JPS58155396A - Load following-up method of bwr type power plant - Google Patents

Load following-up method of bwr type power plant

Info

Publication number
JPS58155396A
JPS58155396A JP57038750A JP3875082A JPS58155396A JP S58155396 A JPS58155396 A JP S58155396A JP 57038750 A JP57038750 A JP 57038750A JP 3875082 A JP3875082 A JP 3875082A JP S58155396 A JPS58155396 A JP S58155396A
Authority
JP
Japan
Prior art keywords
core
control rod
envelope
flow rate
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57038750A
Other languages
Japanese (ja)
Inventor
坂元 保則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP57038750A priority Critical patent/JPS58155396A/en
Publication of JPS58155396A publication Critical patent/JPS58155396A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は沸騰水形原子力発電所の負荷追従運転方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a load following operation method for a boiling water nuclear power plant.

[発明の技術的背景] 近時、原子力発電所の電力系統中に占める比重が増大し
、原子力発電所を基底負荷運転にとめることなく、負荷
追従運転を行なう、ことが必要となっている。沸騰水形
原子炉の炉心熱出力制御方式としては、中性子減速材で
ある炉心流量を変化させることによりその密度を変化さ
せ、これにより炉心熱出力を変化させる再循環流量制御
方式と、中性子吸収材である制御棒を炉心に対して挿抜
することにより炉心熱出力を変化させる制御棒操作方式
とがある。
[Technical Background of the Invention] Recently, the relative importance of nuclear power plants in the electric power system has increased, and it has become necessary to perform load following operation without keeping nuclear power plants in base load operation. Core thermal output control methods for boiling water reactors include a recirculation flow rate control method that changes the core thermal output by changing the core flow rate of the neutron moderator, which changes its density, and this changes the core thermal output. There is a control rod operation method that changes the core thermal output by inserting and removing control rods from the reactor core.

一方、炉心において核分裂の結果、ヨウ素135および
その娘核であるゼノン135が生成されるが、このゼノ
ン135は中性子吸収物質であり、炉心熱出力を変化さ
せたときゼノン濃度は時間的、空間的に変動する。従っ
て負荷追従運転において昼間の高出力運転から夜間の低
出力運転に移行する際、またその逆の移行を行なう際は
、ゼノン濃度分布の変動、従ってそれに伴う出力分布の
変動を十分考慮して炉心流量の調整および制御棒の操作
を行なわなければならない。
On the other hand, as a result of nuclear fission in the reactor core, iodine-135 and its daughter nucleus, xenone-135, are produced, but this xenone-135 is a neutron-absorbing substance, and when the core thermal output is changed, the xenone concentration changes temporally and spatially. It fluctuates. Therefore, when transitioning from high-power operation in the daytime to low-power operation at night during load-following operation, or vice versa, the changes in the xenone concentration distribution and, therefore, the accompanying fluctuations in the power distribution should be taken into consideration when adjusting the reactor core. The flow rate must be adjusted and the control rods operated.

第1図は炉心流−調整のみで負荷追従運転を行なった場
合の炉心熱出力、炉心流量、ヨウ素濃度、ゼノン濃度の
変化をそれぞれ示している。すなわち図において、横軸
には時間が、縦軸には炉心熱出力、炉心11ゼノン濃度
、ヨウ素濃度がそれぞれとられており、曲線aは炉心熱
出力、曲線すは炉心流量、曲線Cはゼノン濃度、曲線d
はヨウ素濃度の時間的変動をそれぞれ現゛わしでいる。
FIG. 1 shows the changes in core thermal output, core flow rate, iodine concentration, and xenone concentration when load following operation is performed with only core flow adjustment. In other words, in the figure, the horizontal axis is time, and the vertical axis is core thermal output, core 11 xenone concentration, and iodine concentration, where curve a is core thermal output, curve 2 is core flow rate, and curve C is xenone concentration. concentration, curve d
express the temporal fluctuations of iodine concentration.

この図から明らかなように炉心流量を低下させると炉心
熱出力が低下し、炉心゛流量を上昇させると炉心熱出力
が上昇する。また、一定出力を保持するには、ゼノン濃
度の増減に対応して炉心流量も増減させなければならな
い。また、ゼノン濃度出力分布も時間的、空間的に変化
する。
As is clear from this figure, decreasing the core flow rate lowers the core thermal output, and increasing the core flow rate increases the core thermal output. Furthermore, in order to maintain a constant output, the core flow rate must also be increased or decreased in response to the increase or decrease in the xenone concentration. Furthermore, the Zenon concentration output distribution also changes temporally and spatially.

また、沸騰水形原子炉では核燃料および各種機器の健全
性維持のため炉心熱出力と炉心流量との関係が規制され
ており、原子炉の運転はその制限範囲内で行われなけれ
ばならない。第2図はこのような制限範囲を示すもので
、横軸には炉心流Iか、縦軸には炉心熱出力がとられ斜
線を施した部分か原子炉運転範囲である。さらに核燃料
の健全性維持のため、あらかじめ核燃料をならし運転し
たときの出力分布く以下PCエンベロープという。
In addition, in boiling water reactors, the relationship between core thermal output and core flow rate is regulated in order to maintain the integrity of the nuclear fuel and various equipment, and the reactor must be operated within these limits. FIG. 2 shows such a limited range, where the horizontal axis shows the core flow I, and the vertical axis shows the core thermal output, and the shaded area is the reactor operating range. Furthermore, in order to maintain the integrity of the nuclear fuel, the output distribution when the nuclear fuel is run-in in advance is hereinafter referred to as the PC envelope.

)内でのみ出力分布の変更が許される。) is allowed to change the output distribution only.

従って、沸騰水形原子炉で負荷追従運転を行なう場合に
は、前述した炉心流量および炉心熱出力分布に対する2
つの制限を守りながら行なうことが必要となる。
Therefore, when performing load following operation in a boiling water reactor, the above-mentioned core flow rate and core thermal power distribution must be
It is necessary to do so while adhering to certain restrictions.

どころで、負荷追従運転において出力を低下させる時、
炉心流−が第2図に示した炉心流量の下限を下回ること
があり得る。また、出力を高出力に保持するためにゼノ
ン濃度の減少に見合って炉心流量を低下させるとき、高
出力に対して許容される最小の炉心流量を下回ることも
あり得る。さらに前述した^出力時の流−低下中に出力
分布が変化し、出力がPCエンベロープから逸脱するよ
うな領域を生じるおそれがある。特に炉心下部の出力変
動は大きいので、炉心下部にお番」るPCエンベロープ
逸脱の可能性が大きい。ところがならし運転により炉心
下部のPCエンベロープを拡張することは、炉心上部、
中部に比し困難である。
However, when reducing the output during load following operation,
It is possible that the core flow rate falls below the lower limit of the core flow rate shown in FIG. Furthermore, when the core flow rate is reduced in proportion to the decrease in the xenone concentration in order to maintain the power at a high power level, the core flow rate may fall below the minimum allowable core flow rate for the high power level. Furthermore, there is a possibility that the output distribution changes during the above-mentioned flow drop at the time of output, resulting in a region where the output deviates from the PC envelope. In particular, since the power fluctuations in the lower part of the core are large, there is a high possibility that the PC envelope in the lower part of the core will deviate. However, expanding the PC envelope in the lower part of the core by running-in means that the PC envelope in the upper part of the core,
It is more difficult than the central area.

従って前述した2つの制限内で炉心熱出力を変更するに
は、炉心流量調整と制御棒操作の併用が必要となる。
Therefore, in order to change the core thermal output within the above-mentioned two limits, a combination of core flow rate adjustment and control rod manipulation is required.

ところで炉心流量を制限値内にとめるために制御棒を操
作する場合には、局所的な出力分布に与える影響を十分
に考慮して、操作する制御棒を選択する必要がある。
By the way, when operating control rods in order to keep the core flow rate within a limit value, it is necessary to select the control rods to be operated while fully considering the influence on the local power distribution.

また出力がPCエンベロープを逸脱するような場合には
、そのような部分の近傍に制御棒を挿入して制御棒近傍
の出力を相対的に低下させればよいのであるが、制御棒
の操作により炉心の出力分布が大きく変化するため安易
に制御棒を操作することはできない。
In addition, if the output deviates from the PC envelope, it is possible to insert a control rod near such a part to relatively reduce the output near the control rod, but by operating the control rod, The control rods cannot be easily manipulated because the power distribution of the reactor core changes significantly.

[発明の目的1 本発明はかかる従来の事情に対処してなされたもので、
沸騰水形原子炉の負荷追従運転を行なうに際して、前述
した炉心流量と炉心熱出力とにより規制される運転制限
条件および出力分布につ(1【の制限条件、すなわちP
Cエンベロープ等を逸脱することなく負荷追従運転を実
行することのできる沸騰水形原子力発電所の負荷追従運
転方法を提供しようとするものである。
[Object of the Invention 1 The present invention has been made in response to such conventional circumstances,
When performing load following operation of a boiling water reactor, the operation limiting conditions and power distribution regulated by the core flow rate and core thermal output described above (1 [limiting condition, that is, P
It is an object of the present invention to provide a load following operation method for a boiling water nuclear power plant that can execute load following operation without deviating from the C envelope or the like.

寸なわち一般に負荷追従運転を行なうに際して運転上の
制限条件を逸脱する可能性が最も幽く、しかもその対処
が最も困難なのは、高出力運転時においてゼノン濃度の
減少を保証するために炉心流量を低下させた時点であり
、この時に炉心流量が下限値を下回ったりあるいは炉心
下部の出力がPCエンベロープを超過するおそれがある
In general, when performing load following operation, the possibility of deviating from the operational limit conditions is the lowest, and the most difficult to deal with is when the core flow rate is reduced to ensure a reduction in the xenone concentration during high power operation. At this point, there is a risk that the core flow rate may fall below the lower limit or the power output at the bottom of the core may exceed the PC envelope.

そこで本発明では、特に高出力運転における最小流部が
下限値以上に保たれるとともに、炉心下部の出力がPC
エンベロープに対して十分な余裕を持つことのできる沸
騰水形原子力発電所の負荷追従運転方法を提供しようと
するものである。
Therefore, in the present invention, the minimum flow part is kept above the lower limit value especially in high power operation, and the power in the lower part of the core is
The present invention aims to provide a load following operation method for a boiling water nuclear power plant that allows sufficient margin for the envelope.

[発明の概要〕 すなわち本発明は、低出力運転と高出力運転とを炉心流
量の調整と制御棒の操作により交互に行なう沸騰水形原
子力発電所の負荷追従運転方法において、前記高出力運
転において許容される最大の炉心流儀が流れた時に、挿
入されているすべての制御棒がばば全挿入とされるPC
エンベ0−プ作成用制御棒パターンにより前記高出力運
転を行ないあらかじめPCエンベロープを作成し、前記
PCCエンペロー作成用制制御棒ターンにおいて挿入さ
れる制御棒がほぼ全挿入とされる低出力運転用制御棒パ
ターンにより前記低出力運転を行ない、前記高出力運転
のa制御を炉心流−の調整により行なった時の最小の炉
心流儀の値が許容される最小の炉心流儀の値にほぼ一致
するように前記PCエンベロープ作成用制御棒パターン
において挿入されている制御棒を引き抜いた^出力運転
用制を特徴とする沸騰水形原子力発電所の負荷追従運転
方法である。
[Summary of the Invention] That is, the present invention provides a load following operation method for a boiling water nuclear power plant in which low power operation and high power operation are performed alternately by adjusting the core flow rate and operating control rods. A PC in which all inserted control rods are fully inserted when the maximum allowable core flow occurs.
Control for low power operation in which a PC envelope is created in advance by performing the high power operation according to a control rod pattern for creating an envelope, and almost all of the control rods are inserted in the control rod turn for creating the PCC envelope. When the low power operation is carried out using the bar pattern and the a control of the high power operation is carried out by adjusting the core flow, the minimum core flow value is approximately equal to the allowable minimum core flow value. This is a load following operation method for a boiling water nuclear power plant characterized by an output operation restriction in which the control rods inserted in the control rod pattern for creating the PC envelope are withdrawn.

[発明の実施例] 以下本発明の詳細を図面に示す一実施例について説明す
る。
[Embodiment of the Invention] The details of the present invention will be described below with reference to an embodiment shown in the drawings.

この実施例に示される沸騰水形原子力発電所の負荷追従
運転方法によれば、原子炉はまずPCエンベロープを作
成するためにPCエンベロープ作成用制御棒パターンで
運転され、次ぎに低出力運転用制御棒パターンで低出力
運転が一定時間行なわれ、この後高出力運転用制御棒パ
ターンで高出力運転が一定FR11行なわれ、この低出
力運転と高出力運転を繰返し行なうことにより負荷追従
運転がIIなわれる。すなわち、例えば100%高出力
運転を14fi間、50%低出力運転を8時間行ない、
出力変動をそれぞれ1時間で行なう負荷追従運転を実施
する場合には、炉心流量の上限値を105%とし、高出
力運転における下限値を86%とすると、PCエンベロ
ープ作成用制御棒パターンは第3図に示すようになる。
According to the load following operation method of a boiling water nuclear power plant shown in this example, the reactor is first operated with a control rod pattern for creating a PC envelope, and then the control rod pattern for low power operation is used to create a PC envelope. Low output operation is performed for a certain period of time in the rod pattern, then high output operation is performed for a constant FR11 in the control rod pattern for high output operation, and by repeating this low output operation and high output operation, the load following operation becomes II. be exposed. That is, for example, perform 100% high output operation for 14 fi and 50% low output operation for 8 hours,
When performing a load following operation in which output fluctuations are performed for one hour each, the upper limit value of the core flow rate is set to 105%, and the lower limit value for high power operation is set to 86%.The control rod pattern for creating the PC envelope is the third one. The result will be as shown in the figure.

なお第3図において格子内の符号は制御棒の挿入度を示
しており、0は全挿入を48は全引抜きを示している。
In FIG. 3, the symbols in the grid indicate the degree of insertion of the control rod, with 0 indicating full insertion and 48 indicating full withdrawal.

また図において全引抜きされている制御棒については符
号を付さず空白としである。すなわち第3図において挿
入制御棒本数は、高出力運転において炉心流量を上限値
の105%にしたとき挿入される制御棒がほぼ全挿入と
なるように決められており、また挿入位置は高出力運転
時の定格出力となるように調整されている。
In addition, control rods that are completely withdrawn in the figure are left blank without reference numerals. In other words, in Figure 3, the number of control rods inserted is determined so that almost all the control rods are inserted when the core flow rate is 105% of the upper limit in high power operation, and the insertion positions are determined at high power operation. It is adjusted to the rated output during operation.

ここで、炉心流量を許容される最大流量とするのは、後
述するように高出力運転用制御棒パターンにおいて前述
した全挿入近くまで挿入された制御棒をできるだけ引抜
けるようにするためである。
Here, the reason why the core flow rate is set to the maximum allowable flow rate is to make it possible to pull out the control rods that have been inserted nearly to the full insertion point in the high-power operation control rod pattern as described later.

また、このようにすることにより制御棒は炉心内に深く
挿入されることとなるため、出力分布は炉心下部にシフ
トし炉心下部のPCエンベロープが拡張される。従って
、このPCCエンペロー作成用tillIl棒パターン
で高出力運転を一定期簡行なうことにより、第4図に曲
線eとして示すような形状をした炉心下部のPCエンベ
ロープが作成される。なお、後述するようにこのPCエ
ンベロープ作成用制御棒パターンで挿入されている制御
棒は低出力運転用IIJ m棒パターンにおいても全引
抜きにされることはなく、挿入位置が変化されるのみで
ある。
Moreover, by doing this, the control rods are inserted deeply into the core, so the power distribution is shifted to the lower part of the core, and the PC envelope in the lower part of the core is expanded. Therefore, by performing high-power operation for a certain period of time using this tilll rod pattern for creating a PCC envelope, a PC envelope at the lower part of the core having a shape as shown as curve e in FIG. 4 is created. Furthermore, as will be described later, the control rods inserted in this PC envelope creation control rod pattern are not fully withdrawn even in the IIJ m rod pattern for low power operation, but only the insertion position is changed. .

低出力運転用制御棒パターンは第3図に示すPC■Cベ
ンープ作成用制御棒パターンで挿入され(いる制御棒を
全挿入することにより形成される。
The control rod pattern for low power operation is formed by inserting all the control rods in the control rod pattern for creating the PC■C vent loop shown in FIG.

そしτ後に述ぺる高出力運転用制御棒パターンにおiJ
る全挿入されていない最外周制御棒がある場合には、こ
の最外周制御棒を全挿入とする。なお、ここで挿入され
る最外周制御棒は、後述する高出力運転用制御棒パター
ンにおいて深挿入とされる最外周制御棒(第5図におい
て炉心の外周に配置されて符号10を付されている制御
棒をいう。)と同じものである。このように制−棒を全
挿入することにより低出力運転における出力分布をでき
るだ参ノボトムピークな、すなわち、炉心下部にピーク
を有する出力分布にすることができる。
Then, iJ is applied to the control rod pattern for high-power operation, which will be described later.
If there is an outermost control rod that has not been fully inserted, this outermost control rod will be fully inserted. Note that the outermost control rod inserted here is the outermost control rod that is inserted deeply in the control rod pattern for high-power operation (described later) (the outermost control rod is placed on the outer periphery of the reactor core and is designated by the reference numeral 10 in Fig. 5). ) is the same as the control rod. By fully inserting the control rods in this manner, the power distribution during low power operation can be made to have a bottom peak, that is, a power distribution having a peak at the bottom of the core.

従って、すでに本出願人が出願した特願昭56−868
87号から明らかなように、高出力運転へ慢帰後の炉心
下部の出力上昇を小さくすることができる。
Therefore, the patent application No. 56-868 already filed by the present applicant
As is clear from No. 87, it is possible to reduce the increase in power in the lower part of the core after a slow return to high power operation.

高出力運転用制御棒パターンは第5図に示すようになる
。すなわらこの時点における高出力運転用制御棒パター
ンは、第3図に示す深挿入制御棒を引き抜くと同時に最
外周制御棒を深挿入して炉心流量が下限値の86%にほ
ぼ一致し、かつ炉心下部の出力が最も低くなるように深
挿入制御棒の挿入位置と最外周IIJ Ill棒の選択
および挿入位置は決められている。
The control rod pattern for high-power operation is shown in FIG. In other words, the control rod pattern for high-power operation at this point is shown in Figure 3, where the deeply inserted control rods are withdrawn and at the same time the outermost control rods are deeply inserted so that the core flow rate almost matches the lower limit of 86%. In addition, the insertion position of the deep insertion control rod and the selection and insertion position of the outermost IIJ Ill rod are determined so that the output in the lower part of the core is the lowest.

なお、深挿入制御棒の挿入位置は、ここで選択された最
外周制御棒を低出力運転時に全挿入として再計粋を行な
い、高出力運転時における最小流量が下限値にほぼ一致
するように決められる。
In addition, the insertion position of the deeply inserted control rod is recalculated by fully inserting the outermost control rod selected here during low power operation, so that the minimum flow rate during high power operation almost matches the lower limit value. It can be decided.

このように最外周制御棒を深挿入とするのは、本出願人
が出願した特願昭56−136539号に明らかなよう
に、最外周制御棒を深挿入することにより炉心下部の出
力上昇を押えることができまた、このように最外周制御
棒を挿入することにより第3図に示す制御棒をさらに引
き抜くことがCきる。そして、この挿入される最外周制
御棒の本数は最外周制御棒の挿入本数を増やすと出力が
炉心中央に東まり、逆に炉心下部の出力が上昇づること
となるため、できるだけ少ない本数となるように決めら
れる。
The reason why the outermost control rods are deeply inserted is that, as is clear from Japanese Patent Application No. 136539/1983 filed by the present applicant, deep insertion of the outermost control rods increases the power output in the lower part of the core. By inserting the outermost control rod in this way, the control rod shown in FIG. 3 can be further pulled out. The number of outermost control rods to be inserted should be as small as possible, since increasing the number of outermost control rods inserted will cause the output to shift toward the center of the core, and conversely, the output at the bottom of the core will increase. It can be determined as follows.

このような高出力運転用制御棒パターンにより高出力運
転を行なう場合には、第4図に曲線fとしで示すように
、曲1eで示されるPCエンベロープ作成用制御棒パタ
ーンの出力分布に比較し、出力分布を炉心上部にシフト
することができ炉心下部の出力を低くすることができる
。従って、負荷追従運転の高出力運転の最小流量時に炉
心下部の出力が上昇してもPCCエンペローフ成用制御
棒ハターノン作成された炉心下部のPCエンベロープを
越えることばはとんどなく、たとえ越えてもぜノン濃度
変化による出力上昇に対して許容されている0、3kW
/ftを越えることはない。
When performing high-output operation using such a control rod pattern for high-output operation, the output distribution as shown by curve f in Fig. 4 is compared to the control rod pattern for PC envelope creation shown by curve 1e. , the power distribution can be shifted to the upper part of the core, and the power in the lower part of the core can be lowered. Therefore, even if the power in the lower part of the core increases during the minimum flow rate of high-power operation in load following operation, there is little chance of exceeding the PC envelope in the lower part of the core created by control rods forming the PCC envelope. 0.3kW allowed for output increase due to Zenon concentration change
/ft.

〔発明の効果] 以上述べたように本発明の沸騰水形原子力発電所の負荷
追従運転方法によれば、炉心流儀と炉心熱出力とを規制
する運転制限条件、出力分布についてのPCエンベロー
プ等を逸脱することなく、負荷追従運転を行なうことが
でき、燃料の健全性を十分確保した上で負荷追従運転を
行なうことができる。
[Effects of the Invention] As described above, according to the load following operation method for a boiling water nuclear power plant of the present invention, the operation limit conditions regulating the core style and core thermal output, the PC envelope regarding the power distribution, etc. Load following operation can be performed without deviation, and load following operation can be performed while sufficiently ensuring the soundness of the fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は負荷追従運転時の炉心熱出力、炉心流量、ゼノ
ン濃度、ヨウ素濃度の時間的変化を示すグラフ、第2図
は原子炉運転範囲を示すグラフ、第3図は本発明の一実
施例に用いられるPCCエンペ−プ作成用制御棒パター
ンを示す説明図、第4図は本発明の沸騰水形原子力発電
所の負荷追従運転方法により高出力運転および低出力運
転を行なった時の出力分布を示すグラフ、第5図は高出
力運転用制御棒パターンを示す説明図である。 代理人弁理士   須 山 佐 − 第1一 時    間 第3図 第4図 第5図
Fig. 1 is a graph showing temporal changes in core thermal output, core flow rate, xenone concentration, and iodine concentration during load following operation, Fig. 2 is a graph showing the reactor operating range, and Fig. 3 is an example of an implementation of the present invention. An explanatory diagram showing a control rod pattern for creating a PCC engine used in the example, Figure 4 shows the output when high output operation and low output operation are performed by the load following operation method of a boiling water nuclear power plant of the present invention. A graph showing the distribution, and FIG. 5 is an explanatory diagram showing a control rod pattern for high output operation. Representative patent attorney Satoshi Suyama - 11th hour Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 低出力運転と高出力運転とを炉心流量の調整と制御棒の
操作により交互に行なう沸騰水形原子力発電所の負荷追
従運転方法において、前記高出力運転において許容され
る最大の炉心流−が流れたときに挿入されているすべて
の制御棒がほぼ全挿入とされるPCCエンペ−プ作成用
制御棒パターンにより前記高出力運転を行ないあらかじ
めPCエンベロープを作成し、前記PCエンベロープ作
成用l1IIl]棒パターンにおいて挿入される制御棒
がほぼ全挿入される低出力運転用制御棒パターンにより
前記低出力運転を行ない、前記高出力運転の制御を“炉
心流−の調整により行なった時の最小の炉心流量の値が
許容される最小の炉心流量の値にほぼ一致するように前
記PCエンベロープ作成用制御棒パターンにおいて挿入
されている制御棒を引き抜いた高出力運転用制御棒パタ
ーンにより前記高出力運転を行なうことを特徴とする沸
騰水形原子力発電所の負荷追従運転方法。
In a load following operation method for a boiling water nuclear power plant in which low power operation and high power operation are performed alternately by adjusting the core flow rate and operating control rods, the maximum core flow allowed in the high power operation is A PC envelope is created in advance by performing the high-output operation using the control rod pattern for creating a PCC envelope in which all the control rods inserted are almost completely inserted when the control rods are inserted, and the control rod pattern for creating the PC envelope is created. The low power operation is performed using a control rod pattern for low power operation in which almost all of the control rods are inserted in the control rod pattern, and the minimum core flow rate when the high power operation is controlled by adjusting the core flow. The high power operation is performed using a high power operation control rod pattern in which the control rods inserted in the PC envelope creation control rod pattern are pulled out so that the value almost matches the value of the minimum allowable core flow rate. A load following operation method for a boiling water nuclear power plant characterized by:
JP57038750A 1982-03-11 1982-03-11 Load following-up method of bwr type power plant Pending JPS58155396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038750A JPS58155396A (en) 1982-03-11 1982-03-11 Load following-up method of bwr type power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038750A JPS58155396A (en) 1982-03-11 1982-03-11 Load following-up method of bwr type power plant

Publications (1)

Publication Number Publication Date
JPS58155396A true JPS58155396A (en) 1983-09-16

Family

ID=12533972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038750A Pending JPS58155396A (en) 1982-03-11 1982-03-11 Load following-up method of bwr type power plant

Country Status (1)

Country Link
JP (1) JPS58155396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714952U (en) * 1993-08-26 1995-03-14 有限会社ビー・エス・ベット Retractable bed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714952U (en) * 1993-08-26 1995-03-14 有限会社ビー・エス・ベット Retractable bed

Similar Documents

Publication Publication Date Title
EP0169503A2 (en) Anticipatory control of xenon in a pressurized water reactor
JPS58155396A (en) Load following-up method of bwr type power plant
JPH04301792A (en) Core of atomic reactor
JPS5930086A (en) Method of charging fuel of bwr type reactor
JPS59122994A (en) Method of changing control rod pattern of bwr type reactor
JPH01193693A (en) Controlling of nuclear reactor
JP3162516B2 (en) Nuclear reactor and control rod driving method for nuclear reactor
JP2000266880A (en) Fuel assembly, core of boiling water reactor and method for operating it
JPS5838898A (en) Load following-up operation method of bwr type reactor
JPS6013285A (en) Method of operating boiling water reactor
JPS59120991A (en) Method of changing control rod pattern of bwr type reactor
JPS6318151B2 (en)
JPH024875B2 (en)
JPS6110791A (en) Method of operating nuclear reactor
JPS58211686A (en) Method of arranging core fuel for boiling-water reactor
JPS5944689A (en) Method of controlling operation of bwr type reactor
JPS58131589A (en) Method of operating bwr type reactor
JP3021684B2 (en) Start-up operation of boiling water reactor
JPS6275379A (en) Method of controlling output from boiling water type reactor
JPS63171390A (en) Method of operating nuclear reactor
JPH0241714B2 (en)
JPS61259194A (en) Starting operation method of nuclear reactor
JPS5866092A (en) Reactor
JPS59173797A (en) Method of operating in load-following of atomic power plant
JPS6046497A (en) Load follow-up operating device for nuclear power plant