JPH06317484A - X-ray exposure method and equipment for measuring stress in microregion - Google Patents

X-ray exposure method and equipment for measuring stress in microregion

Info

Publication number
JPH06317484A
JPH06317484A JP12464893A JP12464893A JPH06317484A JP H06317484 A JPH06317484 A JP H06317484A JP 12464893 A JP12464893 A JP 12464893A JP 12464893 A JP12464893 A JP 12464893A JP H06317484 A JPH06317484 A JP H06317484A
Authority
JP
Japan
Prior art keywords
ray
sample
ray diffraction
imaging plate
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12464893A
Other languages
Japanese (ja)
Inventor
Koichi Kawasaki
宏一 川崎
Toshiyuki Mizutani
敏行 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12464893A priority Critical patent/JPH06317484A/en
Publication of JPH06317484A publication Critical patent/JPH06317484A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To provide a method and equipment for detecting a discontinuous X-ray diffraction arc in the measurement of stress at a microregion on a polycrystalline material while allowing accurate detection of angular variation. CONSTITUTION:X-rays 2 are projected through a slit 6 and a prestage screen 7 onto a microregion of a sample 8 and an X-ray diffraction arc 11 reflected thereon is directed to one stationary imaging plate 13 which is subjected to multiplex exposure every time when the incident angle of the X-rays 2 to the sample 8 is varied several times. This constitution allows the detection of discontinuous X-ray diffraction arc while reading out the angular variation highly accurately thus realizing short time measurement of stress in a microregion of a polycrystalline material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線回折を用いて金属
や非金属の応力を測定するためのX線回折像露光装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray diffraction image exposure apparatus for measuring stress of metal or non-metal using X-ray diffraction.

【0002】[0002]

【従来の技術】X線応力測定は非破壊での応力測定とい
う優れた特徴を有しているが、現在一般にX線の検出器
として計数管(位置検出型比例計数管を含む)を用いて
いる。
2. Description of the Related Art Although X-ray stress measurement has an excellent feature of non-destructive stress measurement, currently, a counter tube (including a position detection type proportional counter tube) is generally used as an X-ray detector. There is.

【0003】代表的な応力測定法はsin2Ψ法であ
る。sin2Ψ法はX線の入射角αを数回変えながら反
射したX線の回折角度を測定し、その回折角度2θとs
in2Ψを図に表し、その勾配に応力定数を乗じて応力
σを計算する方法で、応力精度が高い方法である(例え
ば“X線応力測定法、日本材料学会編、養賢堂発行、1
981”に詳しく説明されている。応力σXの信頼限界
ΔσXは81頁に記載されている)。Ψは試料面法線と
回折面法線のなす角度であるが、試料へのX線の入射角
αに対応している。
A typical stress measuring method is the sin 2 Ψ method. The sin 2 Ψ method measures the diffraction angle of the reflected X-ray while changing the incident angle α of the X-ray several times, and the diffraction angle 2θ and s
In 2 Ψ is shown in the figure and the stress is calculated by multiplying the gradient by the stress constant to calculate the stress σ (for example, “X-ray stress measurement method, edited by The Japan Society of Materials, published by Yokendo, 1
981 ". The confidence limit of the stress σ X Δσ X is described on page 81). Ψ is the angle between the normal to the sample surface and the normal to the diffractive surface. Corresponds to the incident angle α of.

【0004】この方法では、測定領域が広く、測定領域
内に多数の結晶が存在する場合はX線回折アークが連続
となり測定が可能であるが(2mm×15mm程度)、
測定領域が小さく微小領域であると結晶粒数の減少のた
め、X線回折アークが不連続にスポット状となり、測定
が不可能になるという重大な問題があった。X線回折ア
ークとはX線回折により生じたデバイリングの一部を称
する。微小領域とは例えば一辺が100μm〜1mmの
正方形などの小さな領域のことを指す。実際の応力測定
においては例えば溶接部の近傍、亀裂の発生部位、接合
部、プレス加工材の湾曲部位など、このような微小領域
の測定が要求されることが多い。
According to this method, when the measurement area is wide and a large number of crystals exist in the measurement area, the X-ray diffraction arc is continuous and measurement is possible (about 2 mm × 15 mm).
If the measurement area is small and minute, the number of crystal grains decreases, and the X-ray diffraction arc has a discontinuous spot shape, which causes a serious problem that measurement becomes impossible. The X-ray diffraction arc refers to a part of the Debye ring generated by X-ray diffraction. The minute area refers to a small area such as a square having one side of 100 μm to 1 mm. In actual stress measurement, it is often required to measure such a minute area in the vicinity of a welded portion, a crack generation portion, a joint portion, a curved portion of a pressed material, or the like.

【0005】X線回折アークが不連続となった場合は、
試料を移動または揺動すればX線回折アークを連続化す
ることができる。しかし、移動を行なえば測定位置が不
定となり、揺動を行なえば応力の測定方向が不定となる
ためこの方法は採用できない。測定位置は前述したよう
に例えば亀裂の発生部位、プレス加工材の湾曲部位など
と定まっており、応力の測定方向は例えば亀裂に対して
直角方向、プレスの半径方向などと定まっている。試料
の揺動を行なって微小領域の応力測定を行なう方法も提
案されているが、応力の測定方向が不定となるうえ、計
数管を用いるため測定時間も長い(例、“材料、36
巻、405号、1987年”、630〜635頁)。
When the X-ray diffraction arc becomes discontinuous,
The X-ray diffraction arc can be made continuous by moving or rocking the sample. However, this method cannot be adopted because the measurement position becomes indefinite if the movement is performed and the stress measurement direction becomes indefinite if the oscillation is performed. As described above, the measurement position is determined to be, for example, a crack generation portion, a curved portion of the pressed material, or the like, and the stress measurement direction is determined to be, for example, a direction perpendicular to the crack or a radial direction of the press. A method has also been proposed in which a sample is oscillated to measure stress in a minute area, but the measurement direction of stress is indefinite and the measurement time is long because a counter tube is used (eg, “Material, 36
Vol. 405, 1987 ", 630-635).

【0006】特開平2−12043号公報には二次元検
出器であるイメージングプレートの感光面に複数の測定
領域を設定し、該イメージングプレートを回転させなが
ら各領域においてX線回折像を順次、露光、読み取り、
消去することを特徴とする連続的X線回折像撮影法が示
されており、さらにイメージングプレート上の複数の矩
形測定領域の設定による応力測定の実施例が記載されて
いる。上記公報に記載の方法では、イメージングプレー
トの回転に伴う位置のズレのためX線回折アークの角度
の再現性精度が低下する。また、X線回折アークがスポ
ット状に不連続となるため、幅20mmの矩形の測定領
域では微小領域の応力測定には適用できない。
In Japanese Patent Laid-Open No. 12043/1990, a plurality of measurement regions are set on the photosensitive surface of an imaging plate which is a two-dimensional detector, and X-ray diffraction images are sequentially exposed in each region while rotating the imaging plate. ,reading,
A continuous X-ray diffraction imaging method characterized by erasing is shown, and an example of stress measurement by setting a plurality of rectangular measurement areas on the imaging plate is described. In the method described in the above publication, the positional reproducibility of the imaging plate due to rotation reduces the reproducibility accuracy of the angle of the X-ray diffraction arc. Further, since the X-ray diffraction arc becomes spot-like discontinuity, the rectangular measurement area having a width of 20 mm cannot be applied to stress measurement in a minute area.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明の目的
は、多結晶材料の微小領域や粗大粒材料の応力測定に適
用でき、X線回折のアークの角度変化を精度良く検出で
き、多結晶材料の微小領域の応力測定が精度良く短時間
で行なえるX線回折アークの露光方法及び装置を提供す
ることである。
Therefore, an object of the present invention is to apply to the stress measurement of a microscopic region of a polycrystalline material or a coarse-grained material, and it is possible to detect the angle change of the arc of X-ray diffraction with high accuracy. It is an object of the present invention to provide an exposure method and apparatus for an X-ray diffraction arc, which enables accurate stress measurement in a minute region of a material in a short time.

【0008】[0008]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の微小領域応力測定用X線露光方法は、
X線をスリット及び前置スクリーンを介して試料上の微
小領域に入射させ、試料へのX線の入射角を変える毎
に、該微小領域から反射したX線回折アークを、後置ス
クリーンを介して固定したイメージングプレート上の同
一の測定領域に多重露光させることを特徴とするように
構成されている。
In order to solve the above-mentioned problems, the X-ray exposure method for measuring micro-region stress of the present invention comprises:
Each time X-rays are made incident on a minute area on the sample through the slit and the front screen, and the incident angle of the X-ray on the sample is changed, the X-ray diffraction arc reflected from the minute area is passed through the rear screen. Multiple exposure is performed on the same measurement area on the fixed imaging plate.

【0009】また、反射したX線回折アークをイメージ
ングプレートに露光させる間に、イメージングプレート
を入射X線の光軸の回転の中心として揺動を行なわせる
ことを特徴とするように構成されている。
Further, while the reflected X-ray diffraction arc is exposed on the imaging plate, the imaging plate is swung about the center of rotation of the optical axis of the incident X-ray. .

【0010】また、試料から反射したX線回折アークを
多重露光させる際に標準試料粉を試料上に置いて試料と
同時に露光させることを特徴とするように構成されてい
る。
Further, when the X-ray diffraction arc reflected from the sample is subjected to multiple exposure, the standard sample powder is placed on the sample and exposed simultaneously with the sample.

【0011】また、試料から反射したX線回折アークを
1回だけ露光させる際に標準試料粉を試料上に置いて試
料と同時に露光させることを特徴とするように構成させ
ている。
Further, when the X-ray diffraction arc reflected from the sample is exposed only once, the standard sample powder is placed on the sample and exposed simultaneously with the sample.

【0012】また、本発明の微小領域応力測定用露光装
置は、入射X線の光路上のスリットおよび前置スクリー
ンを、回転可能なゴニオメータに搭載した試料台の直前
に配置し、入射X線の光軸を中心として回転可能なアー
ムに、イメージングプレートを備えたイメージングプレ
ート支持板を搭載し、イメージングプレートの前面に後
置スクリーンを設置することを特徴とするように構成さ
れている。
Further, in the exposure apparatus for measuring microscopic region stress of the present invention, the slit on the optical path of the incident X-ray and the front screen are arranged immediately before the sample stage mounted on the rotatable goniometer, and the incident X-ray is measured. An imaging plate support plate having an imaging plate is mounted on an arm rotatable about an optical axis, and a rear screen is installed on the front surface of the imaging plate.

【0013】[0013]

【作用】多結晶材料の微小領域の応力測定にはまずスリ
ットにより希望の微小領域にあわせて入射X線を制限す
ることが必要である。スリットによるX線の制限により
ノイズが発生するが、このノイズは前置スクリーンをス
リットの下流側に配置することにより防ぐことができ
る。また、後置スクリーンにより、必要な回折X線のみ
を通し、イメージングプレートに不要なノイズが露光さ
せることを防ぐ。
In order to measure the stress in the microscopic region of the polycrystalline material, it is first necessary to limit the incident X-ray according to the desired microscopic region by the slit. Although noise is generated due to the limitation of X-rays by the slit, this noise can be prevented by disposing the front screen on the downstream side of the slit. Further, the rear screen allows only the necessary diffracted X-rays to pass therethrough and prevents the exposure of unnecessary noise to the imaging plate.

【0014】図1に示すようにイメージングプレート1
3上のX線回折アーク11の位置が回折角2θと対応し
ている。回折アークの微小領域や粗大結晶粒の場合はX
線回折アークはスポット状になる。応力測定のために
は、試料へのX線の入射角αの変化に伴う、これらのス
ポットの回折角度の変化を読み取らねばならない。試料
へのX線の入射角を数回変える毎に、スポット状のX線
回折アークを固定したイメージングプレート上の同一の
測定領域に多重露光させることにより数個の回折スポッ
トの回折角度2θの相対的変化を正確に読み取ることが
できる。イメージングプレートを交換したり、イメージ
ングプレート上の測定領域を動かして露光すれば、イメ
ージングプレートの露光装置での位置の再現性精度と、
読み取り装置での位置の再現性精度の低下のためにX線
回折アークの角度の測定精度が低下する。応力測定はs
in2Ψ法で行なう。この際、X線の入射角を変える多
重露光の回数は最小2回とすることができるが、測定精
度を上げるためには4回程度が望ましい。
As shown in FIG. 1, the imaging plate 1
The position of the X-ray diffraction arc 11 on 3 corresponds to the diffraction angle 2θ. X for a minute area of a diffraction arc or coarse crystal grains
The line diffraction arc becomes a spot. In order to measure the stress, it is necessary to read the change in the diffraction angle of these spots with the change in the incident angle α of the X-ray on the sample. Each time the incident angle of X-rays on the sample is changed several times, multiple exposures are made to the same measurement area on the fixed imaging plate with a spot-shaped X-ray diffraction arc, so that the diffraction angles 2θ of several diffraction spots are relative to each other. Change can be read accurately. By exchanging the imaging plate or moving the measurement area on the imaging plate for exposure, the reproducibility accuracy of the position of the imaging plate in the exposure device and
The accuracy of measuring the angle of the X-ray diffraction arc decreases due to the decrease in the position reproducibility accuracy of the reading device. Stress measurement is s
The in 2 Ψ method is used. At this time, the number of times of multiple exposure for changing the incident angle of X-rays can be set to a minimum of 2, but about 4 times is preferable in order to improve the measurement accuracy.

【0015】X線の発散や結晶粒の歪によるスポットの
ボケのため、回折角度変化の読み取りが困難である場合
や、イメージングプレートに不可避な点状のノイズとス
ポットの識別が困難である場合は、入射X線の光軸を回
転の中心としてイメージングプレートを揺動することに
より、X線回折アーク上の不連続なスポットを同心円状
に引き延ばし円弧状(アーク状)にすることが必要にな
る。このことによりX線回折アークの角度変化を正確に
読み取ることができる。また、イメージングプレートに
不可避な点状のノイズとX線回折アークを識別すること
も容易となる。このような揺動はX線の検出器として計
数管(位置検出型比例計数管を含む)を用いる場合にも
有効である。
When it is difficult to read the change in diffraction angle due to spot blurring due to X-ray divergence or crystal grain distortion, or when it is difficult to distinguish spot noise and spots that are unavoidable on the imaging plate. By swinging the imaging plate with the optical axis of the incident X-ray as the center of rotation, it is necessary to extend the discontinuous spot on the X-ray diffraction arc in a concentric circle shape to form an arc shape (arc shape). This makes it possible to accurately read the change in angle of the X-ray diffraction arc. Further, it becomes easy to distinguish the dot noise unavoidable on the imaging plate and the X-ray diffraction arc. Such swinging is also effective when a counter tube (including a position detection type proportional counter tube) is used as an X-ray detector.

【0016】X線回折アークを多重露光させる際に標準
試料粉を試料上において試料と同時に露光させ、標準試
料粉のX線回折アークの回折角度と比較することによ
り、X線回折アークの角度の絶対値を読み取ることがで
きる。従って、本方法はX線回折アークが目的のアーク
かどうかの確定を容易にし、かつ光学系配置が適正であ
るかの確認、および正しく回折角度を読み取るための基
準としても重要である。
When multiple exposures of the X-ray diffraction arc are performed, the standard sample powder is simultaneously exposed on the sample and compared with the diffraction angle of the X-ray diffraction arc of the standard sample powder to determine the angle of the X-ray diffraction arc. You can read the absolute value. Therefore, this method facilitates the determination of whether the X-ray diffraction arc is the target arc, and is also important as a reference for confirming the proper arrangement of the optical system and for correctly reading the diffraction angle.

【0017】また、標準試料粉の応力の平均値はゼロと
考えられるので、標準試料粉のX線回折アークは応力ゼ
ロ値を表示することになる。即ち、1回の露光でも標準
試料粉からの偏差を読み取ることにより応力を知ること
ができ、測定能率上きわめて有利となる。標準試料粉と
しては測定試料のX線回折アークと区別できるように鋭
い連続したX線回折アークを生じるものが良い。測定試
料と同一の物質であれば測定試料のX線回折アークの近
くにアークが生じるため都合が良い。例えば鉄試料を測
定する場合は結晶粒寸法を5μm程度に調整した焼きな
ました鉄粉がよい。標準試料粉を試料上に置く量は従来
の計数管法に比べはるかに少量でよい。例えば、数μm
厚さに塗布すればよい。
Further, since the average value of the stress of the standard sample powder is considered to be zero, the X-ray diffraction arc of the standard sample powder displays a zero stress value. That is, the stress can be known by reading the deviation from the standard sample powder even with one exposure, which is extremely advantageous in terms of measurement efficiency. It is preferable that the standard sample powder generate a sharp continuous X-ray diffraction arc so that it can be distinguished from the X-ray diffraction arc of the measurement sample. If the same material as the measurement sample is used, an arc is generated near the X-ray diffraction arc of the measurement sample, which is convenient. For example, when measuring an iron sample, annealed iron powder with a crystal grain size adjusted to about 5 μm is preferable. The amount of the standard sample powder placed on the sample may be much smaller than that of the conventional counter tube method. For example, a few μm
It may be applied to a thickness.

【0018】[0018]

【実施例】以下、本発明を実施例につき図面を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.

【0019】図1に、本発明の実施例による微小領域応
力測定用X線露光装置を示す。X線源1で発生したX線
2は、シャッタ3、フィルタ4、コリメータ5を経て試
料8に入射される。コリメータ5でX線2が平行化され
るが、スリット6で希望の微小領域にあわせてX線を制
限し照射する。例えば、一辺が300μmの正方形とす
る。さらに前置スクリーン7によりノイズの低減を行な
う。前置スクリーン7の開口部はスリットの開口形状よ
りもやや大きくしX線ビームへの接触を避ける。例え
ば、X線ビーム寸法よりも100μmほど大きくする。
前置スクリーン7の外寸法はなるべく大きくし、外から
のノイズの侵入を防ぐ必要がある。前置スクリーン7を
セットする位置は試料の直前が望ましいので、試料の回
転を妨害しない範囲で近接させる。スリット6および前
置スクリーン7の材料はX線を遮蔽するために、密度の
高い物質で厚く作らねばならない。例えば、真ちゅうま
たは鉄で2mm厚みとする。
FIG. 1 shows an X-ray exposure apparatus for measuring microscopic region stress according to an embodiment of the present invention. The X-ray 2 generated by the X-ray source 1 is incident on the sample 8 via the shutter 3, the filter 4, and the collimator 5. Although the collimator 5 collimates the X-ray 2, the slit 6 limits and irradiates the X-ray according to a desired minute area. For example, a square having a side of 300 μm is used. Further, noise is reduced by the front screen 7. The opening of the front screen 7 is made slightly larger than the opening shape of the slit to avoid contact with the X-ray beam. For example, it is made larger than the X-ray beam size by about 100 μm.
It is necessary to make the outer dimensions of the front screen 7 as large as possible to prevent noise from entering from the outside. Since it is desirable that the position where the front screen 7 is set is immediately before the sample, the position is set close to the sample so that the rotation of the sample is not disturbed. The material of the slit 6 and the front screen 7 should be thick and made of a dense substance in order to shield X-rays. For example, brass or iron has a thickness of 2 mm.

【0020】試料8は回転可能なゴニオメータ10に搭
載された試料台9の中に取り付けられる。イメージング
プレート支持板14の支持面は、回折X線11のイメー
ジングプレート13への垂直入射、及び試料からの距離
Rを一定とするために球面とし、定量性の確保を行な
う。簡便には球面の代わりに円筒面で代替することも可
能である。支持板14の支持面にはイメージングプレー
ト13が取り付けられる。イメージングプレート支持板
14はノイズとなる外部放射線の透過を防ぐため、ま
た、形状を正確に保つためには密度の高い物質で厚く作
ることが望ましいが、揺動する支持アーム15に搭載す
るため軽量性も要求される。例えば鉄で2mm厚み、ア
ルミニウムで6mm厚みとする。
The sample 8 is mounted in a sample table 9 mounted on a rotatable goniometer 10. The supporting surface of the imaging plate support plate 14 is a spherical surface in order to make the incident angle of the diffracted X-rays 11 on the imaging plate 13 and the distance R from the sample constant, and to ensure quantitativeness. It is also possible to simply replace the spherical surface with a cylindrical surface. The imaging plate 13 is attached to the support surface of the support plate 14. The imaging plate support plate 14 is preferably made of a dense material to be thick in order to prevent the transmission of external radiation that becomes noise and to maintain the shape accurately, but it is lightweight because it is mounted on the swinging support arm 15. Sex is also required. For example, iron is 2 mm thick and aluminum is 6 mm thick.

【0021】後置スクリーン12は必要なX線回折アー
クのみを通すように開口部を設定する。回折X線の波長
よりも長い波長のX線の透過を妨げる膜を開口部に貼る
こともノイズ低減のために有効である。Cr管球の場合
は、薄いビニル膜を用い、ゴニオメータ10内のX線の
通路をヘリウムガスで置換すると良い。Mo管球の場合
はアルミニウムの板が良い。
The rear screen 12 has an opening so that only a necessary X-ray diffraction arc can pass therethrough. It is also effective to reduce noise that a film that blocks transmission of X-rays having a wavelength longer than the wavelength of diffracted X-rays is attached to the opening. In the case of a Cr tube, it is advisable to use a thin vinyl film and replace the X-ray passage in the goniometer 10 with helium gas. In the case of Mo tube, an aluminum plate is preferable.

【0022】入射X線2の光軸を回転軸としたイメージ
ングプレート13の揺動について記す。揺動は点状のノ
イズとX線回折スポットの識別のためには最小±1°程
度でも効果を現わす。上限は特に設けないがX線回折ア
ークの角度を精度良く読み取るためには±10°程度で
充分である。揺動の実現のためにはカム機構の利用、ま
たは計算機によるステッピングモータの駆動制御が必要
となる。揺動を回転で代替することもできるが、後置ス
クリーン12で回折X線11が制限されているため露光
時間が長くなり能率が劣る。
The swing of the imaging plate 13 with the optical axis of the incident X-ray 2 as the rotation axis will be described. The swinging is effective even at a minimum of ± 1 ° for distinguishing the dot noise from the X-ray diffraction spot. The upper limit is not particularly set, but about ± 10 ° is sufficient for accurately reading the angle of the X-ray diffraction arc. In order to realize the swing, it is necessary to use a cam mechanism or control the drive of a stepping motor by a computer. Although swinging can be replaced by rotation, since the diffracted X-rays 11 are limited by the rear screen 12, the exposure time becomes long and the efficiency is poor.

【0023】試料8とイメージングプレート13間の距
離Rを近づけると回折X線強度は増すが、角度分解能は
劣化する。遠すぎれば角度分解能は向上するが、回折X
線強度が減じ、また、イメージングプレート13とその
支持板14、支持アーム15の寸法が巨大となり製作が
困難となる。強度と角度分解能のバランスを考慮し適切
な値を決める必要があるが、距離Rは200〜600m
mが適切と考えられる。
When the distance R between the sample 8 and the imaging plate 13 is reduced, the diffracted X-ray intensity increases, but the angular resolution deteriorates. If it is too far away, the angular resolution will improve, but the diffraction X
The line strength is reduced, and the dimensions of the imaging plate 13, its supporting plate 14, and the supporting arm 15 are enormous, which makes manufacturing difficult. It is necessary to determine an appropriate value considering the balance between strength and angular resolution, but the distance R is 200 to 600 m.
m is considered appropriate.

【0024】次に、本発明を具体的な微小領域の応力測
定例について説明する。
Next, the present invention will be described with reference to a specific example of stress measurement in a minute area.

【0025】(実験例1)図1に示した装置を用い、イ
メージングプレート支持板14を露光するイメージング
プレート面が試料を中心とした半径R=300mmの円
筒面となるように支持アーム15に取り付けた。消去済
みのカセットに封入した角形のイメージングプレート1
3をイメージングプレート支持板14に取り付けた。露
光開始より読み取り開始まで照明を消し、装置を暗く保
てる場合はカセットに封入する必要はない。イメージン
グプレート13は、長さ470mm、幅200mmであ
り、検出可能な回折角度の範囲は90度であった。実験
室においてCr管球(40Kv,30mA)より発生さ
せた特性X線を、フィルタ4、コリメータ5を通し直径
0.5mmの平行ビームとした。さらにスリット6、前
置スクリーン7を通して試料8に入射させた。スリット
6の開口部は一辺が300μmの正方形とし、前置スク
リーン7の開口部は一辺が400μmの正方形とした。
試料8は長さ200mm、幅50mm、厚み1mmの鋼
板2枚の中心付近をスポット溶接したものである。スポ
ット溶接の外縁部から0mm,0.5mm,1.0mm
の3箇所を測定した。試料8からの回折X線11は後置
スクリーン12を通り、イメージングプレート13の上
にX線回折アークの像を生じる。後置スクリーン12は
鉄の211反射のX線回折アークを選択するように固定
した。
(Experimental Example 1) Using the apparatus shown in FIG. 1, the imaging plate supporting plate 14 was attached to the supporting arm 15 so that the surface of the imaging plate exposed was a cylindrical surface having a radius R = 300 mm centering on the sample. It was Square-shaped imaging plate 1 enclosed in an erased cassette
3 was attached to the imaging plate support plate 14. When the device can be kept dark by turning off the illumination from the start of exposure to the start of reading, it is not necessary to put it in the cassette. The imaging plate 13 had a length of 470 mm and a width of 200 mm, and the detectable diffraction angle range was 90 degrees. A characteristic X-ray generated from a Cr tube (40 Kv, 30 mA) in a laboratory was passed through a filter 4 and a collimator 5 to form a parallel beam having a diameter of 0.5 mm. Further, the light was made incident on the sample 8 through the slit 6 and the front screen 7. The opening of the slit 6 was a square having a side of 300 μm, and the opening of the front screen 7 was a square having a side of 400 μm.
Sample 8 is two pieces of steel plate having a length of 200 mm, a width of 50 mm and a thickness of 1 mm, spot-welded near the center. 0mm, 0.5mm, 1.0mm from the outer edge of spot welding
Was measured at three points. Diffracted X-rays 11 from the sample 8 pass through the rear screen 12 and produce an image of the X-ray diffraction arc on the imaging plate 13. The rear screen 12 was fixed so as to select an X-ray diffraction arc of 211 reflections of iron.

【0026】イメージングプレートの露光時の鋼板製の
シャッタの開放時間は120秒であった。鋼板試料の傾
き角度を変えながら次々と露光させた。入射X線ビーム
に試料を垂直にした後、試料の傾きを圧延方向へ、α=
0,15,30,45°に傾け合計4回の露光後、読み
取りには他の読み取り専用装置で行なった。読み取り時
間は5分であった。
During the exposure of the imaging plate, the opening time of the shutter made of a steel plate was 120 seconds. The steel sheet samples were exposed one after another while changing the inclination angle. After making the sample perpendicular to the incident X-ray beam, tilt the sample in the rolling direction, α =
After a total of 4 exposures with tilts of 0, 15, 30, 45 °, reading was performed with another read-only device. The reading time was 5 minutes.

【0027】X線回折アークの検出可不可および2θ−
sin2Ψ線図の回帰直線に応力定数を乗じて求めた応
力値と信頼限界ΔσXを比較した。
X-ray diffraction arc not detectable and 2θ-
The stress value obtained by multiplying the regression line of the sin 2 Ψ diagram by the stress constant was compared with the confidence limit Δσ X.

【0028】(実験例2)反射したX線回折アークをイ
メージングプレートに露光させる間に、イメージングプ
レートを入射X線の光軸を回転の中心として揺動させ
た。揺動角度は±2°とした。他の条件は、実験例1と
同様である。
(Experimental Example 2) While the reflected X-ray diffraction arc was exposed on the imaging plate, the imaging plate was swung with the optical axis of the incident X-ray as the center of rotation. The swing angle was ± 2 °. Other conditions are the same as in Experimental Example 1.

【0029】(実験例3)標準試料粉として平均直径4
μmの鉄粉を試料の測定領域上におよそ一層置いて、標
準試料粉のX線回折アークと試料のX線回折アークを同
時に多重露光させた。他の条件は実験例1と同様であ
る。
(Experimental Example 3) A standard sample powder having an average diameter of 4
About 1 μm of iron powder was placed on the measurement area of the sample, and the X-ray diffraction arc of the standard sample powder and the X-ray diffraction arc of the sample were simultaneously exposed. Other conditions are the same as in Experimental Example 1.

【0030】(実験例4)実験例3と同様に標準試料粉
として平均直径4μmの鉄粉を試料の測定領域上におよ
そ一層置いて、圧延方向へ試料をα=45°に傾け1回
露光させた。他の条件は、実験例1と同様である。測定
時間が1/4になり測定能率が向上した。応力値は回折
角度2θの変化から算出した。
(Experimental Example 4) As in Experimental Example 3, an iron powder having an average diameter of 4 μm was placed as a standard sample powder on the measurement region of the sample, and the sample was tilted in the rolling direction at α = 45 ° and exposed once. Let Other conditions are the same as in Experimental Example 1. The measuring time was reduced to 1/4 and the measuring efficiency was improved. The stress value was calculated from the change in the diffraction angle 2θ.

【0031】(実験例5)放射光(2.5GeV,20
0mA)をモノクロメータにより単色化し波長を2.2
9オングストロームとして光源として実験を行なった。
露光時間は9秒とした。他の条件は実験例1と同様であ
る。
(Experimental Example 5) Synchrotron radiation (2.5 GeV, 20)
(0 mA) is converted into a single color with a monochromator and the wavelength is set to 2.2.
The experiment was conducted using a light source of 9 angstrom.
The exposure time was 9 seconds. Other conditions are the same as in Experimental Example 1.

【0032】(比較実験例1)計数管を用いた市販のX
線応力測定装置を用い測定した。コリメータを通し直径
0.3mmの並行ビームとした。X線源、試料、試料の
傾きなどは、実験例1と同様である。測定時間は試料の
傾き毎に60分で、合計4回測定した。
(Comparative Experimental Example 1) Commercial X using a counter tube
It measured using the linear stress measuring device. A parallel beam having a diameter of 0.3 mm was passed through the collimator. The X-ray source, the sample, the inclination of the sample, and the like are the same as in Experimental Example 1. The measurement time was 60 minutes for each inclination of the sample, and a total of 4 measurements were performed.

【0033】(比較実験例2)コリメータを通し直径
2.0mmの並行ビームとした。他の条件は、比較実験
例1と同様である。
(Comparative Experimental Example 2) A parallel beam having a diameter of 2.0 mm was passed through a collimator. The other conditions are the same as in Comparative Experimental Example 1.

【0034】以上の実験結果を表1及び図2に示す。表
1の応力値はスポット溶接の外縁部から0mmの値で、
±のあとの数字は信頼限界を示す。比較実験例2は応力
値が一応求められたが、極めて低く周辺領域の値の影響
をうけており、微小領域の応力値が得られていない。ま
た、信頼限界が大きく測定精度が極めて悪い。
The results of the above experiments are shown in Table 1 and FIG. The stress values in Table 1 are 0 mm from the outer edge of spot welding,
The number after ± indicates the confidence limit. Although the stress value was tentatively obtained in Comparative Experimental Example 2, the stress value in the minute region was not obtained because it was extremely low and affected by the value in the peripheral region. Moreover, the reliability limit is large and the measurement accuracy is extremely poor.

【0035】[0035]

【発明の効果】本発明の方法および装置によれば、多結
晶材料の微小領域のX線回折アークが検出可能で、かつ
角度変化を精度良く読み取れ、微小領域の応力測定が短
時間で可能となる。
According to the method and apparatus of the present invention, it is possible to detect an X-ray diffraction arc in a minute region of a polycrystalline material, read an angle change with high accuracy, and measure a stress in the minute region in a short time. Become.

【0036】[0036]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による微小領域応力測定用X線
露光方法及び装置の概略構成平面図である。
FIG. 1 is a schematic configuration plan view of an X-ray exposure method and apparatus for microscopic region stress measurement according to an embodiment of the present invention.

【図2】本発明の実施例による測定位置と応力値の測定
結果を示す図である。
FIG. 2 is a diagram showing a measurement position and a measurement result of a stress value according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 X線源 2 X線 3 シャッタ 4 フィルタ 5 コリメータ 6 スリット 7 前置スクリーン 8 試料 9 試料台 10 ゴニオメータ 11 回折X線 12 後置スクリーン 13 イメージングプレート 14 イメージングプレート支持板 15 支持アーム 16 揺動駆動装置 17 入射装置台 α 試料へのX線の入射角 2θ 回折角 R 試料とイメージングプレート間の距離 1 X-ray source 2 X-ray 3 Shutter 4 Filter 5 Collimator 6 Slit 7 Front screen 8 Sample 9 Sample stage 10 Goniometer 11 Diffractive X-ray 12 Rear screen 13 Imaging plate 14 Imaging plate support plate 15 Support arm 16 Oscillation drive device 17 Injector stand α X-ray incident angle on sample 2θ Diffraction angle R Distance between sample and imaging plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 X線をスリットおよび前置スクリーンを
介して試料上の微小領域に入射させ、試料へのX線の入
射角を変える毎に、該微小領域から反射したX線回折ア
ークを後置スクリーンを介して、固定したイメージング
プレート上の同一の測定領域に多重露光させることを特
徴とする微小領域応力測定のためのX線露光方法。
1. An X-ray is made to enter a minute area on a sample through a slit and a front screen, and each time the incident angle of the X-ray on the sample is changed, an X-ray diffraction arc reflected from the minute area is reflected. An X-ray exposure method for measuring micro-area stress, which comprises performing multiple exposure on the same measurement area on a fixed imaging plate via a stationary screen.
【請求項2】 反射したX線回折アークをイメージング
プレートに露光させる際に、イメージングプレートを入
射X線の光軸を回転の中心として揺動を行なわせること
を特徴とする請求項1記載の微小領域応力測定のための
X線露光方法。
2. The minute according to claim 1, wherein when the reflected X-ray diffraction arc is exposed on the imaging plate, the imaging plate is swung about the optical axis of the incident X-ray as the center of rotation. X-ray exposure method for area stress measurement.
【請求項3】 試料上に標準試料粉を置いてX線を入射
させ、標準試料粉のX線回折アークと試料のX線回折ア
ークを同時に多重露光させることを特徴とする請求項1
記載の微小領域応力測定用X線露光方法。
3. A standard sample powder is placed on a sample, and X-rays are incident thereon, and the X-ray diffraction arc of the standard sample powder and the X-ray diffraction arc of the sample are subjected to multiple exposure at the same time.
The X-ray exposure method for measuring microscopic region stress as described above.
【請求項4】 試料から反射したX線回折アークを1回
だけ露光させることを特徴とする請求項3記載の微小領
域応力測定用X線露光方法。
4. The X-ray exposure method for measuring micro-area stress according to claim 3, wherein the X-ray diffraction arc reflected from the sample is exposed only once.
【請求項5】 入射X線の光路上のスリットおよび前置
スクリーンを回転可能なゴニオメータに搭載した試料台
の直前に配置し、入射X線の光軸を中心として回転可能
なアームに、イメージングプレートを備えたイメージン
グプレート支持板を搭載し、イメージングプレートの前
面に後置スクリーンを設置することを特徴とする微小領
域応力測定用X線露光装置。
5. An imaging plate is provided on an arm rotatable about the optical axis of the incident X-ray by disposing a slit on the optical path of the incident X-ray and a front screen in front of a sample stage mounted on a rotatable goniometer. An X-ray exposure apparatus for microscopic region stress measurement, comprising: an imaging plate support plate equipped with; and a rear screen installed in front of the imaging plate.
JP12464893A 1993-04-30 1993-04-30 X-ray exposure method and equipment for measuring stress in microregion Withdrawn JPH06317484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12464893A JPH06317484A (en) 1993-04-30 1993-04-30 X-ray exposure method and equipment for measuring stress in microregion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12464893A JPH06317484A (en) 1993-04-30 1993-04-30 X-ray exposure method and equipment for measuring stress in microregion

Publications (1)

Publication Number Publication Date
JPH06317484A true JPH06317484A (en) 1994-11-15

Family

ID=14890613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12464893A Withdrawn JPH06317484A (en) 1993-04-30 1993-04-30 X-ray exposure method and equipment for measuring stress in microregion

Country Status (1)

Country Link
JP (1) JPH06317484A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559993A2 (en) 2011-08-18 2013-02-20 Hitachi Ltd. X-ray diffraction instrument for measuring an object larger than the x-ray detector
JP2013113734A (en) * 2011-11-29 2013-06-10 Pulstec Industrial Co Ltd X-ray diffraction measuring instrument and residual stress measuring method
CN106383000A (en) * 2016-09-01 2017-02-08 河北工业大学 Device and method for real-time measurement of optical material microcosmic stress based on monocrystal dual-electro-optical modulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559993A2 (en) 2011-08-18 2013-02-20 Hitachi Ltd. X-ray diffraction instrument for measuring an object larger than the x-ray detector
US8923480B2 (en) 2011-08-18 2014-12-30 Hitachi, Ltd. X-ray diffraction instrument
JP2013113734A (en) * 2011-11-29 2013-06-10 Pulstec Industrial Co Ltd X-ray diffraction measuring instrument and residual stress measuring method
CN106383000A (en) * 2016-09-01 2017-02-08 河北工业大学 Device and method for real-time measurement of optical material microcosmic stress based on monocrystal dual-electro-optical modulation

Similar Documents

Publication Publication Date Title
JPH11502025A (en) Apparatus for simultaneous X-ray diffraction and X-ray fluorescence measurement
GB2083215A (en) Apparatus for x-ray diffraction
JPH067343A (en) Computor tomograph
US8503611B2 (en) X-ray topography apparatus
JP3109789B2 (en) X-ray reflectance measurement method
JP2720131B2 (en) X-ray reflection profile measuring method and apparatus
JPH06317484A (en) X-ray exposure method and equipment for measuring stress in microregion
JPH05126768A (en) Fluorescent x-ray analyzing method
JPH1144662A (en) Minute part x-ray analysis device
JP3090780B2 (en) X-ray diffraction image dynamic exposure system
JP2002250704A (en) X-ray measuring instrument and x-ray measuring method
JPH0915392A (en) X-ray analyzer
JPH04318433A (en) Radiograph stress measuring apparatus
JP2002529699A (en) X-ray diffractometer with x-ray optical reference channel
JPS6118129B2 (en)
JPH0610659B2 (en) X-ray analyzer
JP2002286658A (en) Apparatus and method for measurement of x-ray reflectance
JPH05264477A (en) Analyzing method for degree of orientation of crystalline phase
JP3090801B2 (en) X-ray diffraction arc exposure equipment
JPH06222017A (en) Surface diffraction x-ray aligner and aligning method
JPH05296948A (en) X-ray diffraction ring omnidirectional measuring device
JP4604242B2 (en) X-ray diffraction analyzer and X-ray diffraction analysis method
JPH11281595A (en) Fully automatic pole point figure measuring apparatus
JP2000346816A (en) X-ray analysis device
JP2999272B2 (en) Parallel beam X-ray diffractometer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704