JPH05264477A - Analyzing method for degree of orientation of crystalline phase - Google Patents

Analyzing method for degree of orientation of crystalline phase

Info

Publication number
JPH05264477A
JPH05264477A JP4061721A JP6172192A JPH05264477A JP H05264477 A JPH05264477 A JP H05264477A JP 4061721 A JP4061721 A JP 4061721A JP 6172192 A JP6172192 A JP 6172192A JP H05264477 A JPH05264477 A JP H05264477A
Authority
JP
Japan
Prior art keywords
diffraction
surface layer
rays
sample
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4061721A
Other languages
Japanese (ja)
Inventor
Shigeyuki Mori
茂之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4061721A priority Critical patent/JPH05264477A/en
Publication of JPH05264477A publication Critical patent/JPH05264477A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To analyze the degree of orientation of a crystalline phase of even a thin surface layer by setting the angle of incidence of X-rays to a sample to be so small as to obtain only the diffraction line by the surface layer. CONSTITUTION:When monochromatic X-rays of good parallelism are cast to a thin film on a substrate, the X-rays are elastically scattered at the crystalline surface of the surface layer or in the base material and observed only in a peculiar direction 2theta to the crystalline phase and the crystalline surface among the incident X-rays. When the angle of incidence alpha is made large, the intensity of a diffraction circle by the crystalline surface in the base material becomes larger as compared with that of a diffraction circle by the crystalline surface in the surface layer, and consequently the diffraction circle by the crystalline surface in the surface layer is hidden. The angle of incidence alpha should accordingly be set to be small in order to obtain the diffraction circle by the crystalline surface in the surface layer. For this purpose, the X-rays are turned to X-rays of good parallelism through a single aperture collimator 11, and brought into a flat sample 13 with small angles whereby only the diffraction line by the surface layer is obtained. The X-rays are diffracted by the sample 13 and caught as a diffraction circle by a film 12. Accordingly, the degree of orientation of the crystalline phase is analyzed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表層または薄膜(以下、
両者を合わせて「表層」と記す)の結晶相の配向度分析
法に関し、より詳しくは、めっき、蒸着、イオンプレー
ティング等の表面改質、または機械研削などにより得ら
れる表層中の結晶相の配向度分析法に関する。
The present invention relates to a surface layer or a thin film (hereinafter,
Both are collectively referred to as "surface layer"), and more specifically, regarding the method for analyzing the orientation of the crystal phase of the crystal phase in the surface layer obtained by plating, vapor deposition, surface modification such as ion plating, or mechanical grinding. Orientation analysis method.

【0002】[0002]

【従来の技術】一般に試料の結晶構造を解析する結晶相
の配向度分析法としては、X線回折法を利用したものが
あり、より具体的には写真を使ったラウエ法や、極図形
測定法などがある。さらに前記ラウエ法の中には背面反
射ラウエ法と呼ばれる方法と透過ラウエ法と呼ばれる方
法とがあり、また前記極図形測定法の中にも反射法と透
過法とがある。
2. Description of the Related Art Generally, as a method of analyzing the orientation of a crystal phase for analyzing a crystal structure of a sample, there is a method utilizing an X-ray diffraction method, and more specifically, a Laue method using a photograph or a polar figure measurement. There is a law. Further, the Laue method includes a method called a back reflection Laue method and a method called a transmission Laue method, and the polar figure measuring method also includes a reflection method and a transmission method.

【0003】図6〜9に基づいてこれらの方法を順に説
明する。まず、背面反射ラウエ法について説明する。こ
の方法はX線が透過することができない位に試料厚さが
厚い場合にも用いることができる。したがって、該背面
反射ラウエ法では図6に示したように、カセット12が
フィルム(カセット12の試料側の面に設置)と単孔コ
リメータ11の両方を支持しており、単孔コリメータ1
1はカセット12の中央部に装着されている。そしてフ
ィルムから距離Dだけ離したところに試料13を設置し
た状態で、X線をコリメータ11を通して支持台14上
の試料13に照射し、試料13から反射された回折X線
をフィルムで捕らえる。
These methods will be described in order with reference to FIGS. First, the back reflection Laue method will be described. This method can also be used when the sample thickness is so large that X-rays cannot pass therethrough. Therefore, in the back reflection Laue method, as shown in FIG. 6, the cassette 12 supports both the film (installed on the sample side surface of the cassette 12) and the single-hole collimator 11, and the single-hole collimator 1
1 is attached to the center of the cassette 12. Then, with the sample 13 placed at a distance D from the film, the sample 13 on the support 14 is irradiated with X-rays through the collimator 11, and the diffracted X-rays reflected from the sample 13 are captured by the film.

【0004】次に透過ラウエ法について説明する。この
方法は、X線が透過できる位に試料厚さが薄く、かつ回
折円を検知できる位に試料厚さが厚い場合に用いる。こ
の方法では、図7に示したように、フィルム(カセット
12の試料側の面に設置)を試料13に対してX線源と
反対方向に配置した状態で、X線をコリメータ11を通
して支持台14上の試料13に照射する。するとX線は
試料13を透過し、この透過した回折X線をフィルムで
捕らえる。
Next, the transmission Laue method will be described. This method is used when the sample thickness is thin enough to allow X-rays to pass therethrough, and thick enough to detect diffraction circles. In this method, as shown in FIG. 7, a film (installed on the surface of the cassette 12 on the sample side) is arranged in the direction opposite to the X-ray source with respect to the sample 13, and X-rays are passed through the collimator 11 to support the support table. The sample 13 on 14 is irradiated. Then, the X-rays pass through the sample 13, and the diffracted X-rays thus transmitted are captured by the film.

【0005】また、結晶面間隔の変動が小さい試料系に
おいて、試料中特定方向に対する特定結晶面の配向を知
りたい場合は、前記極図形測定方法が用いられる。ま
ず、反射法について説明する。この方法はX線が透過す
ることができない位に試料厚さが厚い場合に用い、この
方法における光学系は図8に示すように2θを回折角と
して、入射角と反射角がそれぞれθになっている等角度
反射の光学系である。前記反射法は試料面内のA軸を中
心とするα回転と試料面法線(B軸)を中心とするβ回
転とをさせることにより、言い換れば試料中の特定方向
RDに直行する2方向A軸、B軸の周りに試料13を回
転させることにより、入射X線に対する試料13の方向
を変えて回折線の強度分布を測定する。つまり、X線が
DSスリット17とシュルツスリット20を通過して試
料13に照射されると、このX線は試料13によって回
折され、RSスリット18とSSスリット19とを通
り、カウンタ16で計測される。
Further, in the sample system in which the variation of the crystal plane spacing is small, when the orientation of the specific crystal plane with respect to the specific direction in the sample is desired, the polar figure measuring method is used. First, the reflection method will be described. This method is used when the sample thickness is too thick to allow X-rays to pass through, and the optical system in this method has an incident angle and a reflection angle of θ, respectively, as shown in FIG. It is an optical system of equiangular reflection. The reflection method is performed by α rotation about the A axis in the sample surface and β rotation about the sample surface normal (B axis), in other words, goes straight in the specific direction RD in the sample. By rotating the sample 13 around the A axis and the B axis in two directions, the direction of the sample 13 with respect to the incident X-ray is changed, and the intensity distribution of the diffraction line is measured. That is, when the X-ray passes through the DS slit 17 and the Schultz slit 20 and is applied to the sample 13, the X-ray is diffracted by the sample 13, passes through the RS slit 18 and the SS slit 19, and is measured by the counter 16. It

【0006】また、X線が透過できる位に試料が薄く、
かつ回折円を検知できる位に試料厚さが厚い場合には透
過法が用いられる。これは、図9に示すように、試料面
内のA軸を中心とするα回転と、試料面内回転であるβ
回転により、試料方向を変えて回折線(回折角が2θ)
の強度分布を測定する。つまりX線がDSスリット17
を通して試料13に照射されると、このX線は試料13
によって回折される。回折波は試料13を透過後、RS
スリット18とSSスリット19とを通り、カウンタ1
6で計測される。
The sample is thin enough to allow X-ray transmission,
When the sample thickness is large enough to detect the diffraction circle, the transmission method is used. As shown in FIG. 9, this is α rotation about the A axis in the sample plane and β which is rotation in the sample plane.
Diffraction line (diffraction angle is 2θ) by changing the sample direction by rotation
The intensity distribution of is measured. In other words, the X-ray is the DS slit 17
When the sample 13 is irradiated through the
Is diffracted by. After the diffracted wave passes through the sample 13, RS
Counter 1 through slit 18 and SS slit 19.
Measured at 6.

【0007】めっき、蒸着、イオンプレーティング等の
表面改質、または機械研削などにより得られる薄膜中の
結晶相の配向度を調べる場合、X線が透過することがで
きない位に試料厚さが厚いことから、従来は上記の方法
の中でも背面反射ラウエ法と極図形測定法の中の反射法
を用いていた。
When examining the degree of orientation of a crystal phase in a thin film obtained by plating, vapor deposition, surface modification such as ion plating, or mechanical grinding, the sample thickness is so thick that X-rays cannot pass through. Therefore, conventionally, the back reflection Laue method and the reflection method among the polar figure measurement methods have been used among the above methods.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記した
背面反射ラウエ法と極図形測定法の中の反射法は、薄膜
すなわち表層による回折円強度に較べ母材による回折円
強度が一般に大きいため、表層による回折円は母材によ
る回折円で隠れてしまうことがある。また、回折円を検
知できない位に表層が薄い場合には、分析が不可能であ
った。このような理由から表層中の結晶相の配向度分析
は通常の場合困難であるという課題があった。
However, in the back reflection Laue method and the reflection method in the polarographic measurement method described above, since the diffraction circular intensity by the base material is generally larger than the diffraction circular intensity by the thin film, that is, the surface layer, The diffraction circle may be hidden by the diffraction circle of the base material. Further, when the surface layer was so thin that the diffraction circle could not be detected, analysis was impossible. For this reason, there has been a problem that it is usually difficult to analyze the degree of orientation of the crystal phase in the surface layer.

【0009】本発明はこのような課題に鑑み発明された
ものであって、光学系の工夫により母材による回折強度
を弱め、表層による回折強度を強め、従来の光学系では
回折円を検知できなかった薄い表層に対しても適用可能
な表層中の結晶相の配向度分析法を提供することを目的
としている。
The present invention has been invented in view of the above problems, and by devising the optical system, the diffraction intensity by the base material is weakened and the diffraction intensity by the surface layer is enhanced, and the conventional optical system can detect the diffraction circle. It is an object of the present invention to provide a method for analyzing the degree of orientation of a crystal phase in a surface layer which can be applied to a thin surface layer which has not been present.

【0010】[0010]

【課題を解決するための手段】上記した目的を達成する
ため本発明に係る結晶相の配向度分析法は、試料にコリ
メータを通したX線を照射し、回折X線を二次元的に検
出することによって得られる回折円をもとに表層中の結
晶相の配向度を測定する方法において、前記試料に対す
るX線の入射角を該表層による回折線のみが得られる範
囲の低い角度とし、回折円の連続性から複数の結晶面ま
たは複数の結晶相の配向度を同時に測定することを特徴
としている。
In order to achieve the above-mentioned object, the crystal phase orientation analysis method according to the present invention detects a diffracted X-ray two-dimensionally by irradiating a sample with an X-ray passed through a collimator. In the method of measuring the degree of orientation of the crystal phase in the surface layer based on the diffraction circle obtained by the above, the incident angle of the X-ray to the sample is set to a low angle in the range where only the diffraction line by the surface layer is obtained, The feature is that the degree of orientation of a plurality of crystal planes or a plurality of crystal phases is simultaneously measured from the continuity of circles.

【0011】[0011]

【作用】本発明に係る方法の概念は背面反射ラウエ法の
概念を応用した斜入射ラウエ法により説明される。斜入
射ラウエ法を図1および図2に基づいて説明する。図1
は前記斜入射ラウエ法の光学系を示す慨略図であり、図
2は図1における、入射X線の広がりを考慮した概略図
である。基板上の薄膜に平行性の良い単色X線を照射す
ると、表層または母材中の結晶面で弾性散乱されたX線
は、入射X線に対して結晶相および結晶面に固有の方向
2θでのみ観測される。この2θと結晶面間隔dとの間
には下記の数1式の関係が成立する。
The concept of the method according to the invention is explained by the oblique incidence Laue method, which is an application of the concept of the back reflection Laue method. The oblique incidence Laue method will be described with reference to FIGS. 1 and 2. Figure 1
2 is a schematic diagram showing the optical system of the oblique incidence Laue method, and FIG. 2 is a schematic diagram considering the spread of incident X-rays in FIG. When the thin film on the substrate is irradiated with monochromatic X-rays with good parallelism, the X-rays elastically scattered by the crystal plane in the surface layer or the base material have a direction 2θ peculiar to the crystal phase and the crystal plane with respect to the incident X-ray. Only observed. The following equation 1 is established between the 2θ and the crystal plane spacing d.

【0012】[0012]

【数1】 2dsinθ=λ ここで、λは管球21より発生する特性X線の波長を表
わしている。
2 dsin θ = λ where λ represents the wavelength of the characteristic X-ray generated from the tube 21.

【0013】測定は試料を入射X線に対しわずかな入射
角度αだけ傾けた状態で露光し、次に、試料を除いた状
態でわずかな時間露光して直進したX線がフィルム12
と交わる点Aを記録する。この点Aから回折円までの距
離(回折円の半径)をRとし、この点Aから試料上のX
線照射点までの距離をDとすれば、RとDとの間には数
2のような関係がなされている。
In the measurement, the sample was exposed with the incident X-ray being tilted by a slight incident angle α, and then the sample was removed for a short period of time, and the X-ray was a straight line.
Record point A where Let R be the distance from this point A to the diffraction circle (radius of the diffraction circle), and let X on the sample from this point A.
Assuming that the distance to the line irradiation point is D, the relationship between R and D is as shown in Formula 2.

【0014】[0014]

【数2】 R=Dtan2θ また、ラウエ法では入射X線として波長が一定の単色X
線ではなく、少し連続X線が加わった単色に近い多色X
線を用いるため、特定面による回折において、数1式を
満足する2θが無数に存在することになり、フィルムの
バックグランドが高くなって回折円が見ずらくなるた
め、数2式中のR値の読み取りには誤差が生じてくる。
従って正確なR値測定のためには入射X線の単色化を図
るかまたは管電圧を下げて連続X線の寄与を小さくする
方法が有効である。また、Rが大きい回折円ではX線照
射点と回折円との距離が大きくなることにより、フィル
ム上でのX線強度が減少することからR値の読み取りは
不正確になる。また、以下に示すとおりコリメータの直
径φが零ではないのでRが大きい回折円では入射X線の
広がりを無視できないことになる。図2は入射X線の広
がりを考慮して斜入射ラウエ法の光学系を示したもの
で、この図2より、X線照射点(楕円)の長径はφ/s
inαに等しいこと、フイルム上での回折円の巾ΔRは
下記の数3式により求められることがわかる。
## EQU00002 ## R = Dtan2.theta .. Further, in the Laue method, a monochromatic X having a constant wavelength is used as an incident X-ray.
Not a line but a multi-colored X that is similar to a single color with some continuous X-rays added
Since a line is used, in the diffraction by a specific surface, there are innumerable 2θs that satisfy the equation (1), the background of the film becomes high, and the diffraction circle becomes difficult to see. There is an error in reading the value.
Therefore, in order to accurately measure the R value, it is effective to make the incident X-ray monochromatic or reduce the tube voltage to reduce the contribution of continuous X-rays. Further, in a diffractive circle with a large R, the distance between the X-ray irradiation point and the diffractive circle becomes large, and the X-ray intensity on the film decreases, so that the reading of the R value becomes inaccurate. Further, as shown below, since the diameter φ of the collimator is not zero, the spread of the incident X-ray cannot be ignored in the diffraction circle having a large R. FIG. 2 shows an optical system of the oblique incidence Laue method in consideration of the spread of incident X-rays. From FIG. 2, the major axis of the X-ray irradiation point (ellipse) is φ / s.
It can be seen that it is equal to inα, and the width ΔR of the diffraction circle on the film is obtained by the following formula 3.

【0015】[0015]

【数3】 ΔR=(tan2θ/tanα−1)φ このような回折円の幅の広がりにより、R値はΔRだけ
の巾を生じてくる。従って、R値を正確に読み取るには
数3式にコリメータの径を代入して、2θの範囲を決定
する必要があり、例えばコリメータの直径が1mmの場
合α<2θ<30°とする必要がある。更に、2θをこ
の範囲内とするためには数1式に2θと、予想されるd
値の範囲とを代入し、λの取るべき値の範囲を算出後、
この範囲内に特性X線の波長を有するX線管球を用いる
ことによりR値読取りの正確性を高めることができる。
## EQU00003 ## .DELTA.R = (tan2.theta./tan.alpha.-1) .phi. Due to the widening of the width of the diffraction circle, the R value has a width of .DELTA.R. Therefore, in order to accurately read the R value, it is necessary to substitute the diameter of the collimator into the formula 3 to determine the range of 2θ. For example, when the diameter of the collimator is 1 mm, it is necessary to set α <2θ <30 °. is there. Further, in order to set 2θ within this range, 2θ is calculated in the formula 1 and the expected d
After substituting the value range and, and calculating the range of the value that λ should take,
By using an X-ray tube having a characteristic X-ray wavelength within this range, the accuracy of reading the R value can be improved.

【0016】上記のような条件下において入射角αを大
きくすると表層中の結晶面による回折円に較べ母材の結
晶面による回折円の強度が大きくなるため、表層中の結
晶面による回折円は母材の結晶面による回折円に隠れ
る。表層中の結晶面による回折円を得るためには逆にα
を小さくして表層中の結晶面による回折円に較べ母材の
結晶面による回折円の強度を小さくすればよい。
When the incident angle α is increased under the above conditions, the intensity of the diffraction circle by the crystal plane of the base material becomes larger than that by the crystal plane of the surface layer. Hidden in the diffraction circle by the crystal plane of the base material. To obtain the diffraction circle by the crystal plane in the surface layer, conversely α
Is made smaller so that the intensity of the diffraction circle by the crystal plane of the base material is smaller than the intensity of the diffraction circle by the crystal plane in the surface layer.

【0017】しかし、αを小さくするとX線照射点は扁
平な楕円となるため、正確なD値は求め難かった。従っ
てまず母材中結晶相が既知である試料を用い、入射角α
を大きくして前記母材の回折円を得る。この母材中結晶
相のJCPDS(JointCommittee on
Powder Diffraction Stand
ard)カードを用いて母材中結晶相のdが求められる
ので、このdを数1式に代入することによりθが求ま
り、一方母材のRはフィルムから読み取れるので数2式
にθと母材のRを代入して、正確なD値を求める。次に
αを小さくして表層による回折円を得て、表層のRを測
定する。数2式に今求めたDと表層のRの値を代入して
表層におけるθを求める。さらに、このθを数1式に代
入してdを求め、このdの値からJCPDSカードを用
いて表層の面指数を求めることが可能である。
However, when α is made small, the X-ray irradiation point becomes a flat ellipse, so that it is difficult to obtain an accurate D value. Therefore, first, using a sample whose crystal phase in the base material is known, the incident angle α
Is increased to obtain the diffraction circle of the base material. JCPDS (Joint Committee on the crystalline phase in the base material)
Powder Diffraction Stand
d) of the crystalline phase in the base material can be obtained using the card, and θ can be obtained by substituting this d into the equation 1, while R of the base material can be read from the film, so Substitute R of the material to obtain an accurate D value. Next, α is reduced to obtain a diffraction circle by the surface layer, and R of the surface layer is measured. By substituting the values of D and R of the surface layer that have been obtained in the equation (2), θ in the surface layer is obtained. Furthermore, it is possible to obtain d by substituting this θ into the formula 1 and using the value of this d to obtain the surface index of the surface layer using a JCPDS card.

【0018】なお、αを大きくすると表層中の結晶面に
よる回折円以外に母材による回折円も現われるので、フ
ィルム上の回折円の中で、母材の結晶面によるものと表
層の結晶面によるものとの区別は入射角αを変化させる
ことにより判別ができる。また、ここでもし母材が既知
でない場合はDを正確に規定することが可能な光学系が
必要となる。
When α is increased, not only the diffraction circle due to the crystal plane in the surface layer but also the diffraction circle due to the base material appears. Therefore, among the diffraction circles on the film, it depends on the crystal plane of the base material and the crystal plane of the surface layer. The distinction from the object can be made by changing the incident angle α. If the base material is not known, an optical system capable of accurately defining D is required.

【0019】[0019]

【実施例】以下、本発明に係る結晶相の配向度分析法の
実施例を図面に基づいて説明する。なお、従来例と同一
機能を有する構成部品については同一符合を付すことと
する。図1は実施例における結晶相の配向度分析法の光
学系を概略的に示した図である。本実施例では、背面反
射ラウエ法の概念を応用し斜入射ラウエ法を利用し分析
が行なわれている。
EXAMPLES Examples of the crystal phase orientation degree analysis method according to the present invention will be described below with reference to the drawings. The components having the same functions as those of the conventional example are designated by the same reference numerals. FIG. 1 is a diagram schematically showing an optical system of a crystal phase orientation analysis method in Examples. In this embodiment, the concept of the back reflection Laue method is applied and the analysis is performed using the oblique incidence Laue method.

【0020】X線管球21から発生した単色X線または
単色に近いX線は単孔コリメータ11を通して平行性の
良いX線となり、平板試料13に対してすれすれの角度
で入射する。このとき入射されたX線は試料13によっ
て回折され、回折円となってフィルム12に捕らえら
れ、配向度分析される。
The monochromatic X-rays or the near-monochromatic X-rays generated from the X-ray tube 21 pass through the single-hole collimator 11 and become parallel X-rays, which are incident on the flat plate sample 13 at a grazing angle. The X-ray incident at this time is diffracted by the sample 13, becomes a diffraction circle, is captured by the film 12, and the degree of orientation is analyzed.

【0021】試料13としてめっき層中鉄の平均含有率
(合金化度)が8.5%、めっき層の厚さ(目付量)が
片面56.0g/m2 の合金化亜鉛めっき鋼板を用い
た。測定条件は下記の表1に示すとおりである。
As sample 13, an alloyed galvanized steel sheet having an average iron content in the plating layer (alloying degree) of 8.5% and a thickness of the plating layer (area weight) of 56.0 g / m 2 on one side was used. I was there. The measurement conditions are as shown in Table 1 below.

【0022】[0022]

【表1】 [Table 1]

【0023】母材α−Fe(211)の回折円の近傍に
現われるめっき層中合金相Γの(633)面およびδ1
相の(554)面の配向度をコリメータ1mmとしたと
きα<2θ<30°である条件下のもとで測定するため
に管球にはMo管球(λ=0.711Å)を用いた。
The (633) plane and δ 1 of the alloy phase Γ in the plating layer appearing near the diffraction circle of the base material α-Fe (211).
The Mo tube (λ = 0.711Å) was used as the tube for the measurement under the condition that α <2θ <30 ° when the degree of orientation of the (554) plane of the phase was set to 1 mm for the collimator. ..

【0024】得られた回折円は図3に示したようにな
り、さらに図3のデータにもとずき得られた各回折円の
Rと2θとdと面指数との関係を表2に示す。
The obtained diffraction circles are as shown in FIG. 3, and the relation between R, 2θ, d and the surface index of each diffraction circle obtained based on the data of FIG. 3 is shown in Table 2. Show.

【0025】[0025]

【表2】 [Table 2]

【0026】図3からは強くブロードな回折円28が見
られ、その内側に、回折円28より少し弱いブロードな
回折円27と回折円26が見られる。更に内側に回折円
27と回折円26より少し弱いブロードな回折円25
が、更に内側には回折円25より弱い回折円24、2
3、22、21が順に見受けられる。この回折円21〜
28はすべて回折円周上の強度が一様な半円であること
から、X線入射軸の周りで無配向といえる。たとえば、
回折円26のδ1 (554)面と回折円27のΓ(63
3)面を例に上げて述べると、αが一定で入射X線に対
する試料の向きを変えた場合、またはαを5度、15度
と変えた場合においても同様の結果が見られたことか
ら、δ1 相、Γ相共に、めっき層中で無配向であること
がわかる。
From FIG. 3, a strong and broad diffraction circle 28 can be seen, and broad diffraction circles 27 and 26, which are slightly weaker than the diffraction circle 28, can be seen inside thereof. Inside is a broader diffraction circle 25, which is slightly weaker than the diffraction circles 27 and 26.
However, on the inner side, the diffraction circles 24, 2 weaker than the diffraction circle 25
3, 22, 21 can be seen in order. This diffraction circle 21-
Since all 28 are semi-circles with uniform intensity on the diffraction circumference, they can be said to be non-oriented around the X-ray incidence axis. For example,
Δ 1 (554) plane of diffraction circle 26 and Γ (63
3) Taking the plane as an example, similar results were seen when α was constant and the orientation of the sample with respect to the incident X-ray was changed, or when α was changed to 5 degrees and 15 degrees. , Δ 1 phase and Γ phase are both non-oriented in the plating layer.

【0027】なお、回折円22はδ1 (154)面とΓ
1 (733)面の回折円が重なったものであり、回折円
23はζ(221)面と(6バー02)面とδ1 (33
0)面の回折円が重なったものである。
The diffraction circle 22 has a δ 1 (154) plane and a Γ
The diffraction circles of the 1 (733) plane are overlapped, and the diffraction circle 23 has the ζ (221) plane, the (6 bar 02) plane, and the δ 1 (33
The diffraction circles of the (0) plane are overlapped.

【0028】作用の項で述べた方法により、正確なD値
を求めると58mmであった。次に、数2式にDと表層
によるR値を代入して表層によるθを求める。さらに、
このθを数1式に代入してdを求め、このdの値からJ
CPDSカードにより面指数を求め、各回折円毎にまと
めたものが表2である。
An accurate D value was found to be 58 mm by the method described in the section of action. Next, by substituting D and the R value of the surface layer into the equation (2), θ by the surface layer is obtained. further,
By substituting this θ into the formula 1, d is obtained, and J is calculated from the value of d.
Table 2 shows a surface index obtained by a CPDS card and summarized for each diffraction circle.

【0029】次に比較例として従来方法を用いてδ1
(554)面とΓ(633)面の配向度分析を行なった
結果に関して述べる。
Next, as a comparative example, δ 1
The results of orientation degree analysis of the (554) plane and the Γ (633) plane will be described.

【0030】図4は背面反射ラウエ法により得られた回
折円の図である。実線の部分は観測された回折円であ
り、点線の部分は未観測の回折円である。測定条件は表
3のとおりである。
FIG. 4 is a diagram of a diffraction circle obtained by the back reflection Laue method. The solid line part is the observed diffraction circle, and the dotted line part is the unobserved diffraction circle. The measurement conditions are as shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】背面反射ラウエ法では2θはおよそ120
°以上とする必要があるためδ1 (554)面とΓ(6
33)面の回折円33、32がこの範囲内で観測できる
ように管球はCr管球(λ=2.291Å)を用いた。
しかし図4から分かるように、母材の回折円31は見ら
れるが外側に現われるはずのδ1 (554)面とΓ(6
33)面の回折円33、32は見られなかった。これ
は、入射角が90度と大きいためにめっき層を通過する
X線パス長が12〜14μm往復と小さくなり従って、
合金相の回折強度が弱くなるためである。なお、D値は
20mmであった。
In the back reflection Laue method, 2θ is about 120.
Since it is necessary to set it to be at least °, the δ 1 (554) plane and Γ (6
As the tube, a Cr tube (λ = 2.291Å) was used so that the diffraction circles 33, 32 of the 33) plane could be observed within this range.
However, as can be seen from FIG. 4, the δ 1 (554) plane and the Γ (6
The diffraction circles 33 and 32 on the (33) plane were not seen. Since the incident angle is as large as 90 degrees, the X-ray path length passing through the plating layer is as small as 12 to 14 μm reciprocating, and therefore,
This is because the diffraction intensity of the alloy phase becomes weak. The D value was 20 mm.

【0033】さらに、図5は同じ試料に関して反射によ
る極図形測定法により得た極図形を示した図である。測
定条件は下記の表4に示した。
Further, FIG. 5 is a diagram showing a polar figure obtained by a polar figure measuring method by reflection for the same sample. The measurement conditions are shown in Table 4 below.

【0034】[0034]

【表4】 [Table 4]

【0035】Γ(633)面の回折強度が弱いため配向
の有無の判定が困難であることが判る。これは入射角が
大きいことによる合金相の回折強度の低下、またはめっ
きおよびスラグ等に特有の試料作製覆歴毎の結晶面間隔
のわずかな変動による回折強度の低下が原因である。一
定の回折角での強度を測定する極図形測定法においては
結晶面間隔の変動による影響は大きい。
It can be seen that it is difficult to determine the presence / absence of orientation because the diffraction intensity of the Γ (633) plane is weak. This is because the diffraction intensity of the alloy phase is reduced due to the large incident angle, or the diffraction intensity is reduced due to a slight variation in the crystal plane spacing between the sample preparation history peculiar to plating and slag. In the polarographic measuring method for measuring the intensity at a constant diffraction angle, the influence of the variation of the crystal plane spacing is large.

【0036】上記したように従来の背面反射ラウエ法で
は表層中の結晶相の回折強度が弱くフィルム上に検知で
きなかったため表層の配向度分析は困難であり、また、
従来の極図形測定法においては表層中の結晶相の回折強
度が弱いかまたは結晶面間隔が変動する場合には、極図
形から配向の有無の判定が困難なため表層の配向度分析
は困難であった。しかし上記実施例においては入射角を
小さく取ることにより、表層中の結晶相の回折強度を強
くすることができるので、従来では測定が不可能であっ
た表層の回折円に関してもフィルム上に容易に捕らえら
れ、表層の配向度分析を行なうことができる。
As described above, according to the conventional back reflection Laue method, the diffraction intensity of the crystal phase in the surface layer is so weak that it cannot be detected on the film, and therefore it is difficult to analyze the degree of orientation of the surface layer.
In the conventional polar figure measurement method, when the diffraction intensity of the crystal phase in the surface layer is weak or the crystal plane spacing fluctuates, it is difficult to determine the presence or absence of the orientation from the polar figure, so it is difficult to analyze the orientation degree of the surface layer. there were. However, in the above examples, by making the incident angle small, it is possible to increase the diffraction intensity of the crystal phase in the surface layer. The orientation of the surface layer can be analyzed.

【0037】[0037]

【発明の効果】以上詳述したように本発明に係る結晶相
の配向度分析法おいては、試料にコリメータを通したX
線を照射し、回折X線を二次元的に検出することによっ
て得られる回折円をもとに試料中の結晶相の配向度を測
定する方法において、前記試料に対するX線の入射角を
該表層による回折線のみが得られる範囲の低い角度とす
ることにより、母材からの回折強度を弱め、表層からの
回折強度を強めることで従来の光学系では回折円を検知
できなかった薄い表層に対しても配向度分析が可能とな
った。
As described above in detail, in the crystal phase orientation analysis method according to the present invention, X-rays are passed through the sample with a collimator.
In the method of measuring the degree of orientation of a crystal phase in a sample based on a diffraction circle obtained by irradiating the sample with a two-dimensional detection of a diffracted X-ray, the incident angle of the X-ray with respect to the sample is determined by the surface layer. By making the angle low enough to obtain only the diffraction line by, the diffraction intensity from the base material is weakened, and the diffraction intensity from the surface layer is strengthened. Even so, it became possible to analyze the degree of orientation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る結晶相の配向度分析法の実施例に
用いられる斜入射ラウエ法の光学系を概略的に示した模
式図である。
FIG. 1 is a schematic diagram schematically showing an optical system of an oblique incidence Laue method used in an example of a crystal phase orientation degree analyzing method according to the present invention.

【図2】図1における入射X線の広がりを考慮した光学
系の模式図である。
FIG. 2 is a schematic diagram of an optical system that considers the spread of incident X-rays in FIG.

【図3】本発明に係る結晶相の配向度分析法の実施例に
用いられる斜入射ラウエ法で測定して得られた写真の模
式図である。
FIG. 3 is a schematic diagram of a photograph obtained by measurement by an oblique incidence Laue method used in an example of a crystal phase orientation degree analysis method according to the present invention.

【図4】従来の結晶相の配向度分析法である背面反射ラ
ウエ法で合金化亜鉛めっき鋼板の合金相の配向度を測定
して得られた写真の模式図である。
FIG. 4 is a schematic diagram of a photograph obtained by measuring the degree of orientation of the alloy phase of an alloyed galvanized steel sheet by the back reflection Laue method which is a conventional method of analyzing the degree of orientation of a crystal phase.

【図5】従来の結晶相の配向度分析法である極図形測定
法における反射法で合金化亜鉛めっき鋼板の合金相の配
向度を測定して得られた極図形である。
FIG. 5 is a polar figure obtained by measuring the degree of orientation of an alloy phase of an alloyed galvanized steel sheet by a reflection method in a polar figure measuring method which is a conventional crystal phase orientation degree analysis method.

【図6】従来の結晶相の配向度分析法である背面反射ラ
ウエ法の光学系を概略的に示した模式図である。
FIG. 6 is a schematic diagram schematically showing an optical system of a back reflection Laue method which is a conventional crystal phase orientation analysis method.

【図7】従来の結晶相の配向度分析法である透過ラウエ
法の光学系を概略的に示した模式図である。
FIG. 7 is a schematic diagram schematically showing an optical system of a transmission Laue method, which is a conventional crystal phase orientation analysis method.

【図8】従来の結晶相の配向度分析法である極図形測定
法における反射法の光学系を概略的に示した模式図であ
る。
FIG. 8 is a schematic diagram schematically showing an optical system of a reflection method in a polar figure measuring method which is a conventional crystal phase orientation degree analyzing method.

【図9】従来の結晶相の配向度分析法である極図形測定
法における透過法の光学系を概略的に示した模式図であ
る。
FIG. 9 is a schematic view schematically showing an optical system of a transmission method in a polar figure measuring method which is a conventional crystal phase orientation degree analyzing method.

【符号の説明】[Explanation of symbols]

11 単孔コリメータ 13 試料 11 Single hole collimator 13 Sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料にコリメータを通したX線を照射
し、回折X線を二次元的に検出することによって得られ
る回折円をもとに表層または薄膜中の結晶相の配向度を
測定する方法において、前記試料に対するX線の入射角
を該試料の表層または薄膜の回折線のみが得られる範囲
の低い角度とし、回折円の連続性から複数の結晶面また
は複数の結晶相の配向度を同時に測定することを特徴と
する結晶相の配向度分析法。
1. The orientation degree of a crystal phase in a surface layer or a thin film is measured based on a diffraction circle obtained by irradiating a sample with X-rays passed through a collimator and detecting the diffracted X-rays two-dimensionally. In the method, the angle of incidence of X-rays on the sample is set to a low angle within a range where only the diffraction line of the surface layer or thin film of the sample is obtained, and the degree of orientation of a plurality of crystal planes or a plurality of crystal phases is determined from the continuity of diffraction circles. A method for analyzing the degree of orientation of a crystal phase, which is characterized by simultaneous measurement.
JP4061721A 1992-03-18 1992-03-18 Analyzing method for degree of orientation of crystalline phase Pending JPH05264477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4061721A JPH05264477A (en) 1992-03-18 1992-03-18 Analyzing method for degree of orientation of crystalline phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4061721A JPH05264477A (en) 1992-03-18 1992-03-18 Analyzing method for degree of orientation of crystalline phase

Publications (1)

Publication Number Publication Date
JPH05264477A true JPH05264477A (en) 1993-10-12

Family

ID=13179375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4061721A Pending JPH05264477A (en) 1992-03-18 1992-03-18 Analyzing method for degree of orientation of crystalline phase

Country Status (1)

Country Link
JP (1) JPH05264477A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091484B2 (en) 2003-11-14 2006-08-15 Tdk Corporation Method and apparatus for crystal analysis
JP2006313157A (en) * 2005-05-02 2006-11-16 F Hoffmann La Roche Ag Method and device for x-ray diffraction analysis
WO2013161922A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
US9927378B2 (en) 2013-10-25 2018-03-27 Nippon Steel & Sumitomo Metal Corporation On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line
CN112782203A (en) * 2021-02-22 2021-05-11 长江存储科技有限责任公司 Judging method of crystalline phase structure and crystalline phase calibration template

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091484B2 (en) 2003-11-14 2006-08-15 Tdk Corporation Method and apparatus for crystal analysis
JP2006313157A (en) * 2005-05-02 2006-11-16 F Hoffmann La Roche Ag Method and device for x-ray diffraction analysis
WO2013161922A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
JP5403193B1 (en) * 2012-04-25 2014-01-29 新日鐵住金株式会社 Method and apparatus for measuring Fe-Zn alloy phase thickness of galvannealed steel sheet
US9417197B2 (en) 2012-04-25 2016-08-16 Nippon Steel & Sumitomo Metal Corporation Method of measuring thickness of Fe—Zn alloy phase of galvannealed steel sheet and apparatus for measuring the same
US9927378B2 (en) 2013-10-25 2018-03-27 Nippon Steel & Sumitomo Metal Corporation On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line
CN112782203A (en) * 2021-02-22 2021-05-11 长江存储科技有限责任公司 Judging method of crystalline phase structure and crystalline phase calibration template
CN112782203B (en) * 2021-02-22 2024-02-20 长江存储科技有限责任公司 Crystal phase structure judging method and crystal phase calibration template

Similar Documents

Publication Publication Date Title
US8548123B2 (en) Method and apparatus for using an area X-ray detector as a point detector in an X-ray diffractometer
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
US4696024A (en) Method and apparatus for detecting flaws in single crystal test samples
JPH05264477A (en) Analyzing method for degree of orientation of crystalline phase
JP3519203B2 (en) X-ray equipment
JP3968350B2 (en) X-ray diffraction apparatus and method
JPH0915392A (en) X-ray analyzer
JP2952284B2 (en) X-ray optical system evaluation method
JP2002529699A (en) X-ray diffractometer with x-ray optical reference channel
JP2999272B2 (en) Parallel beam X-ray diffractometer
JPS62500802A (en) Non-destructive testing method for parts made of heterogeneous materials
JPH04318433A (en) Radiograph stress measuring apparatus
JPH04164239A (en) Powder x-ray diffraction meter
JPH04329347A (en) Thin film sample x-ray diffracting device
JPS6259255B2 (en)
JPH076929B2 (en) Total reflection fluorescent EXAFS device
JPH109844A (en) Method and apparatus for measuring thickness
JPS6324243B2 (en)
JPS5819545A (en) X ray diffractometer
JPH02107952A (en) X-ray diffraction measurement for powder
JPH06222017A (en) Surface diffraction x-ray aligner and aligning method
JP3113700B2 (en) Polar figure measurement method
JPS60263841A (en) X-ray diffraction instrument for thin film sample
JP2000221147A (en) Crystal orientation angle measurement device and method
JPH11337507A (en) X-ray reflectance measuring method, and device thereof