JPH06317431A - Method for calibrating encoder - Google Patents

Method for calibrating encoder

Info

Publication number
JPH06317431A
JPH06317431A JP10811693A JP10811693A JPH06317431A JP H06317431 A JPH06317431 A JP H06317431A JP 10811693 A JP10811693 A JP 10811693A JP 10811693 A JP10811693 A JP 10811693A JP H06317431 A JPH06317431 A JP H06317431A
Authority
JP
Japan
Prior art keywords
rotary encoder
linear scale
scale
heads
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10811693A
Other languages
Japanese (ja)
Inventor
Hiroaki Shimazutsu
博章 島筒
Hikotaro Itani
彦太郎 猪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10811693A priority Critical patent/JPH06317431A/en
Publication of JPH06317431A publication Critical patent/JPH06317431A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To calibrate a linear scale or rotary encoder to be evaluated without using any reference linear scale nor rotary encoder which is one-rank higher in accuracy than the linear scale or rotary encoder to be evaluated. CONSTITUTION:Three linear scale signal reproducing heads 3A, 3B, and 3C which measure the relative moving amount of a mounting table 5 against a linear scale 1 by reproducing the signal of the scale 1 are arranged on the mounting table 5 at intervals La and Lb in the relative moving direction of the table 5 against the scale 1. The cumulative pitch error of the scale 1 is found from measured values within a prescribed moving extent by successively moving the table 5 against the scale 1 and obtaining the measured values of the heads 3A, 3B, and 3C at each moving distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンコーダの校正方法に
関し、特に、移動量検出器の一種であるリニヤスケー
ル、あるいは回転角検出器の一種であるロータリエンコ
ーダの累積ピッチ誤差を、比較的容易な測定作業と簡単
な演算処理によって、測定するための改良に関する。但
し、リニヤスケールとロータリエンコーダの総称とし
て、エンコーダという。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calibrating an encoder, and more particularly, it is relatively easy to determine the cumulative pitch error of a linear scale which is a type of movement detector or a rotary encoder which is a type of rotation angle detector. The present invention relates to an improvement for measuring by measurement work and simple arithmetic processing. However, the encoder is a general term for the linear scale and the rotary encoder.

【0002】[0002]

【従来の技術】近年、リニヤスケール及びロータリエン
コーダの需要が増大し、益々、高精度高分解能なエンコ
ーダが開発されている。高精度なエンコーダを開発する
ためには、(1)基本となるスケールを高精度に製作す
る技術と、同時に、(2)出来上ったエンコーダの精度
を高精度に評価する技術、が不可欠である。従来から実
施されているエンコーダの精度評価法を、リニヤスケー
ルの精度測定を例にとり、図3により説明する。
2. Description of the Related Art In recent years, the demand for linear scales and rotary encoders has increased, and encoders with higher precision and higher resolution have been developed. In order to develop a high-precision encoder, (1) technology for producing a basic scale with high accuracy, and at the same time, (2) technology for evaluating the accuracy of the completed encoder with high accuracy are essential. is there. A conventional encoder accuracy evaluation method will be described with reference to FIG. 3 by taking accuracy measurement of a linear scale as an example.

【0003】図3において、1は評価対象となるリニヤ
スケール(以下、評価対象リニヤスケールという)、2
は基準となる高精度なリニヤスケール(以下、基準リニ
ヤスケールという)であり、両者は略平行に配置されて
いる。3と4はリニヤスケール信号再生用のヘッドであ
り、一方のヘッド3は評価対象リニヤスケール1の信号
を再生するように配置され、他方のヘッド4は基準リニ
ヤスケール2の信号を再生するように配置されている。
5はヘッド3と4の取付台であり、図示しない案内面に
沿って、リニヤスケール1,2の目盛方向と略平行に往
復移動自在に設置されている。なお、簡単のため、ヘッ
ド3,4での検出信号を処理し、表示するための信号処
理、表示部については割愛した。
In FIG. 3, 1 is a linear scale to be evaluated (hereinafter referred to as an evaluation linear scale), 2
Is a high-precision linear scale serving as a reference (hereinafter referred to as a reference linear scale), and both are arranged substantially in parallel. 3 and 4 are heads for reproducing the linear scale signal, one head 3 is arranged to reproduce the signal of the linear scale 1 to be evaluated, and the other head 4 reproduces the signal of the reference linear scale 2. It is arranged.
Reference numeral 5 denotes a mount for the heads 3 and 4, which is installed along a guide surface (not shown) so as to be reciprocally movable substantially parallel to the graduation direction of the linear scales 1 and 2. For simplicity, the signal processing for processing and displaying the detection signals of the heads 3 and 4 and the display unit are omitted.

【0004】図3に示した構成により、下記の手順で評
価対象リニヤスケール1の精度即ち累積ピッチ誤差を把
握する。 (1)まず、取付台5を測定開始位置(原点)に移動さ
せ、各ヘッド3,4での測定値をゼロにセットする。 (2)次に、取付台5を順次移動させ、各移動距離Xi
(i=1,2,…,n)でのヘッド3の測定値S
(Xi ,3)と、ヘッド4の測定値S(Xi ,4)とを
得る。ここで、移動距離Xi は、例えばヘッド4による
基準リニヤスケール2の測定値S(Xi ,4)を採用す
る。 (3)これらの測定値より、各移動距離Xi での評価対
象リニヤスケール1の精度δ(Xi )は、基準リニヤス
ケール2を正として、数1により求まる。但し、i=
1,2,3,…,nである。
With the configuration shown in FIG. 3, the accuracy of the linear scale 1 to be evaluated, that is, the accumulated pitch error is grasped by the following procedure. (1) First, the mount 5 is moved to the measurement start position (origin), and the measurement values of the heads 3 and 4 are set to zero. (2) Next, the mount 5 is sequentially moved to move each moving distance X i.
The measured value S of the head 3 at (i = 1, 2, ..., N)
(X i , 3) and the measured value S (X i , 4) of the head 4 are obtained. Here, as the movement distance X i , for example, the measurement value S (X i , 4) of the reference linear scale 2 by the head 4 is adopted. (3) From these measured values, the accuracy δ (X i ) of the evaluation target linear scale 1 at each moving distance X i is obtained by the equation 1 with the reference linear scale 2 being positive. However, i =
1, 2, 3, ..., N.

【0005】[0005]

【数1】δ(Xi)=S(Xi,3)−S(Xi,4)## EQU1 ## δ (X i ) = S (X i , 3) -S (X i , 4)

【0006】[0006]

【発明が解決しようとする課題】図3を参照した説明か
ら判るように、従来のエンコーダ精度の評価法として
は、評価対象エンコーダと、これよりも一段階高精度な
基準エンコーダとを比較測定する方法が実施されている
が、最近のエンコーダへの要求精度は長さで0.1μ
m、あるいは角度で0.1秒程度まで高まっているた
め、これよりも一段階高精度な基準エンコーダの確保
と、高精度な比較測定を実現することは容易ではない。
As can be seen from the description with reference to FIG. 3, as a conventional encoder accuracy evaluation method, an encoder to be evaluated and a reference encoder which is one step more accurate than this are compared and measured. Although the method has been implemented, the recent required accuracy of the encoder is 0.1μ in length.
Since m or the angle is increased to about 0.1 seconds, it is not easy to secure a reference encoder that is one step more accurate than this and to realize highly accurate comparative measurement.

【0007】本発明は上述した従来技術の問題点に鑑
み、比較的容易な測定作業と簡単な演算処理によって、
基準となる他の高精度なエンコーダの助けを借りること
なく、エンコーダの精度を高精度に評価することができ
る校正方法を提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention uses a relatively easy measuring operation and a simple arithmetic process.
It is an object of the present invention to provide a calibration method capable of highly accurately evaluating the accuracy of an encoder without the aid of another highly accurate encoder serving as a reference.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する請求
項1の発明のエンコーダの校正方法は、直線的移動量検
出のためのリニヤスケールについてのものであり、リニ
ヤスケールと該リニヤスケール信号再生用ヘッドの取付
台とを前記リニヤスケールの目盛方向にほぼ平行に相対
的移動可能に設け、前記リニヤスケールの信号を再生し
て前記取付台とリニヤスケールとの相対移動量を測定す
る3個のリニヤスケール信号再生用ヘッドを、取付台上
に該取付台とリニヤスケールの相対移動方向に互いに間
隔をおいて配置し、前記取付台とリニヤスケールとを順
次相対移動させて、各移動距離での3個のヘッドの測定
値を求め、所定の移動範囲にわたる測定値から演算によ
って前記リニヤスケールの累積ピッチ誤差を求めること
を特徴とする。
A method for calibrating an encoder according to a first aspect of the present invention, which achieves the above object, is a linear scale for detecting a linear movement amount. The linear scale and the linear scale signal reproduction are provided. And a mounting base of a head for movement are provided so as to be relatively movable substantially parallel to the scale direction of the linear scale, and a signal of the linear scale is reproduced to measure a relative movement amount between the mounting base and the linear scale. The linear scale signal reproducing heads are arranged on the mounting table with a space therebetween in the relative movement direction of the mounting table and the linear scale, and the mounting table and the linear scale are sequentially moved relative to each other, and at each moving distance. It is characterized in that the measured values of three heads are obtained and the cumulative pitch error of the linear scale is obtained by calculation from the measured values over a predetermined moving range.

【0009】また請求項2の発明のエンコーダの校正方
法は、回転角検出のためのロータリエンコーダについて
のものであり、ロータリエンコーダと該ロータリエンコ
ーダ信号再生用ヘッドの取付台とを前記ロータリエンコ
ーダの目盛方向にほぼ同軸に相対的回転可能に設け、前
記ロータリエンコーダの信号を再生して前記取付台とロ
ータリエンコーダとの相対回転角を測定する3個のロー
タリエンコーダ信号再生用ヘッドを、取付台上に該取付
台とロータリエンコーダの相対回転方向に互いに角度を
おいて配置し、前記取付台とロータリエンコーダとを順
次相対回転させて、各回転角での3個のヘッドの測定値
を求め、所定の回転範囲にわたる測定値から演算によっ
て前記ロータリエンコーダの累積ピッチ誤差を求めるこ
とを特徴とする。
The encoder calibration method according to a second aspect of the present invention relates to a rotary encoder for detecting a rotation angle, wherein a rotary encoder and a mount for the rotary encoder signal reproducing head are provided on the rotary encoder scale. On the mount, three rotary encoder signal reproducing heads, which are provided so as to be relatively rotatable substantially coaxially with each other in a direction, reproduce the signal of the rotary encoder to measure the relative rotation angle between the mount and the rotary encoder. The mount and the rotary encoder are arranged at an angle relative to each other in a relative rotation direction, and the mount and the rotary encoder are sequentially rotated relative to each other to obtain measured values of the three heads at each rotation angle, and a predetermined value is obtained. It is characterized in that the cumulative pitch error of the rotary encoder is obtained from the measurement value over the rotation range.

【0010】[0010]

【作用】請求項1の発明では、リニヤスケールの例えば
全測定範囲にわたって得た3個のヘッドの測定値を演算
処理することにより、基準となる他の高精度なリニヤス
ケールとの比較測定を行うことなく、評価対象とするリ
ニヤスケールの累積ピッチ誤差を求めることができる。
According to the first aspect of the present invention, the measurement values of the three heads obtained over the entire measurement range of the linear scale, for example, are arithmetically processed to perform comparative measurement with another high-precision linear scale serving as a reference. Without this, the cumulative pitch error of the linear scale to be evaluated can be obtained.

【0011】請求項2の発明では、ロータリエンコーダ
の例えば1回転にわたって得た3個のヘッドの測定値を
演算処理することにより、基準となる他の高精度なロー
タリエンコーダとの比較測定を行うことなく、評価対象
とするロータリエンコーダの累積ピッチ誤差を求めるこ
とができる。
According to the second aspect of the present invention, the measurement values of the three heads of the rotary encoder obtained over one rotation, for example, are arithmetically processed to perform comparative measurement with another highly accurate rotary encoder serving as a reference. Instead, the cumulative pitch error of the rotary encoder to be evaluated can be obtained.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】<リニヤスケールについての実施例>図1
はリニヤスケールの精度測定に本発明を適用した場合の
実施例を示し、1は評価対象のリニヤスケール、3A,
3B及び3Cはそれぞれリニヤスケール信号再生用ヘッ
ド、5はヘッド取付台である。本実施例では簡単のた
め、リニヤスケール1を固定し、ヘッド取付台5を図示
しない案内面に沿ってリニヤスケール1の目盛方向(図
1中で矢印で示す左右方向)にほぼ平行に往復移動自在
に取付けてある。3個のヘッド3A,3B,3Cはリニ
ヤスケール1の信号を再生できるようにヘッド取付台5
に、左から3A,3C,3Bの順で、且つそれぞれ間隔
b とLa をおいて取付けてある。なお、簡単のため、
各ヘッド3A,3B,3Cでの検出信号の処理及び表示
部、並びに、測定値の演算処理部については図示を省略
した。
<Example of Linear Scale> FIG. 1
Shows an example in the case where the present invention is applied to the accuracy measurement of a linear scale, and 1 is a linear scale to be evaluated, 3A,
3B and 3C are linear scale signal reproducing heads, and 5 is a head mount. In the present embodiment, for simplicity, the linear scale 1 is fixed, and the head mount 5 is reciprocally moved along a guide surface (not shown) substantially parallel to the scale direction of the linear scale 1 (left-right direction indicated by an arrow in FIG. 1). It is installed freely. The three heads 3A, 3B, 3C are head mounts 5 so that the signals of the linear scale 1 can be reproduced.
3A, 3C, 3B from the left, and at intervals L b and L a , respectively. For simplicity,
Illustration of the processing and display unit of the detection signal in each of the heads 3A, 3B, and 3C and the calculation processing unit of the measurement value is omitted.

【0014】<各ヘッド3A,3B,3Cでの移動量測
定>ヘッド3Aでの測定値S(Xi ,A)、ヘッド3B
での測定値S(Xi ,B)、ヘッド3Cでの測定値S
(Xi ,C)は、数2式で与えられる。
<Measurement of amount of movement by each head 3A, 3B, 3C> Measurement value S (X i , A) at head 3A, head 3B
Measured value S (X i , B) at the head 3C and measured value S at the head 3C
(X i , C) is given by Expression 2.

【0015】[0015]

【数2】S(Xi,A)=Xi+δ(Xi−Lb)+KA S(Xi,B)=Xi+δ(Xi+La)+KB S(Xi,C)=Xi+δ(Xi) +KC ## EQU2 ## S (X i , A) = X i + δ (X i −L b ) + K A S (X i , B) = X i + δ (X i + L a ) + K B S (X i , C) = X i + δ (X i ) + K C

【0016】ここで数2中、La はヘッド3Cと3Bの
間隔、Lb はヘッド3Aと3Cの間隔、Xi は測定開始
位置からのヘッド取付台5の移動量であってリニヤスケ
ール1上の位置を示す値、δ(Xi )は位置Xi におけ
るリニヤスケール1の累積ピッチ誤差、KA ,KB ,K
C はそれぞれヘッド3A,3B,3Cでの測定値のオフ
セット量である。(例えば、測定開始位置Xi =0での
測定値を全てゼロとする時には、KA =δ(−La )、
B =δ(Lb )、KC =δ(0)としたことと等価に
なる。)
In the equation 2, L a is the distance between the heads 3C and 3B, L b is the distance between the heads 3A and 3C, and X i is the amount of movement of the head mount 5 from the measurement start position, which is the linear scale 1. A value indicating the upper position, δ (X i ) is the cumulative pitch error of the linear scale 1 at the position X i , K A , K B , K
C is the offset amount of the measured values at the heads 3A, 3B and 3C, respectively. (For example, when all the measured values at the measurement start position X i = 0 are set to zero, K A = δ (−L a ),
This is equivalent to setting K B = δ (L b ) and K C = δ (0). )

【0017】そこで、ヘッド取付台5を測定開始位置
(X0 =0)からX1 ,X2 ,…,X n へと順次移動さ
せ、全移動範囲にわたって各ヘッドの測定値S(Xi
A),S(Xi ,B),S(Xi ,C)を得る(但し、
i=1,2,…,n)。
Therefore, the head mount 5 is set at the measurement start position.
(X0= 0) to X1, X2, ..., X nSequentially moved to
The measured value S (Xi
A), S (Xi, B), S (Xi, C) (however,
i = 1, 2, ..., N).

【0018】<演算処理による累積ピッチ誤差の把握> [I]測定値の荷重加算による合成測定値の算出 まず、数3で与えられる定数a,bを用いて、Xi での
合成測定値Y(Xi )=a・S(Xi ,B)+b・S
(Xi ,A)+S(Xi ,C)を求めると、数3式より
a+b+1=0の関係があるから、数2の代入により、
合成測定値Y(X i )は数4式のように求まる。
<Acquisition of Cumulative Pitch Error by Calculation Processing> [I] Calculation of combined measurement value by addition of weight of measurement values First, X is calculated by using constants a and b given by equation (3).iIn
Combined measurement value Y (Xi) = A · S (Xi, B) + b ・ S
(Xi, A) + S (Xi, C) is obtained, from Equation 3
Since there is a relationship of a + b + 1 = 0, by substituting equation 2,
Combined measurement value Y (X i) Is obtained as in Equation 4.

【0019】[0019]

【数3】a=−Lb/(La+Lb) b=−La/(La+Lb[Number 3] a = -L b / (L a + L b) b = -L a / (L a + L b)

【0020】[0020]

【数4】 Y(Xi)=a・S(Xi,B)+b・S(Xi,A)+S(Xi,C) =(a+b+1)Xi+(a・KB+b・KA+KC) +a・δ(Xi+La)+b・δ(Xi−Lb)+δ(Xi) =(a・KB+b・KA+KC)+a・δ(Xi+La) +b・δ(Xi−Lb)+δ(Xi) =K0+a・δ(Xi+La)+b・δ(Xi−Lb)+δ(Xi## EQU00004 ## Y ( X.sub.i ) = a.S ( X.sub.i , B) + b.S ( X.sub.i , A) + S ( X.sub.i , C) = (a + b + 1) X.sub.i + (a.K B + b.K) A + K C) + a · δ (X i + L a) + b · δ (X i -L b) + δ (X i) = (a · K B + b · K A + K C) + a · δ (X i + L a) + b · δ (X i -L b) + δ (X i) = K 0 + a · δ (X i + L a) + b · δ (X i -L b) + δ (X i)

【0021】ここで数4中、K0 =a・KB +b・KA
+KC であり、K0 は測定系の設定条件によって定まる
未知の一定値である。
Here, in the equation 4, K 0 = a · K B + b · K A
+ K C , and K 0 is an unknown constant value determined by the setting conditions of the measurement system.

【0022】数4式から判るように、合成測定値Y(X
i )からは、ヘッド取付台5の移動量Xi を含む項がな
くなり、測定系の設定条件によって定まる一定値K
0 と、リニヤスケール1の累積ピッチ誤差δ(Xi +L
a ),δ(Xi −Lb ),δ(X i )を含んだ項だけが
残る。このうち、K0 は移動量Xi によっては変化しな
い一定値(直流成分)であり、複数の測定位置Xi (i
=1,2,…,n)での測定値から得られる合成測定値
のデータ列Y(Xi )(i=1,2,…,n)の変動成
分(交流成分)中に、リニヤスケール1の累積ピッチ誤
差が含まれることになる。
As can be seen from the equation (4), the synthetic measured value Y (X
i), The movement amount X of the head mount 5iTerm containing
Constant value K determined by the setting conditions of the measurement system
0And the cumulative pitch error δ (Xi+ L
a), Δ (Xi-Lb), Δ (X i) Only
Remain. Of these, K0Is the movement amount XiMay not change
Is a constant value (DC component), and there are multiple measurement positions Xi(I
= 1, 2, ..., N) synthetic measurement values obtained from the measurement values
Data string Y (Xi) (I = 1, 2, ..., N)
The cumulative pitch of linear scale 1 is incorrect during
The difference will be included.

【0023】[II]累積ピッチ誤差δ(Xi )の導出 一般に、リニヤスケールの累積ビッチ誤差δ(Xi
は、数5式に示すようなフーリエ級数の和の形で表わし
て考えられる。
[II] Derivation of Cumulative Pitch Error δ (X i ) In general, the linear scale cumulative Bitch error δ (X i )
Can be considered in the form of the sum of Fourier series as shown in Equation 5.

【0024】[0024]

【数5】 [Equation 5]

【0025】ここに数5中で、Lはリニヤスケール測定
長さ、Cj は各次数成分の振幅値、ψj は各次成分の位
相ずれ量である。
In Equation 5, L is the linear scale measurement length, C j is the amplitude value of each order component, and ψ j is the phase shift amount of each order component.

【0026】そこで、数5に数4を代入して整理する
と、数6式が得られる。
Therefore, by substituting the equation 4 into the equation 5, the equation 6 is obtained.

【0027】[0027]

【数6】 [Equation 6]

【0028】ここに数6中で、 fj={(1+a・cos jα+b・cos jβ)2+(a・sin jα−b
・sin jβ)21/2 、 φj=tan-1{−(a・sin jα−b・sin jβ)/(1+a・cos
jα+b・cos jβ)}、 α=2πLa/L、 β=2πLb/L であり、これらは測定系が定まれば全て計算により求ま
る値である。
In Equation 6, f j = {(1 + a · cos jα + b · cos jβ) 2 + (a · sin jα−b
・ Sin jβ) 2 } 1/2 , φ j = tan -1 {-(a ・ sin jα-b ・ sin jβ) / (1 + a ・ cos
jα + b · cos jβ)}, α = 2πL a / L, β = 2πL b / L, and these are all values obtained by calculation if the measurement system is fixed.

【0029】即ち、以上のことから判るように、3個の
ヘッド3A,3B,3Cでの測定値S(Xi ,A),S
(Xi ,B),S(Xi ,C)の荷重加算によって得ら
れる合成測定値のデータ列Y(Xi )(i=1,2,
…,n)は、リニヤスケール1の累積ピッチ誤差の振幅
がfj だけ拡大され、位相がφj だけ変化したものにな
っている。
That is, as can be seen from the above, the measured values S (X i , A), S of the three heads 3A, 3B, 3C are measured.
(X i , B), S (X i , C) data sequence Y (X i ) (i = 1, 2,
, N) is such that the amplitude of the cumulative pitch error of the linear scale 1 is enlarged by f j and the phase is changed by φ j .

【0030】そこで、フーリエ変換の手法を利用して、
合成測定データ列Y(Xi )(i=1,2,…,n)の
交流成分Y(Xi)ACから累積ピッチ誤差δ(Xi )を求
めることができ、以下にその方法を説明する。
Therefore, using the Fourier transform method,
The cumulative pitch error δ (X i ) can be obtained from the AC component Y (X i ) AC of the synthetic measurement data string Y (X i ) (i = 1, 2, ..., N), and the method will be described below. To do.

【0031】まず、数6中の交流成分Y(Xi)ACを、数
7式のようにフーリエ級数の和の形に展開した形で考え
る。すると、フーリエ級数の係数Fj,Gjと、前述した
j,Gj ,ψj ,φj との関係は数8式のようにな
る。従って、係数Fj とGj を用いて累積ピッチ誤差δ
(Xi)は、数9式のように表わすことができる。
First, consider the AC component Y (X i ) AC in Eq. 6 in the form of the sum of Fourier series as in Eq. Then, the relationship between the coefficients F j , G j of the Fourier series and the above-mentioned f j , G j , ψ j , φ j is as shown in Formula 8. Therefore, the cumulative pitch error δ is calculated using the coefficients F j and G j.
(X i ) can be expressed as in Expression 9.

【0032】[0032]

【数7】 [Equation 7]

【0033】[0033]

【数8】 Fj=fj・Cj・(cosψj・cosφj−sinψj・sin φj) Gj=−fj・Cj・(sinψj・cosφj+cosψj・sin φjEquation 8] F j = f j · C j · (cosψ j · cosφ j -sinψ j · sin φ j) G j = -f j · C j · (sinψ j · cosφ j + cosψ j · sin φ j)

【0034】[0034]

【数9】 [Equation 9]

【0035】以上の手順をまとめると、下記のようにな
る。 (i)3個のヘッド3A,3B,3Cを図1のように互
いに間隔をあけて配置し、ヘッド取付台5を順次移動さ
せながら、数2式で与えられる移動距離Xi での測定値
を得る。 (ii)上述の(i)で得た測定値を、数3式で与えられ
る定数a,bを用いて荷重加算し、数4式で表わされる
合成測定値Y(Xi )を求める。 (iii)次に、複数の測定位置Xi (i=1,2,…,
n)での測定値から得られる合成測定値のデータ列Y
(Xi )(i=1,2,…,n)を求め、その交流成分
Y(Xi)ACをフーリエ変換して、フーリエ変換の係数F
j ,Gj を求める。 (iv)最後に、(iii)で求めた係数Fj ,Gj から、数
9式によってリニヤスケール1の累積ピッチ誤差δ(X
i )を求める。
The above procedure is summarized as follows. (I) The three heads 3A, 3B, 3C are arranged at intervals as shown in FIG. 1, and the measured values at the moving distance X i given by the equation 2 while sequentially moving the head mount 5. To get (Ii) The measured values obtained in (i) above are weighted using the constants a and b given by the equation 3 to obtain a combined measured value Y (X i ) represented by the equation 4. (iii) Next, a plurality of measurement positions X i (i = 1, 2, ...,
Data sequence Y of synthetic measured values obtained from the measured values in n)
(X i ) (i = 1, 2, ..., N) is obtained, and the AC component Y (X i ) AC is Fourier-transformed to obtain the Fourier transform coefficient F.
Find j and G j . (Iv) Finally, from the coefficients F j and G j obtained in (iii), the cumulative pitch error δ (X
i ) is asked.

【0036】なお、一般に累積ピッチ誤差δ(Xi )は
移動距離Xi に比べて十分小さいため、ヘッド取付台5
の移動距離Xi としては、例えば中央のヘッド3Cでの
測定値S(Xi ,C)をそのまま採用することができ
る。この時には、ヘッド3Cの位置を基準として、リニ
ヤスケール1の累積ピッチ誤差が把握できることにな
る。
Since the cumulative pitch error δ (X i ) is generally sufficiently smaller than the moving distance X i , the head mount 5
As the moving distance X i , for example, the measurement value S (X i , C) at the central head 3C can be directly used. At this time, the cumulative pitch error of the linear scale 1 can be grasped with reference to the position of the head 3C.

【0037】また、上記実施例とは逆にヘッド取付台5
を固定し、リニヤスケール1を往復移動自在に設置し
て、リニヤスケール1を順次移動させて測定を行っても
良い。
Contrary to the above embodiment, the head mount 5 is
May be fixed, the linear scale 1 may be reciprocally installed, and the linear scale 1 may be sequentially moved for measurement.

【0038】以上の如くリニヤスケール1の累積ピッチ
誤差δ(Xi )を測定することにより、リニヤスケール
1の校正がなされる。
As described above, the linear scale 1 is calibrated by measuring the cumulative pitch error δ (X i ) of the linear scale 1.

【0039】<ロータリエンコーダについての実施例>
図2はロータリエンコーダの精度測定に本発明を適用し
た場合の実施例を示し、1は評価対象のロータリエンコ
ーダ、13A,13B及び13Cはそれぞれロータリエ
ンコーダ信号再生用ヘッド、15はヘッド取付台であ
る。本実施例では簡単のため、ヘッド取付台15を固定
し、ロータリエンコーダ11を図示しない軸受によって
ロータリエンコーダ11の目盛方向(図2中で矢印で示
す方向)にほぼ同軸に回転運動自在に取付けてある。3
個のヘッド13A,13B,13Cはロータリエンコー
ダ11の信号を再生できるようにヘッド取付台15に、
時計方向に13A,13C,13Bの順で、且つそれぞ
れ間隔βとαをおいて取付けてある。なお、簡単のた
め、各ヘッド13A,13B,13Cでの検出信号の処
理及び表示部、並びに、測定値の演算処理部については
図示を省略した。
<Example of Rotary Encoder>
FIG. 2 shows an embodiment in which the present invention is applied to accuracy measurement of a rotary encoder, 1 is a rotary encoder to be evaluated, 13A, 13B and 13C are rotary encoder signal reproducing heads respectively, and 15 is a head mount. . In this embodiment, for the sake of simplicity, the head mount 15 is fixed, and the rotary encoder 11 is mounted by a bearing (not shown) so as to be rotatable about the scale of the rotary encoder 11 (direction shown by an arrow in FIG. 2) substantially coaxially. is there. Three
The individual heads 13A, 13B, 13C are mounted on the head mount 15 so that the signals from the rotary encoder 11 can be reproduced.
It is attached in the order of 13A, 13C, 13B in the clockwise direction and at intervals β and α. For simplification, the processing and display unit of the detection signal in each of the heads 13A, 13B, and 13C, and the calculation processing unit of the measurement value are not shown.

【0040】<各ヘッド13A,13B,13Cでの角
度測定>ヘッド13Aでの測定値R(θi ,A)、ヘッ
ド13Bでの測定値R(θi ,B)、ヘッド13Cでの
測定値R(θi ,C)は、数10式で与えられる。
The measurement of the head 13A <respective heads 13A, 13B, an angle measurement at 13C> R (θ i, A ), the measured value R of the head 13B (θ i, B), measured at the head 13C R (θ i , C) is given by Expression 10.

【0041】[0041]

【数10】R(θi,A)=θi+δ(θi−β)+KA R(θi,B)=θi+δ(θi+α)+KB R(θi,C)=θi+δ(θi) +KC ## EQU10 ## R (θ i , A) = θ i + δ (θ i −β) + K A R (θ i , B) = θ i + δ (θ i + α) + K B R (θ i , C) = θ i + δ (θ i ) + K C

【0042】ここで数10中、αはヘッド13Cと13
Bの角度、βはヘッド13Aと13Cの角度、θi は測
定開始位置からのロータリエンコーダ11の回転角、δ
(θi )は角度位置θi におけるロータリエンコーダ1
1の累積ピッチ誤差、KA ,KB ,KC はそれぞれヘッ
ド13A,13B,13Cでの測定値のオフセット量で
ある。(例えば、測定開始位置θi =0での測定値を全
てゼロとする時には、KA =δ(−α)、KB =δ
(β)、KC =δ(0)としたことと等価になる。)
In the equation (10), α is the heads 13C and 13
B angle, β is the angle between the heads 13A and 13C, θ i is the rotation angle of the rotary encoder 11 from the measurement start position, and δ is
i ) is the rotary encoder 1 at the angular position θ i
The cumulative pitch error of 1, K A , K B , and K C are the offset amounts of the measured values at the heads 13A, 13B, and 13C, respectively. (For example, when all the measured values at the measurement start position θ i = 0 are zero, K A = δ (−α), K B = δ
(Β) and K C = δ (0) are equivalent. )

【0043】そこで、ロータリエンコーダ11を測定開
始位置(θ0 =0)からθ1 ,θ2,…,θn へと順次
回転させ、全回転範囲(1回転)にわたって各ヘッドの
測定値R(θi ,A),R(θi ,B),R(θi
C)を得る(但し、i=1,2,…,n)。
Therefore, the rotary encoder 11 is sequentially rotated from the measurement start position (θ 0 = 0) to θ 1 , θ 2 , ..., θ n , and the measurement value R (of each head is measured over the entire rotation range (1 rotation). θ i , A), R (θ i , B), R (θ i ,
C) is obtained (however, i = 1, 2, ..., N).

【0044】<演算処理による累積ピッチ誤差の把握> [I]測定値の荷重加算による合成測定値の算出 まず、数11で与えられる定数a′,b′を用いて、θ
i での合成測定値Y(θi )=a′・R(θi ,B)+
b′・R(θi ,A)+R(θi ,C)を求めると、数
11式よりa′+b′+1=0の関係があるから、数2
の代入により、合成測定値Y(θi )は数12式のよう
に求まる。
<Acquisition of Cumulative Pitch Error by Computation> [I] Calculation of Combined Measured Value by Adding Weights of Measured Values First, using constants a ′ and b ′ given by the equation 11, θ
Combined measurement value at i Y (θ i ) = a ′ · R (θ i , B) +
When b ′ · R (θ i , A) + R (θ i , C) is obtained, the relation of a ′ + b ′ + 1 = 0 is obtained from the formula 11, and therefore the formula 2
By substituting, the composite measured value Y (θ i ) can be obtained as in Expression 12.

【0045】[0045]

【数11】a′=−β/(α+β) b′=−α/(α+β)A ′ = − β / (α + β) b ′ = − α / (α + β)

【0046】[0046]

【数12】 Y(θi)=a′・R(θi,B)+b′・R(θi,A)+R(θi,C) =(a′+b′+1)Xi+(a′・KB+b′・KA+KC) +a′・δ(θi+α)+b′・δ(θi−β)+δ(θi) =(a′・KB+b′・KA+KC)+a′・δ(θi+α) +b′・δ(θi−β)+δ(θi) =K0+a′・δ(θi+α)+b′・δ(θi−β)+δ(θi## EQU12 ## Y (θ i ) = a'R (θ i , B) + b'R (θ i , A) + R (θ i , C) = (a '+ b' + 1) X i + (a ′ · K B + b ′ · K A + K C ) + a ′ · δ (θ i + α) + b ′ · δ (θ i −β) + δ (θ i ) = (a ′ · K B + b ′ · K A + K C ) + A ′ · δ (θ i + α) + b ′ · δ (θ i −β) + δ (θ i ) = K 0 + a ′ · δ (θ i + α) + b ′ · δ (θ i −β) + δ (θ i )

【0047】ここで数12中、K0 =a′・KB +b′
・KA +KC であり、K0 は測定系の設定条件によって
定まる未知の一定値である。
Here, in the equation 12, K 0 = a ′ · K B + b ′
• K A + K C , and K 0 is an unknown constant value determined by the setting conditions of the measurement system.

【0048】数12式から判るように、合成測定値Y
(θi )からは、ロータリエンコーダダ11の回転角θ
i を含む項がなくなり、測定系の設定条件によって定ま
る一定値K0 と、ロータリエンコーダ11の累積ピッチ
誤差δ(θi +α),δ(θi−β),δ(θi)を含ん
だ項だけが残る。このうち、K0 は回転角θi によって
は変化しない一定値(直流成分)であり、複数の測定位
置θi (i=1,2,…,n)での測定値から得られる
合成測定値のデータ列Y(θi )(i=1,2,…,
n)の変動成分(交流成分)中に、ロータリエンコーダ
11の累積ピッチ誤差が含まれることになる。
As can be seen from the equation (12), the synthetic measured value Y
From (θ i ), the rotation angle θ of the rotary encoder 11
There is no term including i, and a constant value K 0 determined by the setting conditions of the measurement system and cumulative pitch errors δ (θ i + α), δ (θ i −β), δ (θ i ) of the rotary encoder 11 are included. Only terms remain. Of these, K 0 is a constant value (DC component) that does not change depending on the rotation angle θ i , and is a combined measurement value obtained from measurement values at a plurality of measurement positions θ i (i = 1, 2, ..., N). Data string Y (θ i ) (i = 1, 2, ...,
The accumulated pitch error of the rotary encoder 11 is included in the fluctuation component (AC component) of n).

【0049】[II]累積ピッチ誤差δ(θi )の導出 一般に、ロータリエンコーダの累積ビッチ誤差δ
(θi )は、数13式に示すようなフーリエ級数の和の
形で表わして考えられる。
[II] Derivation of cumulative pitch error δ (θ i ) In general, the cumulative bite error δ of the rotary encoder
i ) can be considered by expressing it in the form of the sum of Fourier series as shown in Expression 13.

【0050】[0050]

【数13】 [Equation 13]

【0051】ここに数13中で、Lはロータリエンコー
ダ測定角度、Cj は各次数成分の振幅値、ψj は各次成
分の位相ずれ量である。
In Equation 13, L is the rotary encoder measurement angle, C j is the amplitude value of each order component, and ψ j is the phase shift amount of each order component.

【0052】そこで、数13に数12を代入して整理す
ると、数14式が得られる。
Then, by substituting Equation 12 into Equation 13 and rearranging, Equation 14 is obtained.

【0053】[0053]

【数14】 [Equation 14]

【0054】ここに数14中で、 fj={(1+a′・cos jα′+b′・cos jβ′)2+(a′・
sin jα′−b′・sin jβ′)21/2 、 φj=tan-1{−(a′・sin jα′−b′・sin jβ′)/(1
+a′・cos jα′+b′・cos jβ′)}、 α′=2πα/L、 β′=2πβ/L であり、これらは測定系が定まれば全て計算により求ま
る値である。
Here, in Expression 14, f j = {(1 + a ′ · cos jα ′ + b ′ · cos jβ ′) 2 + (a ′ ·
sin jα'-b '・ sin jβ') 2 } 1/2 , φ j = tan -1 {-(a '・ sin jα'-b' ・ sin jβ ') / (1
+ A ′ · cos jα ′ + b ′ · cos jβ ′)}, α ′ = 2πα / L, β ′ = 2πβ / L, which are all values obtained by calculation if the measurement system is fixed.

【0055】即ち、以上のことから判るように、3個の
ヘッド13A,13B,13Cでの測定値R(θi
A),R(θi ,B),R(θi ,C)の荷重加算によ
って得られる合成測定値のデータ列Y(θi )(i=
1,2,…,n)は、ロータリエンコーダ11の累積ピ
ッチ誤差の振幅がfj だけ拡大され、位相がφj だけ変
化したものになっている。
That is, as can be seen from the above, the measured values R (θ i , 3) of the three heads 13A, 13B, 13C are
A), R (θ i , B), and R (θ i , C), the data string Y (θ i ) (i =
1, 2, ..., N) are such that the amplitude of the cumulative pitch error of the rotary encoder 11 is enlarged by f j and the phase is changed by φ j .

【0056】そこで、フーリエ変換の手法を利用して、
合成測定データ列Y(θi )(i=1,2,…,n)の
交流成分Y(θi)ACから累積ピッチ誤差δ(θi )を求
めることができ、以下にその方法を説明する。
Therefore, using the Fourier transform method,
The cumulative pitch error δ (θ i ) can be obtained from the AC component Y (θ i ) AC of the combined measurement data string Y (θ i ) (i = 1, 2, ..., N), and the method will be described below. To do.

【0057】まず、数14中の交流成分Y(θi)ACを、
数15式のようにフーリエ級数の和の形に展開した形で
考える。すると、フーリエ級数の係数Fj ,Gj と、前
述したfj ,Gj ,ψj ,φj との関係は数16式のよ
うになる。従って、係数FjとGj を用いて累積ピッチ
誤差δ(θi )は、数17式のように表わすことができ
る。
First, the AC component Y (θ i ) AC in equation 14 is
It is considered in the form expanded to the form of the sum of Fourier series as in the equation (15). Then, the relationship between the Fourier series coefficients F j and G j and the above-mentioned f j , G j , ψ j , and φ j is as shown in Expression 16. Therefore, the cumulative pitch error δ (θ i ) can be expressed by the equation 17 using the coefficients F j and G j .

【0058】[0058]

【数15】 [Equation 15]

【0059】[0059]

【数16】 Fj=fj・Cj・(cosψj・cosφj−sinψj・sin φj) Gj=−fj・Cj・(sinψj・cosφj+cosψj・sin φjEquation 16] F j = f j · C j · (cosψ j · cosφ j -sinψ j · sin φ j) G j = -f j · C j · (sinψ j · cosφ j + cosψ j · sin φ j)

【0060】[0060]

【数17】 [Equation 17]

【0061】以上の手順をまとめると、下記のようにな
る。 (i)3個のヘッド13A,13B,13Cを図2のよ
うに互いに角度をあけて配置し、ロータリエンコーダ1
1を順次回転させながら、数10式で与えられる回転角
度θi での測定値を得る。 (ii)上述の(i)で得た測定値を、数11式で与えら
れる定数a′,b′を用いて荷重加算し、数12式で表
わされる合成測定値Y(θi )を求める。 (iii)次に、複数の測定位置θi ( i=1,2,…,
n)での測定値から得られる合成測定値のデータ列Y
(θi )(i=1,2,…,n)を求め、その交流成分
Y(θi)ACをフーリエ変換して、フーリエ変換の係数F
j ,Gj を求める。 (iv)最後に、(iii)で求めた係数Fj ,Gj から数1
7式によってロータリエンコーダ1の累積ピッチ誤差δ
(θi )を求める。
The above procedure is summarized as follows. (I) The three heads 13A, 13B, 13C are arranged at an angle to each other as shown in FIG.
While rotating 1 sequentially, the measured value at the rotation angle θ i given by the equation 10 is obtained. (Ii) mentioned above measurements obtained in (i), equation (11) at given constant a ', b' and weighted addition using, obtain the number 12 composite measurement represented by formula Y (θ i) . (iii) Next, a plurality of measurement positions θ i (i = 1, 2, ...,
Data sequence Y of synthetic measured values obtained from the measured values in n)
i ) (i = 1, 2, ..., N) is obtained, the AC component Y (θ i ) AC is Fourier transformed, and the coefficient F of the Fourier transform is calculated.
Find j and G j . (Iv) Finally, from the coefficients F j and G j obtained in (iii), Equation 1
The accumulated pitch error δ of the rotary encoder 1
Find (θ i ).

【0062】なお、一般に累積ピッチ誤差δ(θi )は
回転角度θi に比べて十分小さいため、ロータリエンコ
ーダ11の回転角度θi としては、例えば中央のヘッド
13Cでの測定値R(θi ,C)をそのまま採用するこ
とができる。この時には、ヘッド13Cの位置を基準と
して、ロータリエンコーダ11の累積ピッチ誤差が把握
できることになる。
[0062] Since generally accumulated pitch error δ (θ i) is sufficiently smaller than the rotation angle theta i, as the rotation angle theta i of the rotary encoder 11, for example, the measurement value R of the central head @ 13 C (theta i , C) can be directly adopted. At this time, the cumulative pitch error of the rotary encoder 11 can be grasped with reference to the position of the head 13C.

【0063】また、上記実施例とは逆にロータリエンコ
ーダ11を固定し、ヘッド取付台15を軸受等で回転運
動自在に設置して、ヘッド取付台15を順次回転させて
測定を行っても良い。
Contrary to the above embodiment, the rotary encoder 11 may be fixed, the head mount 15 may be rotatably mounted by a bearing or the like, and the head mount 15 may be sequentially rotated for measurement. .

【0064】以上の如くロータリエンコーダ11の累積
ピッチ誤差δ(θi )を測定することにより、ロータリ
エンコーダ11の校正がなされる。
The rotary encoder 11 is calibrated by measuring the cumulative pitch error δ (θ i ) of the rotary encoder 11 as described above.

【0065】[0065]

【発明の効果】本発明によれば、移動量検出器の一種で
あるリニヤスケール、あるいは回転角検出器の一種であ
るロータリエンコーダの累積ピッチ誤差(精度)を測定
して校正を行うに当り、評価対象のリニヤスケールやロ
ータリエンコーダよりも一段高精度な基準リニヤスケー
ルやロータリエンコーダを必要とすることなく、比較的
容易な測定作業と簡単な演算処理によって校正すること
ができる。
According to the present invention, when measuring and calibrating the cumulative pitch error (accuracy) of a linear scale which is a kind of movement amount detector or a rotary encoder which is a kind of rotation angle detector, It is possible to calibrate by a relatively easy measurement work and a simple arithmetic process without requiring a reference linear scale or rotary encoder that is one step more accurate than the linear scale or rotary encoder to be evaluated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としてリニヤスケールの測定
系を示す図。
FIG. 1 is a diagram showing a measuring system of a linear scale as an embodiment of the present invention.

【図2】本発明の他の実施例としてロータリエンコーダ
の測定系を示す図。
FIG. 2 is a diagram showing a measuring system of a rotary encoder as another embodiment of the present invention.

【図3】従来例を示す図。FIG. 3 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 リニヤスケール 3A,3B,3C リニヤスケール信号再生用ヘッド 5 ヘッド取付台 11 ロータリエンコーダ 13A,13B,13C ロータリエンコーダ信号再生
用ヘッド 15 ヘッド取付台
1 Linear scale 3A, 3B, 3C Linear scale signal reproduction head 5 Head mounting base 11 Rotary encoder 13A, 13B, 13C Rotary encoder signal reproduction head 15 Head mounting base

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リニヤスケールと該リニヤスケール信号
再生用ヘッドの取付台とを前記リニヤスケールの目盛方
向にほぼ平行に相対的移動可能に設け、前記リニヤスケ
ールの信号を再生して前記取付台とリニヤスケールとの
相対移動量を測定する3個のリニヤスケール信号再生用
ヘッドを、取付台上に該取付台とリニヤスケールの相対
移動方向に互いに間隔をおいて配置し、前記取付台とリ
ニヤスケールとを順次相対移動させて、各移動距離での
3個のヘッドの測定値を求め、所定の移動範囲にわたる
測定値から演算によって前記リニヤスケールの累積ピッ
チ誤差を求めることを特徴とするエンコーダの校正方
法。
1. A linear scale and a mount for a head for reproducing the linear scale signal are provided so as to be relatively movable substantially parallel to a scale direction of the linear scale, and a signal from the linear scale is reproduced to be mounted on the mount. Three linear scale signal reproducing heads for measuring the relative movement amount with respect to the linear scale are arranged on the mounting base at intervals in the relative movement direction of the mounting base and the linear scale, and the mounting base and the linear scale. Are sequentially moved relative to each other to obtain the measured values of the three heads at each moving distance, and the accumulated pitch error of the linear scale is obtained by calculation from the measured values over a predetermined moving range. Method.
【請求項2】 ロータリエンコーダと該ロータリエンコ
ーダ信号再生用ヘッドの取付台とを前記ロータリエンコ
ーダの目盛方向にほぼ同軸に相対的回転可能に設け、前
記ロータリエンコーダの信号を再生して前記取付台とロ
ータリエンコーダとの相対回転角を測定する3個のロー
タリエンコーダ信号再生用ヘッドを、取付台上に該取付
台とロータリエンコーダの相対回転方向に互いに角度を
おいて配置し、前記取付台とロータリエンコーダとを順
次相対回転させて、各回転角での3個のヘッドの測定値
を求め、所定の回転範囲にわたる測定値から演算によっ
て前記ロータリエンコーダの累積ピッチ誤差を求めるこ
とを特徴とするエンコーダの校正方法。
2. A rotary encoder and a mounting base for the rotary encoder signal reproducing head are provided so as to be relatively rotatable substantially coaxially with each other in a scale direction of the rotary encoder, and the rotary encoder is reproduced to reproduce the signal from the rotary encoder. Three rotary encoder signal reproducing heads for measuring the relative rotation angle with respect to the rotary encoder are arranged on the mounting base at an angle in the relative rotation direction of the mounting base and the rotary encoder, and the mounting base and the rotary encoder. Are sequentially rotated relative to each other to obtain the measured values of the three heads at each rotation angle, and the cumulative pitch error of the rotary encoder is obtained by calculation from the measured values over a predetermined rotation range. Method.
JP10811693A 1993-05-10 1993-05-10 Method for calibrating encoder Withdrawn JPH06317431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10811693A JPH06317431A (en) 1993-05-10 1993-05-10 Method for calibrating encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10811693A JPH06317431A (en) 1993-05-10 1993-05-10 Method for calibrating encoder

Publications (1)

Publication Number Publication Date
JPH06317431A true JPH06317431A (en) 1994-11-15

Family

ID=14476320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10811693A Withdrawn JPH06317431A (en) 1993-05-10 1993-05-10 Method for calibrating encoder

Country Status (1)

Country Link
JP (1) JPH06317431A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264117A (en) * 2000-03-17 2001-09-26 Harmonic Drive Syst Ind Co Ltd Compensating method for periodic air signal of detector output
JP2003075198A (en) * 2001-08-31 2003-03-12 Mitsutoyo Corp Inspection apparatus for scale
JP2007519912A (en) * 2004-01-31 2007-07-19 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Detection method of tire pressure loss
JP2012207923A (en) * 2011-03-29 2012-10-25 Nikon Corp Measuring instrument of scale for position detection, measurement method of scale for position detection, and method for manufacturing scale
JP2013024757A (en) * 2011-07-22 2013-02-04 Mitsutoyo Corp Graduation error calculating device, graduation error calibration device, and graduation error calculating method
JP2013092414A (en) * 2011-10-25 2013-05-16 Mitsutoyo Corp Displacement detecting device, method of calibrating scale, and scale calibrating program
WO2014053296A1 (en) * 2012-10-01 2014-04-10 Asml Netherlands B.V. A method for calibration of an encoder scale and a lithographic apparatus
US9766096B2 (en) 2014-05-12 2017-09-19 Canon Kabushiki Kaisha Encoder for producing position information using positions of a first and second sensor, tilt angles, period of a pattern on a scale
JP2018142020A (en) * 2012-10-02 2018-09-13 株式会社ニコン Exposure apparatus, exposure method, and method for manufacturing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264117A (en) * 2000-03-17 2001-09-26 Harmonic Drive Syst Ind Co Ltd Compensating method for periodic air signal of detector output
JP2003075198A (en) * 2001-08-31 2003-03-12 Mitsutoyo Corp Inspection apparatus for scale
JP4703062B2 (en) * 2001-08-31 2011-06-15 株式会社ミツトヨ Scale inspection equipment
JP2007519912A (en) * 2004-01-31 2007-07-19 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Detection method of tire pressure loss
KR101147951B1 (en) * 2004-01-31 2012-05-25 콘티넨탈 테베스 아게 운트 코. 오하게 Tire pressure loss detection
JP2012207923A (en) * 2011-03-29 2012-10-25 Nikon Corp Measuring instrument of scale for position detection, measurement method of scale for position detection, and method for manufacturing scale
JP2013024757A (en) * 2011-07-22 2013-02-04 Mitsutoyo Corp Graduation error calculating device, graduation error calibration device, and graduation error calculating method
CN102954815A (en) * 2011-07-22 2013-03-06 株式会社三丰 Index error estimating apparatus, index error calibrating apparatus and index error estimating method
JP2013092414A (en) * 2011-10-25 2013-05-16 Mitsutoyo Corp Displacement detecting device, method of calibrating scale, and scale calibrating program
US9134144B2 (en) 2011-10-25 2015-09-15 Mitutoyo Corporation Displacement detecting device, scale calibrating method and scale calibrating program
WO2014053296A1 (en) * 2012-10-01 2014-04-10 Asml Netherlands B.V. A method for calibration of an encoder scale and a lithographic apparatus
JP2015532448A (en) * 2012-10-01 2015-11-09 エーエスエムエル ネザーランズ ビー.ブイ. Encoder scale calibration method and lithographic apparatus
US9606458B2 (en) 2012-10-01 2017-03-28 Asml Netherlands B.V. Method for calibration of an encoder scale and a lithographic apparatus
JP2018142020A (en) * 2012-10-02 2018-09-13 株式会社ニコン Exposure apparatus, exposure method, and method for manufacturing device
JP2021036345A (en) * 2012-10-02 2021-03-04 株式会社ニコン Exposure apparatus, exposure method and manufacturing method of device
JP2022109261A (en) * 2012-10-02 2022-07-27 株式会社ニコン Exposure device and exposure method, as well as manufacturing method of device
US9766096B2 (en) 2014-05-12 2017-09-19 Canon Kabushiki Kaisha Encoder for producing position information using positions of a first and second sensor, tilt angles, period of a pattern on a scale

Similar Documents

Publication Publication Date Title
US4084324A (en) Measuring instrument
US9341500B2 (en) Calibration method and angle measuring method for an angle measuring device, and angle measuring device
US7825367B2 (en) Rotary encoder
US4070762A (en) Measuring apparatus
US10670383B2 (en) Calibrating and operating rotary devices, in particular for rotating probe heads and/or probes of coordinate measuring machines
CN101583851B (en) Method for determining an influencing variable acting on the eccentricity in a goniometer
US20020049553A1 (en) Method for increasing the positioning accuracy of an element which is movably arranged relative to a stator
Masuda et al. An automatic calibration system for angular encoders
US7385214B2 (en) System and method for correcting systematic error of, and calibrating for, tilt angle of surface topology sensor head having plurality of distance sensors
JPH06317431A (en) Method for calibrating encoder
JPH05196586A (en) X-ray analysis device
JPH06147879A (en) Measuring method of cylindrical profile
JP2635913B2 (en) Length measuring or angle measuring method
KR102181545B1 (en) Apparatus for measuring the surface of an object having a circular cross-sectional shape and Measuring Method Using Same
JP4845734B2 (en) Coordinate measuring device, method, computer program and data carrier
CN112105889B (en) Device and method for measuring surface of object
SU1737255A1 (en) Method of measuring deviations from parallel ism of straight lines in plane
JP2639037B2 (en) Data processing method for X-ray diffraction measurement
JPS59151012A (en) Self-calibrating method of device constant of rotary measure
SU1288499A1 (en) Method of checking diffraction meters of small linear measures
US7340345B2 (en) Method and circuit arrangement for determining a quality level of phase signals
CN112697190A (en) Dynamic calibration method for grating moire signal phase-locked subdivision errors
JPH03272412A (en) Angle measuring method and speed measuring apparatus
SU1467382A1 (en) Method of measuring deformations
PL208244B1 (en) Method for testing contactless instruments for measuring linear velocity and appliance for testing contactless instruments for measuring linear velocity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801