JPH0631819B2 - Load following operation method of nuclear power plant - Google Patents

Load following operation method of nuclear power plant

Info

Publication number
JPH0631819B2
JPH0631819B2 JP62158857A JP15885787A JPH0631819B2 JP H0631819 B2 JPH0631819 B2 JP H0631819B2 JP 62158857 A JP62158857 A JP 62158857A JP 15885787 A JP15885787 A JP 15885787A JP H0631819 B2 JPH0631819 B2 JP H0631819B2
Authority
JP
Japan
Prior art keywords
output
flow rate
power
core flow
control rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62158857A
Other languages
Japanese (ja)
Other versions
JPS643596A (en
Inventor
保則 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62158857A priority Critical patent/JPH0631819B2/en
Publication of JPS643596A publication Critical patent/JPS643596A/en
Publication of JPH0631819B2 publication Critical patent/JPH0631819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、沸騰水型原子炉を用いた原子力発電所の負荷
追従運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a load following operation method for a nuclear power plant using a boiling water reactor.

(従来の技術) 従来原子力発電所においては、出力調整幅が30% 程度
(例えば高出力100%、低出力70% )までの負荷追従運
転に対しては炉心流量制御のみによって調整し、より大
幅な負荷追従運転に対しては炉心流量制御では実現でき
ない出力低下分を制御棒挿入により実現する方法が提案
されている。
(Prior art) In a conventional nuclear power plant, load follow-up operation with an output adjustment range of about 30% (for example, high output 100%, low output 70%) is adjusted only by core flow control, For such load following operation, a method has been proposed in which the power reduction that cannot be achieved by the core flow rate control is realized by inserting the control rod.

横軸を時間、縦軸を炉出力、炉心流量および制御棒密度
とした第5図のグラフは、従来の負荷追従運転方法によ
って運転した場合の炉出力、炉心流量および制御棒密度
の時間変化をそれぞれ曲線1、曲線2および曲線3で示
している。
The graph of FIG. 5, in which the horizontal axis represents time and the vertical axis represents reactor power, core flow rate and control rod density, shows the time variation of reactor output, core flow rate and control rod density when operated by the conventional load following operation method. Curves 1, 2 and 3 are shown respectively.

また、第6図は第5図に示す炉出力1および炉心流量2
の運転軌跡を出力・炉心流量マップ上に曲線4で示して
おり、曲線5は核燃料および各種機器の健全性を維持す
るための原子炉の運転可能な範囲を表す運転制限ライン
を示している。
Further, FIG. 6 shows the reactor output 1 and the core flow rate 2 shown in FIG.
The operating locus is shown by the curve 4 on the power / core flow map, and the curve 5 shows the operation limit line showing the operable range of the reactor for maintaining the soundness of the nuclear fuel and various equipment.

これらの図に示すように、従来の負荷追従運転方法で
は、できるだけ制御棒操作は行わず、出力変更およびゼ
ノン濃度変化に対する反応度補償は炉心流量の調整によ
って行う。そのため炉心流量は低出力運転時において符
号2aで示す最小値から符号2bで示す最大値まで、ま
た高出力運転時には符号2cで示す最大値から符号2d
で示す最小値まで大きく変動する。第7図に炉心流量が
2a、2b、2cおよび2dであるときの出力分布をそ
れぞれ曲線6、7、8、9で示し、第8図に炉心流量が
2cおよび2dのときのボイド率分布をそれぞれ曲線1
0、11で示す。これらの図からも明らかなように、炉
心流量によって出力分布およびボイド率分布が変化して
おり、ボイド率分布については炉心流量が小さくなるほ
ど炉内全体にボイド率が上昇している。
As shown in these figures, in the conventional load following operation method, the control rod operation is not performed as much as possible, and the reactivity is compensated for the output change and the Zenon concentration change by adjusting the core flow rate. Therefore, the core flow rate is from the minimum value indicated by the reference numeral 2a to the maximum value indicated by the reference numeral 2b in the low power operation, and from the maximum value indicated by the reference numeral 2c in the high power operation.
It greatly fluctuates to the minimum value shown by. Fig. 7 shows the power distributions when the core flow rates are 2a, 2b, 2c and 2d by curves 6, 7, 8 and 9, respectively, and Fig. 8 shows the void fraction distributions when the core flow rates are 2c and 2d. Curve 1 respectively
It is indicated by 0 and 11. As is clear from these figures, the power distribution and the void fraction distribution change depending on the core flow rate. Regarding the void fraction distribution, the void fraction increases throughout the reactor as the core flow rate decreases.

このように、従来の負荷追従運転方法では炉心流量制御
により出力調整を行うことを優先させているが、これは
燃料健全性の観点から局所出力の変動量が小さい炉心流
量制御を用いた方が好ましく、特に高出力での制御棒操
作が大きく制約されていたためである。燃料の健全性を
保つために従来は、十分ならし運転の行われた出力分布
(PCエンベロープ)以下で行われ、これを越える場合
には大きな制約が課せられていた。一方、負荷追従運転
ではゼノン濃度が常時変化しており、これに伴って出力
分布も変化するが、出力の変動量が大きい制御棒操作を
用いると出力分布の変動がさらに大きくなって上記の制
約に違反する恐れがあった。そのため、特に高出力時の
制御棒操作は大きく制約されていた。
As described above, in the conventional load following operation method, priority is given to the power adjustment by the core flow rate control, but it is better to use the core flow rate control in which the variation of the local output is small from the viewpoint of fuel integrity. This is because the control rod operation is preferably restricted particularly at high output. In order to maintain the soundness of the fuel, conventionally, the operation was performed below the output distribution (PC envelope) where sufficient run-in operation was performed, and if it exceeded this, a large restriction was imposed. On the other hand, in load following operation, the xenon concentration is constantly changing, and the output distribution also changes accordingly, but if the control rod operation with a large amount of output fluctuation is used, the fluctuation of the output distribution becomes even larger, and There was a risk of violating. Therefore, the operation of the control rod, especially at the time of high output, was largely restricted.

このような燃料に対する制約を大幅に緩和するために、
被覆管の内側にジルコニウムを内張した高性能燃料が開
発され、ある一定の出力(しきい値)以下では自由に出
力を変動させることが可能となったが、この燃料を装荷
した炉心では燃料の経済性を高めるためスペクトラムシ
フト運転が要求されている。スペクトラムシフト運転と
は、運転サイクル中の大部分の期間において、炉心流量
をできるだけ低くして炉内ボイド率を増やすことにより
Pu-239の生成量を増大させ、運転サイクルの末期におい
ては、炉心流量を高くして生成したPu-239を燃焼させる
ことにより燃料の燃焼度を高める定格出力運転方法であ
る。
In order to significantly relax such restrictions on fuel,
A high-performance fuel with zirconium lined inside the cladding tube was developed, and it became possible to freely change the output below a certain output (threshold value), but in the core loaded with this fuel Spectrum shift operation is required to improve the economy of the. Spectral shift operation refers to increasing the void ratio in the core by reducing the core flow rate as much as possible during most of the operation cycle.
This is a rated power operation method that increases the burn-up of fuel by increasing the production amount of Pu-239 and burning the generated Pu-239 by increasing the core flow rate at the end of the operation cycle.

(発明が解決しようとする問題点) 上記のように、高性能燃料炉心においては、燃料健全性
からの制約が大幅に緩和される一方、燃料経済性をでき
るだけ高めた運転が要求されるが、従来の負荷追従運転
方法では、スペクトラムシフト運転方法とは大きく異な
り高流量側でも運転する。そのため、高性能燃料炉心に
おいては、燃料健全性に対して十分な余裕があるにもか
かわらず従来の運転方法によって負荷追従運転を実施し
た場合には、燃料経済性を損なう恐れがあった。
(Problems to be Solved by the Invention) As described above, in the high-performance fuel core, while the constraint from the fuel integrity is greatly relaxed, the operation with the fuel economy as high as possible is required. The conventional load following operation method differs from the spectrum shift operation method in that it operates even on the high flow rate side. Therefore, in the high-performance fuel core, when the load following operation is performed by the conventional operation method although there is a sufficient margin for the fuel integrity, there is a possibility that the fuel economy may be impaired.

本発明はかかる点に対処してなされたもので、燃料経済
性を高めることのできる負荷追従運転方法を提供しよう
とするものである。
The present invention has been made in consideration of such a point, and an object of the present invention is to provide a load following operation method capable of improving fuel economy.

[発明の構成] (問題点を解決するための手段) 本発明の原子力発電所の負荷追従運転方法は、炉心流量
を低下させて出力を低下させ前記炉心流量が低出力レベ
ルにおける下限流量値に到達しても出力が低出力目標レ
ベルに到達しない場合のみ制御棒を挿入する出力低下運
転と、この出力低下運転後のゼノン濃度変化に伴う出力
変化を主として制御棒操作により補償して出力を前記低
出力目標レベルに保持する低出力運転と、前記炉心流量
を高出力レベルにおける下限流量値まで上昇させこの下
限炉心流量における出力と高出力目標レベルとのずれを
制御棒操作により調整する出力上昇運転と、この出力上
昇運転後のゼノン濃度変化に伴う出力変化を主として制
御棒操作により補償して出力を前記高出力目標レベルに
保持する高出力運転とからなることを特徴とする。
[Structure of the Invention] (Means for Solving Problems) In the load follow-up operation method for a nuclear power plant of the present invention, the core flow rate is decreased to reduce the output, and the core flow rate becomes the lower limit flow rate value at a low output level. If the output does not reach the low output target level even if it reaches, the output reduction operation in which the control rod is inserted and the output change accompanying the Zenon concentration change after this output reduction operation are compensated mainly by the control rod operation to output the output. Low power operation to maintain low power target level and power up operation to increase the core flow rate to the lower limit flow rate value at the high output level and adjust the deviation between the output at the lower limit core flow rate and the high output target level by operating the control rod. And a high-output operation for maintaining the output at the high-output target level by compensating for the output change accompanying the change in the Zenon concentration after the output-increasing operation mainly by operating the control rod. And wherein the Ranaru.

(作 用) 上記構成の本発明の原子力発電所の負荷追従運転方法で
は、炉心流量の低い状態で運転を行うことができる。
(Operation) According to the load follow-up operation method for a nuclear power plant of the present invention having the above configuration, the operation can be performed in a state where the core flow rate is low.

一般に、出力レベルが同じ場合、炉心流量が低いほど炉
心ボイド率が高くなりPu-239の生成量が高くなる。した
がって、本発明の原子力発電所の負荷追従運転方法で
は、燃料経済性を高めることができる。
In general, for the same power level, the lower the core flow rate, the higher the core void fraction and the higher the amount of Pu-239 produced. Therefore, the load following operation method for a nuclear power plant of the present invention can improve fuel economy.

(実施例) 以下、本発明方法の詳細を、図面を参照して実施例につ
いてに説明する。
(Examples) Hereinafter, the details of the method of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の負荷追従運転方法を示すも
ので、第5図と同様に曲線1は炉出力、曲線2は炉心流
量、曲線3は制御棒密度のそれぞれ時間変化を表す。こ
の図に示すように、高出力レベルにおける出力レベル運
転は、その高出力レベルで許容される下限近傍の炉心流
量2eで行う。そして、出力低下運転を行う場合は、炉
心流量を低減させ、出力を目標の低出力レベルまで下げ
る。このとき、炉心流量が低出力レベルで許容される下
限値に達しても出力が目標レベルまで下がらない場合の
み制御棒の挿入を行う。
FIG. 1 shows a load follow-up operation method according to an embodiment of the present invention. Similar to FIG. 5, curve 1 represents the reactor power, curve 2 represents the core flow rate, and curve 3 represents the control rod density with time. . As shown in this figure, the power level operation at the high power level is performed at the core flow rate 2e near the lower limit allowed at the high power level. Then, when the power reduction operation is performed, the core flow rate is reduced and the power is reduced to a target low power level. At this time, the control rod is inserted only when the output does not drop to the target level even when the core flow rate reaches the lower limit value allowed at the low output level.

出力低下後はゼノン濃度が増加するが、このゼノン濃度
の増加による出力変化は制御棒引抜きによって補償し、
出力を目標レベルに保つ。このとき、制御棒の反応度が
大きいため出力が目標レベルに一致しない場合には、流
量調節範囲Aとして予め定めた一定の範囲内で炉心流量
を調整し、出力調整を行う。また、この流量調整範囲A
内で出力を目標レベルに一致させることができない場合
には、制御棒をさらに操作して出力レベル運転を行う。
After the output decreases, the Zenon concentration increases, but the output change due to this increase in Zenon concentration is compensated by pulling out the control rod,
Keep the output at the target level. At this time, when the output does not match the target level because the reactivity of the control rod is large, the core flow rate is adjusted within a predetermined range as the flow rate adjustment range A, and the output is adjusted. Also, this flow rate adjustment range A
If the output cannot be made to match the target level within, the control rod is further operated to perform the output level operation.

なお、流量調整範囲Aは炉心流量が下限値に対し余裕の
ある場合には、出力低下時の炉心流量2fからさらに低
流量側に設けることが望ましい。また、ゼノン濃度は出
力低下後5〜6時間で増加から減少に転じるが、この場
合も制御棒挿入によって出力を調整する。
When the core flow rate has a margin with respect to the lower limit value, it is desirable that the flow rate adjustment range A be provided on the lower flow rate side from the core flow rate 2f at the time of power reduction. Further, the Zenon concentration changes from increasing to decreasing 5 to 6 hours after the output is reduced, and in this case also, the output is adjusted by inserting the control rod.

次に、出力上昇運転を行う場合には、炉心流量を高出力
レベルにおける下限の流量2eまで上昇させる。第2図
は第1図に示した負荷追従運転における炉出力1および
炉心流量2の軌跡を出力・流量マップ上に曲線12で表
したものであるが、この図から明らかなように、低出力
運転中の運転軌跡は出力・流量マップ上ではほとんど同
じ点13上にあるため、この低出力運転点13から流量
増加により出力上昇させた場合には出力低下前とほとん
ど同じ出力・流量状態の高出力運転点14に戻る。
Next, when the power increasing operation is performed, the core flow rate is increased to the lower limit flow rate 2e at the high output level. FIG. 2 shows the locus of the reactor output 1 and the core flow rate 2 in the load following operation shown in FIG. 1 as a curve 12 on the output / flow rate map. Since the operation locus during operation is almost on the same point 13 on the output / flow rate map, when the output is increased by increasing the flow rate from this low output operation point 13, the output / flow rate is almost the same as before the output decrease. Return to the output operating point 14.

すなわち、炉心流量が高出力レベルで許容される下限の
流量2eに戻ったとき、出力もほぼ目標レベルまで戻
る。ここで出力が目標レベルから若干ずれる場合は、制
御棒を調整することにより出力を目標レベルに一致させ
る。
That is, when the core flow rate returns to the lower limit flow rate 2e that is allowed at the high output level, the output also returns to almost the target level. If the output deviates slightly from the target level, the output is made to match the target level by adjusting the control rod.

このようにして高出力レベルに復帰した後はゼノン濃度
が急激に減少するが、これを制御棒の挿入によって補償
する。このとき低出力レベルの出力レベル運転の場合と
同様に制御棒の反応度価値が大きいため出力が目標レベ
ルと一致しない場合には、炉心流量の下限2eから高流
量側にある一定の範囲を有する調整範囲B内で流量を調
整し、出力を目標レベルに一致させる。また、この調整
範囲B内で出力を目標レベルに一致させることができな
い場合は制御棒をさらに操作する。
After returning to the high output level in this manner, the Zenon concentration sharply decreases, which is compensated by the insertion of the control rod. At this time, as in the case of the power level operation of the low power level, the reactivity value of the control rod is large, and therefore when the power does not match the target level, there is a certain range from the lower limit 2e of the core flow to the high flow The flow rate is adjusted within the adjustment range B so that the output matches the target level. If the output cannot be made to match the target level within this adjustment range B, the control rod is further operated.

以上のように、この実施例方法では、炉心流量が低い状
態で負荷追従運転が行われる。このため、常時炉内ボイ
ド率の高い状態におかれ、Pu-239の蓄積量も増加し、燃
料の経済性が高められる。
As described above, in the method of this embodiment, the load following operation is performed in the state where the core flow rate is low. Therefore, the void ratio in the reactor is always kept high, the amount of Pu-239 accumulated increases, and the fuel economy is improved.

また、本発明の他の実施例を第3図および第4図に示
す。第3図は第1図と同様炉出力1、炉心流量2および
制御棒密度3の時間変化を示すもので、第4図は第2図
と同様その出力・流量マップである。この例は炉心流量
2を下げて炉出力1を高出力レベルから目標の低出力レ
ベルまで下げても炉心流量2が下限に対しまだ余裕があ
る場合の運転方法を示すもので、この場合には制御棒を
引抜くことにより炉心流量2を下限2gまで低減する。
Another embodiment of the present invention is shown in FIGS. 3 and 4. Similar to FIG. 1, FIG. 3 shows changes in reactor output 1, core flow rate 2 and control rod density 3 with time, and FIG. 4 is an output / flow rate map thereof similar to FIG. This example shows the operation method when the core flow rate 2 is still lower than the lower limit even if the core flow rate 2 is decreased to lower the reactor power output 1 from the high power level to the target low power level. In this case, The core flow rate 2 is reduced to the lower limit of 2 g by pulling out the control rod.

第4図において、実線15は制御棒引抜きと炉心流量低
下を同時に行った場合の運転軌跡を示しており、破線1
6は初めに炉心流量2を低下させて出力低下を行いつい
で制御棒引抜きにより炉心流量2を下限値2gまで下げ
たときの運転軌跡を示している。また、低出力運転時の
炉心流量2の調整範囲Cは下限値2gより高流量側にあ
る一定幅をもって設ける。
In FIG. 4, a solid line 15 shows an operation locus when the control rod is pulled out and the core flow rate is decreased at the same time.
Reference numeral 6 shows an operation locus when the core flow rate 2 is first reduced to reduce the output, and then the core flow rate 2 is reduced to the lower limit value 2 g by pulling out the control rod. Further, the adjustment range C of the core flow rate 2 at the time of low power operation is provided with a certain width on the higher flow rate side than the lower limit value 2g.

この負荷追従運転方法では、炉出力を再び高出力レベル
に戻すとき、出力低下時の制御棒引抜きと同程度の反応
度価値の制御棒挿入を行う必要がある。制御棒挿入を行
わずに炉心流量のみ上昇させた場合には、第4図に示す
低出力運転点17から破線16とほぼ平行に出力が上昇
するため、符号5で示す運転制限ラインより逸脱してし
まう。このように、この実施例では低出力レベルにおけ
る炉心流量が下限値まで下げられるため、炉内ボイド率
はさらに高められ、燃料の経済性が一層向上する。
In this load following operation method, when the furnace output is returned to the high output level again, it is necessary to insert the control rod having the reactivity value similar to that of the control rod withdrawal when the output is reduced. When only the core flow rate is increased without inserting the control rod, the output increases from the low power operation point 17 shown in FIG. Will end up. As described above, in this embodiment, the core flow rate at the low power level is lowered to the lower limit value, so that the void ratio in the reactor is further increased and the fuel economy is further improved.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように本発明方法によれば、
負荷追従運転中常に炉内ボイド率の高い状態が保持され
るので、高性能燃料炉心の経済性を損なうことなく負荷
追従運転を行うことができる。また、高性能燃料炉心の
燃料経済性を高めた定格出力運転方法であるスペクトラ
ムシフト運転に比べて、負荷追従運転の低出力運転期間
中の炉内ボイド率はさらに高くなるため、スペクトラム
シフト運転の場合よりもPu-239の蓄積量がさらに増え、
経済性がさらに向上する。
As is clear from the above description, according to the method of the present invention,
Since the state with a high void ratio in the reactor is always maintained during the load following operation, the load following operation can be performed without impairing the economical efficiency of the high performance fuel core. In addition, as compared with the spectrum shift operation, which is a rated output operation method that improves the fuel economy of the high performance fuel core, the void ratio in the reactor during the low output operation period of the load following operation becomes even higher. The accumulation amount of Pu-239 increases more than the case,
Economic efficiency is further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の方法における炉出力、炉心
流量および制御棒密度の時間変化を示すグラフ、第2図
は第1図の炉出力と炉心流量の関係を示すグラフ、第3
図は本発明の他の実施例方法における炉出力、炉心流量
および制御棒密度の時間変化を示すグラフ、第4図は第
3図の炉出力と炉心流量の関係を示すグラフ、第5図は
従来方法における炉出力、炉心流量および制御棒密度の
時間変化を示すグラフ、第6図は第5図の炉出力と炉心
流量の関係を示すグラフ、第7図は従来方法による高出
力運転時における最大および最少流量時の出力分布と低
出力運転時における最大および最少流量時の出力分布を
示すグラフ、第8図は従来方法による高出力運転時にお
ける最大および最少流量時のボイド率分布を示すグラフ
である。 1……炉出力の曲線 2……炉心流量の曲線 2e……高出力運転時の下限流量 2f……出力低下時の炉心流量 3……制御棒密度の時間変化 A、B、……流量調整範囲
FIG. 1 is a graph showing changes over time in reactor power, core flow rate and control rod density in the method of one embodiment of the present invention, FIG. 2 is a graph showing the relationship between reactor power and core flow rate in FIG. 1, and FIG.
FIG. 4 is a graph showing changes over time in the reactor power, core flow rate and control rod density in the method of another embodiment of the present invention, FIG. 4 is a graph showing the relationship between the reactor power and core flow rate in FIG. 3, and FIG. Fig. 6 is a graph showing changes in reactor output, core flow rate and control rod density with time in the conventional method, Fig. 6 is a graph showing the relationship between the reactor output and core flow rate in Fig. 5, and Fig. 7 is a graph showing the conventional method during high power operation. A graph showing the output distribution at the maximum and minimum flow rates and the output distribution at the maximum and minimum flow rates during low output operation, and FIG. 8 is a graph showing the void fraction distribution at the maximum and minimum flow rates during high output operation by the conventional method. Is. 1 …… Reactor output curve 2 …… Core flow rate curve 2e …… Lower limit flow rate during high power operation 2f …… Core flow rate when output is reduced 3 …… Control rod density change over time A, B,… Flow rate adjustment range

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炉心流量を低下させて出力を低下させ前記
炉心流量が低出力レベルにおける下限流量値に到達して
も出力が低出力目標レベルに到達しない場合のみ制御棒
を挿入する出力低下運転と、この出力低下運転後のゼノ
ン濃度変化に伴う出力変化を主として制御棒操作により
補償して出力を前記低出力目標レベルに保持する低出力
運転と、前記炉心流量を高出力レベルにおける下限流量
値まで上昇させこの下限炉心流量における出力と高出力
目標レベルとのずれを制御棒操作により調整する出力上
昇運転と、この出力上昇運転後のゼノン濃度変化に伴う
出力変化を主として制御棒操作により補償して出力を前
記高出力目標レベルに保持する高出力運転とからなるこ
とを特徴とする原子力発電所の負荷追従運転方法。
1. A power reduction operation in which a control rod is inserted only when a core flow rate is reduced to reduce an output and the core flow rate reaches a lower limit flow rate value at a low output level but the output does not reach a low output target level. And a low-power operation in which the output change accompanying the Zenon concentration change after the power-down operation is compensated mainly by control rod operation to maintain the output at the low-power target level, and the core flow rate is set to the lower limit flow rate value at the high-power level. Power up operation to adjust the deviation between the output at the lower limit core flow rate and the high power target level by operating the control rod, and to compensate the output change accompanying the Zenon concentration change after this power up operation mainly by operating the control rod. And a high output operation for maintaining the output at the high output target level.
JP62158857A 1987-06-26 1987-06-26 Load following operation method of nuclear power plant Expired - Fee Related JPH0631819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62158857A JPH0631819B2 (en) 1987-06-26 1987-06-26 Load following operation method of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62158857A JPH0631819B2 (en) 1987-06-26 1987-06-26 Load following operation method of nuclear power plant

Publications (2)

Publication Number Publication Date
JPS643596A JPS643596A (en) 1989-01-09
JPH0631819B2 true JPH0631819B2 (en) 1994-04-27

Family

ID=15680916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62158857A Expired - Fee Related JPH0631819B2 (en) 1987-06-26 1987-06-26 Load following operation method of nuclear power plant

Country Status (1)

Country Link
JP (1) JPH0631819B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443369B1 (en) * 2001-11-23 2004-08-09 한국과학기술원 Lower shifted worth control rod for pressurized water reactor
CN100397436C (en) * 2004-03-31 2008-06-25 庞颖超 Traffic signal light marker and method of forming same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201897A (en) * 1981-06-08 1982-12-10 Nippon Atomic Ind Group Co Load-follow-up operating method for atomic power plant

Also Published As

Publication number Publication date
JPS643596A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
US4587090A (en) Fuel assembly for boiling water reactor
JPH0631819B2 (en) Load following operation method of nuclear power plant
US4292128A (en) Boiling water type nuclear reactor
JPH05240984A (en) Method and apparatus for controlling nuclear reactor with minium limit adjustment of boron concentration in load change
JPH0353591B2 (en)
JP2988731B2 (en) Reactor fuel assembly
JPS5816711B2 (en) boiling water reactor
JP3085715B2 (en) Reactor operation method
JPH01193693A (en) Controlling of nuclear reactor
JPH05188169A (en) Control rod for adjusting volume of moderator
JPH0762714B2 (en) Reactor operation method
JP2023154381A (en) Core control method
JPS608784A (en) Method of operating boiling water reactor
JPS6280585A (en) Initial loading core for nuclear reactor
JPS6133156B2 (en)
JPS58155396A (en) Load following-up method of bwr type power plant
JPS59122994A (en) Method of changing control rod pattern of bwr type reactor
JP3021684B2 (en) Start-up operation of boiling water reactor
JPS6044637B2 (en) fuel assembly
JPH0457999B2 (en)
JPS6217718B2 (en)
JPS6186676A (en) Hollow control rod nuclear reactor
JPS58105088A (en) Control rod for reactor
JPS6275379A (en) Method of controlling output from boiling water type reactor
JPS62272191A (en) Method of operating nuclear reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees