらに好ましくは5〜30μmである。0.1μm以下では導電性強度が充分でなく、50μm以上では集電体重量が重くなり、エネルギー密度が低下する。
本発明の正極集電体に用いる銅の活物質と接する側面は活物質との密着性、集電効率の向上を目的に研磨機による機械的研磨、電解エッチング、化学エッチング等により、粗面化していることが好ましい。本発明の正極集電体に用いる銅の活物質と接する側面には、Ni、導電性塗料等の電気化学的に不活性な薄い導電層を設けることにより腐食の防止、正極活物質の密着性の向上を図ることができる。
本発明の正極活物質に用いる正極活物質としては、導電性高分子フィルム中に無機系活物質フィラーが均一に分散された複合体が用いられる。無機系活物質としては、遷移金属カルコゲン化合物を挙げることができ、具体例としてはV2O5、TiO2、Cr3O8、MnO2、MnO3、CoO2、NiO2等の酸化物、TiS2、FeS等の硫化物、LiとMn、Ni、Coとの複合酸化物例えばLixMn2O4、LixCoO2、LixNiO2等が挙げられる。これらの中でも電圧平坦性に優れる結晶性V2O5、LixMn2O4、LixCoO2が好ましく、中でも安定性の面から結晶性V2O5が特に好ましい。無機系活物質の粒径としては50μm以下、好ましくは20μm以下、更に好ましくは5μm以下である。50μm以上では導電性高分子フィルム中に無機系活物質フィラーが均一に分散することが難しく、また充放電に伴うイオンの拡散も遅くなってしまう。
導電性高分子としてはつぎの単量体を重合することにより得られる。
【0006】
(1)アニリン類
特開昭61−197633、特開平1−301714、特開平2−166165、特開平2−211230、特開平2−220373、特表平3−505892等参照。
(2)アニリノアニリン類
例えば、式
【化1】
(式中、R1やR2は水素、アルキルまたはアルコキシであることができる)
(3)ピロール類
例えば、式
【化2】
(式中、R3、R4、R5は水素、アルキルおよびアルコキシよりなる群から選ばれた基であるが、R3、R4、R5のうちの少なくとも1つはアルキルまたはアルコキシである)
(4)チオフェン類
例えば、式
【化3】
(式中、R6とR7は水素、アルキルおよびアルコキシよりなる群から選ばれた基であるが、R6とR7のうち少なくとも1つはアルキルまたはアルコキシである)
などを挙げることができる。
前記〔化1〕のモノマーからは、式
【化4】
のポリマーが、
前記〔化2〕のモノマーからは、式
【化5】
のポリマーが、
前記〔化3〕のモノマーからは、式
【化6】
のポリマーが、それぞれ得られる。活物質としてのエネルギー密度が高く、安定であり電極に加工した場合の強度、導電性を考慮するとポリアニリン類が好適である。
これらの導電性高分子は溶媒に可溶であるため、この可溶性導電性高分子の溶液に無機活物質フィラー(正極活物質)を分散させて作った可溶性導電性高分子溶液を銅集電体上に塗布し、溶媒を除去することにより複合体正極を得ることができる。
このようにして作製した複合体正極における正極活物質含有層(正極活物質含有導電性高分子フィルム層)と集電体との密着は、他の材質の集電体のものにくらべ飛躍的に向上するため、酸化、還元反応が円滑に行うことができる二次電池用正極として優れた性能を有する。
可溶性導電性高分子の溶媒としては、N−メチルピロリドン、ジメチルホルムアミド、ピリジン、ヘキサン、トルエン等を例示することができるが、特にこれに限定されるものではない。
【0007】
本発明の正極は薄く、フレキシブル、高エネルギー密度であることから、特に扁平型二次電池用正極として優れた性能を有する。本発明の扁平型二次電池は外装の一部と正極集電体とを同一とすることにより生産性、エネルギー密度向上を図ることができる。本発明の扁平型二次電池の外装としては、本正極集電体そのものを外装に用いることも可能であるが、破損あるいは、空気酸化による腐食の問題を考慮すると、正極集電体に高分子フィルム、あるいは、ニッケル、ステンレス鋼等の金属類を積層することが好ましく、扁平型二次電池のフレキシビリティーを確保するためには高分子フィルムをラミネートすることが好ましい。
本発明の扁平型二次電池に用いる電解質としては溶媒及び電解質塩からなる電解液、あるいは、固体電解質が用いられるが、液もれ防止、電解質のかたより等を考慮すると固体電解質が好ましい。
本発明に用いる電解質塩としては特に制限はないが、非水溶媒に溶解し、高いイオン伝導度を示すものが用いられる。このようなものとしては、例えば、カチオンとしてはアルカリ金属イオンが例示できる。アニオンとしてはCl−、Br−、SCN−、ClO4 −、BF4 −、PF6 −、SbF6 −、CF3SO3 −が例示できる。
本発明の電解液として有機非水系極性溶媒を使用するが、有機非水系極性溶媒として非プロトン性で且つ、高誘電率のものが好ましい。その具体例としては、プロピレンカーボネイト、γ−ブチルラクトン、ジメチルスルホキシド、ジメチルホルムアミド、アセトニトリル、エチレンカーボネート、ジメトキシエタン、ジクロロエタン等を挙げることができるが、これらに限定されない。有機非水系極性溶媒は1種類のみを使用してもまたは2種類以上を混合して使用してもよい。
電解中における電解質は、使用する正極、電解質及び有機非水系極性溶媒の種類などによって異なるので一概に規定することはできないが、通常、0.001〜10モル/リットルの範囲とするのがよい。電解質や溶媒中に酸素や水などが含まれると電池の性能を低下させる場合があるので、常法に従って電解質や溶媒を充分に精製しておくのがよい。
本発明の電池におけるセパレータとしては、電解質溶液のイオン移動に対して低抵抗であり、且つ、溶液保持に優れたものを使用するのがよい。そのようなセパレータ例としては、ガラス繊維、フィルター、ポリエステル、テフロン、ポリフロン、ポリプロピレン等の高分子繊維からなる不織布フィルター、ガラス繊維とそれらの高分子繊維を混用した不織布フィルターなどを挙げることができる。
本発明の扁平二次電池に用いる電解質としては上記した電解液やセパレータの代わりに固体電解質を用いることが好ましい。本発明で使用し得る無機系の固体電解質の例としては、AgCl、AgBr、AgI、LiI、RbAg4I5、RbAg4I4CN等を挙げることができる。また、有機系の固体電解質の例としは、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフッ化ビニリデン、ポリアクリルアミドなどの重合体マトリックス中に上記した電解質塩を溶解させた複合体:それらと有機溶媒とのゲル架橋体:低分子量ポリエチレンオキサイド、クラウンエーテルなどのイオン解離基を重合体分子主鎖にグラフトさせた高分子の固体電解質などを挙げることができるが、フレキシビリティー、電極活物質との複合の容易さを考慮すると高分子固体電解質が好ましい。
扁平二次電池の作製においては、短絡の防止、封止を完全に行うため、該集電体上に隔壁(フレーム)を設けるのが好ましい。このような隔壁としては、絶縁体で電池要素と反応性がなく集電体あるいは外装と接着可能なものが用いられる。具体的には、ポリエチレン、ポリプロピレン、ナイロン、ポリエステル等の樹脂層及び接着層とから構成される。接着層としては、変性ポリエチレン、変性ポリプロピレン等の熱融着性樹脂、エポキシ系、アクリル系、セラミック系接着剤が例示できる。これらの中から樹脂層としてポリエチレン、ポリプロピレン、接着層として変性ポリエチレン、変性ポリプロピレンの組合せが集電体との接着性、安全性の点で最も好ましい。
【0008】
本発明の二次電池に用いる負極活物質としては、Li、Na等のアルカリ金属、Li−Al等のリチウム合金、ポリアセチレン、ポリピリジン、ポリパラフェニレン等の導電性高分子、炭素体を例示することができる。この中でも、サイクル特性、安全性に優れる炭素体が好ましい。
本発明の電池の負極にはフラン樹脂、フェノール樹脂、セルロース樹脂、ポリアクリロニトリル樹脂等の有機高分子化合物、石炭系ピッチや石油系ピッチから得られる有機物を焼成することによりえられる炭素材料あるいはグラファイト、あるいはこれらの混合物を電極活物質として負極集電体に銅を用いることが集電体と活物質の密着の点で好ましく、サイクル寿命が長く、内部インピーダンスの低い二次電池を実現できる。
【0009】
【実施例】
実施例1
過硫酸アンモニウムと塩酸からA.G.Mac.Diarmid et al.,Conducting Polymers., 105(1987)に従う方法によりポリアニリンを合成し、還元、真空乾燥を行った。このポリアニリンを10重量部、結晶性V2O5(最大粒径3μm、平均粒径1μm)を20重量部、N−メチルピロリドンを70重量部混合し、分散を行い電極塗工溶液を作製した。厚さ20μmの銅ホイルの片面をエメリー紙で粗面化した。電極塗工溶液を粗面化した銅上に塗布し、100℃で乾燥し正極活物質を積層した。正極活物質を積層した銅上に図1に示すような熱融着性変性ポリプロピレンの封止材を熱融着した。この時、銅が露出しないように封止材の内側が正極活物質が塗工されている部分よりも小さくした。12.8重量部のエトキシジエチレングリコールアクリレート、0.2重量部のトリメチロールプロパントリアクリレート、20重量部のLiBF4、67重量部のプロピレンカーボネートとジメトキシエタン体積比7:3の混合溶液、0.05重量部のベンゾインイソプロピルエーテルを混合し高分子固体電解質溶液を作製した。この高分子固体電解質溶液を正極上に塗布し、超高圧水銀灯を照射し、高分子固体電解質を積層した。負極に100μmのリチウムと20μmのSUS304ホイルを圧着した負極のリチウム上に高分子固体電解質溶液を塗布し、超高圧水銀灯を照射し高分子固体電解質を積層した。正極、負極を貼り合わし、封止材部分を熱融着し、200μm×5cm×5cmのペーパー二次電池を作製した。このペーパー二次電池を2.5V〜3.7Vの電圧範囲で、充放電を行った。初期放電容量は1mAでの放電電流で12mAhであり、5mAでの放電電流で9.8mAhであった。1mAの放電電流で50サイクル充放電した後の放電容量は9.5mAhであった。
【0010】
比較例1
銅ホイルの代わりにニッケルホイルを使用する以外は実施例1と同様にペーパー二次電池を作製した。実施例1と同様に充放電試験を行った。初期放電容量は1mAでの放電電流で8.5mAhであり、5mAでの放電電流で1.1mAhであった。1mAの放電電流で50サイクル充放電した後の放電容量は4.9mAhであった。
【0011】
実施例2
粒径20μm以下のピッチ系炭素繊維を1000℃で焼成した炭素体9重量部、ポリフッ化ビニリデン1重量部、N−メチルピロリドン9重量部を混合、撹拌し、負極塗工溶液を作製した。18μmの銅ホイル上に負極塗工溶液を塗布し、150℃で乾燥し負極を作製した。この負極を用いる以外は実施例1と同様にしてペーパー二次電池を作製した。このペーパー二次電池を2.0V〜3.7Vの電圧範囲で、充放電を行った。初期放電容量は1mAでの放電電流で12mAhであり、5mAでの放電電流で9.5mAhであった。1mAの放電電流で50サイクル充放電した後の放電容量は11.5mAhであった。
【0012】
【効果】
本発明によると、エネルギー密度が高く、フレキシブルで、かつ内部インピーダンスの低い二次電池、特に扁平型二次電池、および前記特性を有する二次電池を得るための正極が提供される。
【図面の簡単な説明】
【図1】集電体付きの正極の平面図である。
【図2】集電体付きの正極の断面図である。
【符号の説明】
1 正極活物質層
2 封止材
3 正極集電体[0001]
[Industrial applications]
The present invention relates to a positive electrode for a secondary battery, particularly a positive electrode for a flat secondary battery, and a flat battery using the same.
[0002]
[Prior art]
In recent years, as electronic devices have become smaller and more portable, there has been a demand for non-aqueous secondary batteries with a high energy density due to the demand for light, thin and short batteries. However, there are many problems that have not been solved in these non-aqueous secondary batteries, and in particular, there are many problems regarding current collectors. Conventionally, a corrosion-resistant alloy such as stainless steel or nickel or a metal foil has been used as a positive electrode current collector of a nonaqueous secondary battery. However, these alloys and metals are hard, lack ductility, and have insufficient conductivity, so that a certain thickness is required for use as a positive electrode current collector, and the energy density is low. In addition, the adhesion between the active material and the current collector was not sufficient, and the internal impedance of the battery was also increased.
As a positive electrode active material for a secondary battery, an inorganic active material such as LiMnO 2 or LiCoO 2 has been used from the conventional type, but it is difficult to process it into a flexible electrode. In addition, conductive polymer materials such as polypyrrole and polyaniline obtained as flexible electrodes have been proposed, but these conductive polymers have a drawback of low energy density per volume. As means for solving this problem, a secondary battery has been proposed in which a mixture of an inorganic active material and a conductive polymer is formed by pressure molding to form an electrode and the energy density is improved (JP-A-63-102162). However, since these positive electrodes are simply a mixture of an inorganic active material and a conductive polymer, they lack flexibility, the energy density is not as large as expected, and the cycle life is not sufficient.
It is known that a soluble conductive polymer dissolved in a solvent and applied on a metal substrate can cause oxidation and reduction reactions.However, since this electrode active material is a dense film, it has a thin film state. Thus, oxidation and reduction reactions may occur, but cannot be used as electrodes for secondary batteries in thick films such as electrodes for secondary batteries because ions in the film due to oxidation and reduction reactions diffuse slowly in the film.
[0003]
【Purpose】
An object of the present invention is to provide a positive electrode for obtaining a secondary battery having a high energy density, being flexible, and having a low internal impedance, particularly a flat secondary battery and a secondary battery having the above characteristics.
[0004]
[Means to solve the problem]
The present inventors have conducted intensive result of extensive investigations, conductive containing uniformly dispersed an inorganic active material filler using copper or copper alloy current collector, the conductive polymer film in the cathode active material It has been found that by using a dense composite with a polymer film as a positive electrode, diffusion of ions is sufficiently fast even in a thick state such as a battery electrode. Further, they have found that a secondary battery using the same is a secondary battery having a high energy density, a high flexibility and a low internal impedance, particularly a flat secondary battery. When a solution in which an inorganic active material filler is dispersed in a solution of a solvent-soluble conductive polymer is applied onto a positive electrode current collector made of, for example, copper, and the solvent is removed, the solution is significantly faster than current collectors of other materials. A secondary battery having high energy density and low internal impedance can be provided. Also, at this time, it has been found that when the copper positive electrode current collector forms a part of the exterior, a flat secondary battery having excellent performance can be obtained. In particular, it has been found that a secondary battery having excellent performance can be provided by using the present positive electrode in a solid flat secondary battery using a polymer solid electrolyte. Further, by forming a flat secondary battery using a carbon material as a negative electrode active material and copper as a negative electrode current collector as a negative electrode, a flat secondary battery having a high energy density, a high cycle life, and a high charge and discharge can be obtained. We found that we could provide.
[0005]
The thickness of the copper or copper alloy used for the positive electrode current collector of the present invention is 0.1 to 50 μm, preferably 1 to 40 μm, and more preferably 5 to 30 μm. If it is 0.1 μm or less, the conductive strength is not sufficient, and if it is 50 μm or more, the current collector becomes heavy and the energy density decreases.
The side surface in contact with the active material of copper used for the positive electrode current collector of the present invention is roughened by mechanical polishing by a polishing machine, electrolytic etching, chemical etching, etc. for the purpose of improving the adhesion with the active material and the current collection efficiency. Is preferred. On the side surface in contact with the copper active material used for the positive electrode current collector of the present invention, an electrochemically inactive thin conductive layer such as Ni or a conductive paint is provided to prevent corrosion, and to improve the adhesion of the positive electrode active material. Can be improved.
As the positive electrode active material used for the positive electrode active material of the present invention, a composite in which an inorganic active material filler is uniformly dispersed in a conductive polymer film is used. Examples of the inorganic active material include transition metal chalcogen compounds, and specific examples thereof include oxides such as V 2 O 5 , TiO 2 , Cr 3 O 8 , MnO 2 , MnO 3 , CoO 2 , and NiO 2 ; Examples thereof include sulfides such as TiS 2 and FeS, and composite oxides of Li and Mn, Ni, and Co, such as LixMn 2 O 4 , LixCoO 2 , and LixNiO 2 . Among these, crystalline V 2 O 5 , LixMn 2 O 4 , and LixCoO 2 having excellent voltage flatness are preferable, and crystalline V 2 O 5 is particularly preferable from the viewpoint of stability. The particle diameter of the inorganic active material is 50 μm or less, preferably 20 μm or less, and more preferably 5 μm or less. If the thickness is 50 μm or more, it is difficult to uniformly disperse the inorganic active material filler in the conductive polymer film, and the diffusion of ions accompanying charging / discharging becomes slow.
The conductive polymer can be obtained by polymerizing the following monomers.
[0006]
(1) Anilines See, for example, JP-A-61-197633, JP-A-1-301714, JP-A-2-166165, JP-A-2-211230, JP-A-2-220373, and JP-A-3-505892.
(2) Anilinoanilines, for example, of the formula
(Wherein R 1 and R 2 can be hydrogen, alkyl or alkoxy)
(3) pyrroles, for example, of the formula
(In the formula, R 3 , R 4 , and R 5 are groups selected from the group consisting of hydrogen, alkyl, and alkoxy, and at least one of R 3 , R 4 , and R 5 is alkyl or alkoxy. )
(4) Thiophenes, for example, of the formula
(Wherein R 6 and R 7 are groups selected from the group consisting of hydrogen, alkyl and alkoxy, wherein at least one of R 6 and R 7 is alkyl or alkoxy)
And the like.
From the monomer of the above formula [1], the following formula:
Of the polymer
From the monomer of the above [Formula 2], the following formula:
Of the polymer
From the monomer of the above formula [3], the following formula:
Are obtained respectively. Polyanilines are preferable in consideration of the high energy density as an active material, the stability, and the strength and conductivity when processed into an electrode.
For these conductive polymer is soluble in the solvent, the soluble conductive solution to the inorganic active material filler (positive electrode active material) soluble conductive polymer solution of copper current collector made by dispersing the polymer The composite positive electrode can be obtained by applying the composition on the top and removing the solvent.
The adhesion between the positive electrode active material- containing layer ( positive electrode active material-containing conductive polymer film layer ) and the current collector in the composite positive electrode thus produced is significantly higher than that of the current collector of another material. In order to improve the performance, it has excellent performance as a positive electrode for a secondary battery in which oxidation and reduction reactions can be smoothly performed.
Examples of the solvent for the soluble conductive polymer include N-methylpyrrolidone, dimethylformamide, pyridine, hexane, and toluene, but are not particularly limited thereto.
[0007]
Since the positive electrode of the present invention is thin, flexible and has a high energy density, it has excellent performance particularly as a positive electrode for a flat secondary battery. In the flat secondary battery of the present invention, productivity and energy density can be improved by using a part of the exterior and the same positive electrode current collector. As the exterior of the flat secondary battery of the present invention, the present cathode current collector itself can be used for the exterior, but in consideration of the problem of damage or corrosion due to air oxidation, a polymer It is preferable to laminate a film or metals such as nickel and stainless steel, and it is preferable to laminate a polymer film in order to secure the flexibility of the flat secondary battery.
As the electrolyte used in the flat secondary battery of the present invention, an electrolyte solution composed of a solvent and an electrolyte salt or a solid electrolyte is used, and a solid electrolyte is preferable in consideration of prevention of liquid leakage, electrolyte form, and the like.
The electrolyte salt used in the present invention is not particularly limited, but an electrolyte salt which is dissolved in a non-aqueous solvent and has high ionic conductivity is used. Examples of such a cation include an alkali metal ion as the cation. Examples of the anion include Cl − , Br − , SCN − , ClO 4 − , BF 4 − , PF 6 − , SbF 6 − , and CF 3 SO 3 − .
Although an organic non-aqueous polar solvent is used as the electrolytic solution of the present invention, it is preferable that the organic non-aqueous polar solvent is aprotic and has a high dielectric constant. Specific examples thereof include, but are not limited to, propylene carbonate, γ-butyl lactone, dimethyl sulfoxide, dimethylformamide, acetonitrile, ethylene carbonate, dimethoxyethane, dichloroethane, and the like. The organic non-aqueous polar solvent may be used alone or in combination of two or more.
The electrolyte during electrolysis cannot be specified unconditionally because it differs depending on the type of the positive electrode, the electrolyte and the organic non-aqueous polar solvent to be used, but it is usually preferable to be in the range of 0.001 to 10 mol / l. If oxygen or water is contained in the electrolyte or the solvent, the performance of the battery may be deteriorated. Therefore, it is preferable to sufficiently purify the electrolyte or the solvent according to an ordinary method.
As the separator in the battery of the present invention, it is preferable to use a separator having low resistance to ion movement of the electrolyte solution and excellent in holding the solution. Examples of such a separator include a glass fiber, a filter, a non-woven fabric filter made of a polymer fiber such as polyester, Teflon, polyflon, and polypropylene, and a non-woven fabric filter in which the glass fiber and the polymer fiber are mixed.
As the electrolyte used in the flat secondary battery of the present invention, it is preferable to use a solid electrolyte instead of the above-described electrolyte solution and separator. Examples of solid electrolyte inorganic that can be used in the present invention, mention may be made of AgCl, AgBr, AgI, LiI, the RbAg 4 I 5, RbAg 4 I 4 CN , and the like. Examples of the organic solid electrolyte include a complex obtained by dissolving the above-mentioned electrolyte salt in a polymer matrix such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyacrylamide: gel crosslinking of these with an organic solvent. Body: a polymer solid electrolyte in which an ion dissociating group such as low molecular weight polyethylene oxide or crown ether is grafted to the polymer molecule main chain, etc., but flexibility, ease of compounding with an electrode active material In consideration of the above, a solid polymer electrolyte is preferred.
In the manufacture of a flat secondary battery, it is preferable to provide a partition (frame) on the current collector in order to completely prevent a short circuit and completely seal. As such a partition, an insulator which is not reactive with the battery element and can be adhered to the current collector or the exterior is used. Specifically, it is composed of a resin layer of polyethylene, polypropylene, nylon, polyester or the like and an adhesive layer. Examples of the adhesive layer include a heat-fusible resin such as modified polyethylene and modified polypropylene, and an epoxy-based, acrylic-based, and ceramic-based adhesive. Among them, a combination of polyethylene and polypropylene as the resin layer and modified polyethylene and modified polypropylene as the adhesive layer is most preferable in terms of adhesion to the current collector and safety.
[0008]
Examples of the negative electrode active material used in the secondary battery of the present invention include alkali metals such as Li and Na, lithium alloys such as Li-Al, conductive polymers such as polyacetylene, polypyridine, and polyparaphenylene, and carbon bodies. Can be. Among them, a carbon body having excellent cycle characteristics and safety is preferable.
The negative electrode of the battery of the present invention is a furan resin, a phenol resin, a cellulose resin, an organic polymer compound such as polyacrylonitrile resin, a carbon material or graphite obtained by firing an organic substance obtained from coal-based pitch or petroleum-based pitch, Alternatively, it is preferable to use copper as a negative electrode current collector using these mixtures as an electrode active material in terms of close contact between the current collector and the active material, and a secondary battery with a long cycle life and low internal impedance can be realized.
[0009]
【Example】
Example 1
A. From ammonium persulfate and hydrochloric acid G. FIG. Mac. See Diamid et al. , Conducting Polymers. , 105 (1987), and polyaniline was synthesized, reduced, and vacuum dried. 10 parts by weight of this polyaniline, 20 parts by weight of crystalline V 2 O 5 (maximum particle diameter 3 μm, average particle diameter 1 μm) and 70 parts by weight of N-methylpyrrolidone were mixed and dispersed to prepare an electrode coating solution. . One side of a copper foil having a thickness of 20 μm was roughened with emery paper. The electrode coating solution was applied on roughened copper, dried at 100 ° C., and a positive electrode active material was laminated. A sealing material of heat-fusible modified polypropylene as shown in FIG. 1 was heat-sealed on the copper on which the positive electrode active material was laminated. At this time, the inside of the sealing material was made smaller than the portion where the positive electrode active material was applied so that copper was not exposed. 12.8 parts by weight of ethoxydiethylene glycol acrylate, 0.2 parts by weight of trimethylolpropane triacrylate, 20 parts by weight of LiBF 4 , 67 parts by weight of a mixed solution of propylene carbonate and dimethoxyethane in a volume ratio of 7: 3, 0.05 A part by weight of benzoin isopropyl ether was mixed to prepare a solid polymer electrolyte solution. This polymer solid electrolyte solution was applied on the positive electrode, and irradiated with an ultrahigh pressure mercury lamp to laminate the polymer solid electrolyte. A polymer solid electrolyte solution was applied on the lithium of the negative electrode in which 100 μm of lithium and 20 μm of SUS304 foil were pressed on the negative electrode, and irradiated with an ultra-high pressure mercury lamp to laminate the polymer solid electrolyte. The positive electrode and the negative electrode were attached to each other, and the sealing material portion was heat-sealed to produce a 200 μm × 5 cm × 5 cm paper secondary battery. This paper secondary battery was charged and discharged in a voltage range of 2.5 V to 3.7 V. The initial discharge capacity was 12 mAh at a discharge current at 1 mA, and 9.8 mAh at a discharge current at 5 mA. The discharge capacity after charging and discharging for 50 cycles with a discharge current of 1 mA was 9.5 mAh.
[0010]
Comparative Example 1
A paper secondary battery was produced in the same manner as in Example 1, except that nickel foil was used instead of copper foil. A charge / discharge test was performed in the same manner as in Example 1. The initial discharge capacity was 8.5 mAh at a discharge current at 1 mA, and 1.1 mAh at a discharge current at 5 mA. The discharge capacity after charging and discharging for 50 cycles with a discharge current of 1 mA was 4.9 mAh.
[0011]
Example 2
9 parts by weight of a carbon body obtained by firing pitch-based carbon fibers having a particle diameter of 20 μm or less at 1000 ° C., 1 part by weight of polyvinylidene fluoride, and 9 parts by weight of N-methylpyrrolidone were mixed and stirred to prepare a negative electrode coating solution. The negative electrode coating solution was applied on a copper foil of 18 μm and dried at 150 ° C. to prepare a negative electrode. A paper secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. This paper secondary battery was charged and discharged in a voltage range of 2.0 V to 3.7 V. The initial discharge capacity was 12 mAh at a discharge current at 1 mA, and 9.5 mAh at a discharge current at 5 mA. The discharge capacity after charging and discharging for 50 cycles with a discharge current of 1 mA was 11.5 mAh.
[0012]
【effect】
ADVANTAGE OF THE INVENTION According to this invention, the secondary battery which has a high energy density, is flexible, and has low internal impedance, especially a flat secondary battery, and a positive electrode for obtaining a secondary battery having the above characteristics are provided.
[Brief description of the drawings]
FIG. 1 is a plan view of a positive electrode with a current collector.
FIG. 2 is a cross-sectional view of a positive electrode with a current collector.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 positive electrode
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13000093A JP3588131B2 (en) | 1993-05-06 | 1993-05-06 | Positive electrode for secondary battery and secondary battery using the electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13000093A JP3588131B2 (en) | 1993-05-06 | 1993-05-06 | Positive electrode for secondary battery and secondary battery using the electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06318453A JPH06318453A (en) | 1994-11-15 |
JP3588131B2 true JP3588131B2 (en) | 2004-11-10 |
Family
ID=15023675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13000093A Expired - Fee Related JP3588131B2 (en) | 1993-05-06 | 1993-05-06 | Positive electrode for secondary battery and secondary battery using the electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3588131B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311108A (en) * | 2003-04-03 | 2004-11-04 | Nissan Motor Co Ltd | Total polymer electrolyte battery and manufacturing method |
JP4952878B2 (en) * | 2005-09-16 | 2012-06-13 | ソニー株式会社 | Primary battery |
KR20210078543A (en) * | 2018-10-24 | 2021-06-28 | 에이치헬리, 엘엘씨 | Polymer Immersion Pouch Cell |
-
1993
- 1993-05-06 JP JP13000093A patent/JP3588131B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06318453A (en) | 1994-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100496090B1 (en) | Anode for lithium secondary battery and lithium secondary battery | |
JP4037452B2 (en) | Electrolyte cell and electrolysis method | |
EP1178549A2 (en) | Carbon substrate, anode for lithium ion rechargeable battery and lithium ion rechargeable battery | |
KR20150021809A (en) | Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same | |
WO2002084775A1 (en) | Lithium polymer secondary cell | |
JP3500245B2 (en) | Gel-like solid electrolyte secondary battery | |
KR100462668B1 (en) | Polymer cell | |
JP2001043847A (en) | Battery with surface-reformed electrode and its manufacture | |
JP4053657B2 (en) | Lithium secondary battery and manufacturing method thereof | |
JP4365013B2 (en) | How to adjust the battery | |
JP2003331838A (en) | Lithium secondary battery | |
JP4086939B2 (en) | Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same | |
JP3588131B2 (en) | Positive electrode for secondary battery and secondary battery using the electrode | |
JP4297472B2 (en) | Secondary battery | |
JP3553697B2 (en) | Rechargeable battery | |
JP3664560B2 (en) | Lithium secondary battery | |
JP2001052710A (en) | Primer-coated collector for battery, battery comprising the same and its manufacture | |
JPH08222272A (en) | Combination battery of nonaqueous electrolyte secondary battery and solar battery | |
JP2002313418A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP2001028266A (en) | Battery electrode containing surface modifying component, battery, and manufacture thereof | |
KR20030051672A (en) | Lithium polymer secondary battery | |
JP3618022B2 (en) | Electric double layer capacitor and EL element | |
JPH06325766A (en) | Chemical cell | |
JP3971181B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4054925B2 (en) | Lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040812 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080820 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090820 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |