JPH06316496A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPH06316496A
JPH06316496A JP5123060A JP12306093A JPH06316496A JP H06316496 A JPH06316496 A JP H06316496A JP 5123060 A JP5123060 A JP 5123060A JP 12306093 A JP12306093 A JP 12306093A JP H06316496 A JPH06316496 A JP H06316496A
Authority
JP
Japan
Prior art keywords
crystal
peritectic
temp
temperature
reba2cu3ox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5123060A
Other languages
Japanese (ja)
Other versions
JP3237953B2 (en
Inventor
Keiichi Kimura
圭一 木村
Katsuyoshi Miyamoto
勝良 宮本
Misao Hashimoto
操 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12306093A priority Critical patent/JP3237953B2/en
Publication of JPH06316496A publication Critical patent/JPH06316496A/en
Application granted granted Critical
Publication of JP3237953B2 publication Critical patent/JP3237953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a long-sized bulk material by bringing the faces of plural seed crystals of REBa2Cu3Ox (RE is Y, Sm, etc.) having uniform crystal orientation into contact with a mixed compact of the raw-material oxides having a lower peritectic temp. than the seed crystal and growing the crystal. CONSTITUTION:A superconducting material of REBa2Cu3Ox is produced as follows by utilizing melting and crystal growth. The mixed compact 2 of the raw oxide of REBa2Cu3Ox (RE 1) for crystal growth is heated at a temp. higher than the peritectic temp. of RE 1. One face of the plural seed crystals (e.g. 1A and 1B) of REBa2Cu3Ox (RE 2) having a higher peritectic temp. than RE 1 and having uniform crystal orientation is brought into contact with the plural regions on the compact 1 of RE 1 between the peritectic temps. of RE 1 and RE 2 and slowly cooled close to the peritectic temp. of RE 1. Consequently, a crystal is grown from the plural regions, and a bulk material 3 having uniform crystal orientation and free of a large-inclination grain boundary is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導材料であ
って高い臨界電流密度を有する大型超電導バルク材料の
製造方法を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a method for producing a large-sized superconducting bulk material which is an oxide superconducting material and has a high critical current density.

【0002】[0002]

【従来の技術】REBa2 Cu3x 系酸化物超電導体
は液体窒素温度を超える高い臨界温度を有することから
実用化された時の経済的なメリットが大きい。しかしな
がら、結晶粒界が弱結合として働き、粒界を横切って高
い超電導電流を流すことができず、特に磁場中では臨界
電流密度が低下するため、強電分野での実用化は実現し
ていない。REBa2 Cu3x の結晶粒内の臨界電流
密度は比較的高いことがわかっており、弱結合として働
く粒界のないバルク材の製造が可能になれば、強い磁場
を発生するマグネット、強い磁場を遮蔽するシールド材
あるいは大きな電流を流す導電材料として利用できる。
REBa 2 Cu 3 O x type oxide superconductors have a high critical temperature exceeding the temperature of liquid nitrogen, so that they have great economic merit when put into practical use. However, since the crystal grain boundaries act as weak bonds, a high superconducting current cannot flow across the grain boundaries, and the critical current density decreases especially in a magnetic field, so that practical application in the field of strong electric power has not been realized. It has been known that the critical current density in the crystal grains of REBa 2 Cu 3 O x is relatively high, and if it is possible to manufacture a bulk material without grain boundaries that act as weak bonds, a magnet that generates a strong magnetic field, a strong magnet It can be used as a shield material that shields a magnetic field or a conductive material that allows a large current to flow.

【0003】QMG法(特公平4−40289号公報)
で代表される溶融法は、結晶粒の大きなREBa2 Cu
3x バルクを作製することを可能とする方法で、この
プロセスの研究開発が行われている。図2はREBa2
Cu3x の擬2元系状態図である。この物質は高温で
はRE2 BaCuO5 相とBa,Cu,Oを主体とする
液相に分解し、この半溶融状態から冷却をすると、包晶
反応によりREBa2Cu3x が生成する。この包晶
温度近傍で徐冷することにより、大きな結晶粒を作製す
る方法が溶融法である。しかしながら、徐冷を行っても
結晶核はあらゆる箇所から生成するため最終的には多結
晶となってしまう。
QMG method (Japanese Patent Publication No. 40289/1992)
The melting method typified by is REBa 2 Cu with large crystal grains.
Research and development of this process is underway in a way that allows the production of 3 O x bulk. Figure 2 shows REBa 2
Cu is a pseudo binary phase diagram of the 3 O x. At a high temperature, this substance decomposes into a RE 2 BaCuO 5 phase and a liquid phase mainly composed of Ba, Cu, O, and when cooled from this semi-molten state, REBa 2 Cu 3 O x is produced by a peritectic reaction. The melting method is a method for producing large crystal grains by gradually cooling near the peritectic temperature. However, even if annealed, crystal nuclei are generated from all locations, and eventually become polycrystalline.

【0004】この問題を解決するために、本発明者等は
REに置換する元素を変えると包晶温度が変化すること
を利用して、包晶温度の高いREBa2 Cu3x を種
結晶として、核生成を制御する技術を開発している(特
願平3−162360、特願平4−55203)。この
技術(以下シーディング法)によって、制御された結晶
方位を有し臨界電流密度を低下させるような大傾角粒界
のない数10cm3 の大型バルク材の製造が可能になっ
ている。
In order to solve this problem, the inventors of the present invention utilize the fact that the peritectic temperature changes when the element substituting for RE is changed, so that REBa 2 Cu 3 O x having a high peritectic temperature is used as a seed crystal. As a result, a technology for controlling nucleation is being developed (Japanese Patent Application Nos. 3-162360 and 4-55203). By this technique (hereinafter referred to as the seeding method), it is possible to manufacture a large bulk material of several tens cm 3 which has a controlled crystal orientation and does not have a large tilt grain boundary that lowers the critical current density.

【0005】しかしながら、基本的に結晶成長を利用す
るプロセスであるため、厳密な温度コントロールが必要
であり、結晶成長中に組成ずれが起こったりするため現
状の技術レベルでは作製可能な結晶粒の大きさが限られ
ている。特に、この材料を電流リードや磁気シールド板
へ適用する場合には、大きな領域に高い超電導電流を流
すことが必要であり、現状の結晶粒の大きさでは十分で
ない。
However, since the process basically uses crystal growth, strict temperature control is required, and composition shift may occur during crystal growth. Is limited. In particular, when this material is applied to a current lead or a magnetic shield plate, it is necessary to flow a high superconducting current in a large area, and the current crystal grain size is not sufficient.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、酸
化物超電導材料において、弱結合となる結晶粒界のな
い、より大型のバルク材を作製する方法を開発すること
を課題とする。
Therefore, it is an object of the present invention to develop a method for producing a larger bulk material in an oxide superconducting material, which does not have a grain boundary that causes a weak bond.

【0007】[0007]

【課題を解決するための手段】本発明は上記の問題を解
決するために、結晶成長を行わせるREBa2 Cu3x
(以下RE1という)の原料酸化物の混合・成形体を
RE1の包晶温度より高い温度に加熱せしめ、RE1よ
りも高い包晶温度を有する結晶方位の揃った複数のRE
Ba2 Cu3x (以下RE2という)種結晶の1つの
結晶面を、RE1とRE2の包晶温度の間の温度で、そ
れぞれの種結晶の結晶方位を揃えてRE1の原料酸化物
の混合・成形体上の複数の箇所に接触させ、RE1の包
晶温度近傍で徐冷することによって、前記複数の箇所か
ら結晶方位の制御された結晶核を生成させ、これを徐冷
させることによって結晶成長させる手段を設けたもので
ある。なおここで上記REはY,La,Nd,Sm,E
u,Gd,Dy,Ho,Er,Tm,Yb,Luからな
る群から選ばれた1種以上の元素をいう。
In order to solve the above problems, the present invention causes REBa 2 Cu 3 O x to undergo crystal growth.
A mixed / formed body of raw material oxides (hereinafter referred to as RE1) is heated to a temperature higher than the peritectic temperature of RE1, and a plurality of REs having a peritectic temperature higher than RE1 and having a uniform crystal orientation are prepared.
Mixing one crystal face of a Ba 2 Cu 3 O x (hereinafter referred to as RE 2) seed crystal at a temperature between the peritectic temperatures of RE 1 and RE 2 and aligning the crystal orientations of the respective seed crystals with the raw material oxide of RE 1. -Crystals having controlled crystallographic orientations are generated from the plurality of locations by bringing them into contact with a plurality of locations on the molded body and gradually cooling in the vicinity of the peritectic temperature of RE1, and crystallizing by gradually cooling this. It is a means to grow. The above RE is Y, La, Nd, Sm, E.
It means at least one element selected from the group consisting of u, Gd, Dy, Ho, Er, Tm, Yb and Lu.

【0008】[0008]

【作用】本発明において、種結晶同士の結晶方位が揃っ
ていないと結晶成長していったRE1間に結晶格子のず
れ、すなわち粒界が生じこれが弱結合になって、臨界電
流密度を低下させてしまう。したがって、RE2は配向
した弱結合のないもので、かつこれらの結晶方位を揃え
なくてはならない。薄膜の双結晶における臨界電流密度
の測定結果(例えば、D.DimosらPhysica
l ReviewB 第41巻(1990年)4038
ページ)等から考えて、c軸およびa軸・b軸方向の結
晶方位差が15度以内であることが望ましい。ここでc
軸とは、斜方晶構造を有するREBa2 Cu3x の単
位格子の最長軸、a軸とb軸はこれ以外の2つの軸をさ
す。これらの軸がこれ以上ずれると、本発明の特徴であ
る高い臨界電流密度を有するバルクが得られない。
In the present invention, if the crystal orientations of the seed crystals are not aligned, the crystal lattice shifts between RE1s, that is, grain boundaries are generated between RE1s and weak bonds are formed to lower the critical current density. Will end up. Therefore, RE2 must be oriented and free of weak bonds, and their crystal orientations must be aligned. Results of measurement of critical current densities in thin film bicrystals (see, for example, D. Dimos et al. Physica).
l ReviewB Vol. 41 (1990) 4038
It is desirable that the crystal orientation difference in the c-axis and the a-axis / b-axis directions be within 15 degrees in view of the page. Where c
The axis is the longest axis of the unit cell of REBa 2 Cu 3 O x having an orthorhombic structure, and the a axis and the b axis are the other two axes. If these axes are further displaced, a bulk having a high critical current density, which is a feature of the present invention, cannot be obtained.

【0009】REBa2 Cu3x 超電導体は斜方晶で
あるが、微視的には双晶構造を有し、a軸とb軸が互い
に90度ずれて混在し、巨視的に見てa軸とb軸は区別
されない。結晶軸が90度ずれた双晶境界は弱結合とは
ならないが、これらの軸から中間的な角度(したがって
最大で45度)にずれると、c軸が揃っていてもこの部
分が弱結合になってしまう。a軸・b軸方向の結晶方位
の差が15度以内であることが望ましいとは、RE2種
結晶が双晶構造をとってa軸とb軸が巨視的に90度ず
れても混在していてもよいが、これらの軸からのずれが
15度以内であることが望ましいということである。以
下、巨視的に区別されないa軸とb軸をa・b軸と表記
する。
The REBa 2 Cu 3 O x superconductor is an orthorhombic crystal, but microscopically has a twin structure, and the a-axis and the b-axis are deviated from each other by 90 degrees, and macroscopically observed. No distinction is made between a-axis and b-axis. A twin boundary whose crystal axis is shifted by 90 degrees does not become a weak bond, but when it is deviated from these axes by an intermediate angle (hence 45 degrees at the maximum), this part becomes a weak bond even if the c axes are aligned. turn into. It is desirable that the difference between the crystal orientations in the a-axis and b-axis directions is within 15 degrees, that is, RE2 seed crystals have a twin structure and the a-axis and the b-axis are macroscopically mixed even if they are deviated by 90 degrees. However, it is desirable that the deviation from these axes is within 15 degrees. Hereinafter, the a-axis and the b-axis which are not macroscopically distinguished are referred to as a-b-axis.

【0010】包晶温度近傍の冷却速度は種結晶の間隔や
炉の温度勾配などにもよるが、この物質は半溶融状態で
結晶方位を保ちながら成長する速度が最大で2mm/h
程度であり、冷却速度も成長速度がこれよりも大きくな
らないように設定しなければならない。
The cooling rate near the peritectic temperature depends on the distance between the seed crystals and the temperature gradient in the furnace, but the maximum growth rate of this material is 2 mm / h while maintaining the crystal orientation in the semi-molten state.
However, the cooling rate must be set so that the growth rate is not higher than this.

【0011】この製造方法に用いられる原料はREBa
2 Cu3x の形になっている必要はないし、組成も結
晶成長が可能であれば化学量論的組成になっている必要
はなく、不純物が入っていてもよい。また、種結晶は配
向してなければならないが、化学量論的組成になってい
る必要はなく、不純物が入っていてもよい。
The raw material used in this manufacturing method is REBa.
It does not have to be in the form of 2 Cu 3 O x , and the composition does not have to be a stoichiometric composition if crystal growth is possible, and impurities may be contained. Further, the seed crystal has to be oriented, but it does not have to have a stoichiometric composition and may contain impurities.

【0012】図1はRE1とRE2の元素の組合せを選
択し、2つの種結晶1A,1B(RE2)の結晶方位の
揃った面を、熱分解したRE2よりも包晶温度の低いR
EBa2 Cu3x (RE1)の原料酸化物の混合・成
形体2に接触させて結晶成長させた場合の模式図であ
る。図のように、RE1はRE2の結晶方位を引き継い
で結晶成長し、2つの結晶の成長面は接触・接合され
る。2つの結晶の接触面は結晶方位差がないため、弱接
合にはならず、大きな臨界電流密度が得られる。すなわ
ち、2つの結晶は実質的に一つの結晶粒3とみなせ、こ
のようなシーディングを2箇所以上にすることによっ
て、従来得られているよりも大型の大傾角粒界のないR
EBa2 Cu3x 超電導バルク材料の製造が可能にな
る。
In FIG. 1, a combination of elements of RE1 and RE2 is selected, and the planes of two seed crystals 1A and 1B (RE2) having the same crystallographic orientation are R having a lower peritectic temperature than pyrolyzed RE2.
Is a schematic diagram when EBa was 2 Cu 3 O x (RE1) in contact with mixing and molding 2 of the raw material oxide by crystal growth. As shown in the figure, RE1 inherits the crystal orientation of RE2 for crystal growth, and the growth surfaces of the two crystals are in contact with each other. Since there is no difference in crystal orientation between the contact surfaces of the two crystals, weak junction does not occur and a large critical current density can be obtained. That is, the two crystals can be regarded as substantially one crystal grain 3, and by making such seeding at two or more places, it is possible to obtain a larger R-angle without a large-angle grain boundary than conventionally obtained.
It enables the production of EBa 2 Cu 3 O x superconducting bulk material.

【0013】[0013]

【実施例】SmBa2 Cu3x を種結晶として、YB
2 Cu3x の製造を実施した。種結晶として使用す
るSmBa2 Cu3x 結晶は、Sm23 粉末、Ba
2 粉末とCuO粉末をSm,Ba,Cuの元素比が
1.2:1.8:2.6になるように秤量し、重量比で
0.5%のPt粉末を加え混練後、酸素気流中で900
℃、10時間の仮焼を行い、再び粉砕してプレス成形機
により直径28mmの金型を用いて厚さ10mmに成形
し、さらに2t/cm2 の圧力で静水圧成形を行ったも
のを原料とした。これを1150℃に加熱し、この温度
で1時間保持し、1070℃まで1時間で冷却したの
ち、1030℃まで1℃/hで徐冷してバルク体を作製
した。
EXAMPLE Using SmBa 2 Cu 3 O x as a seed crystal, YB
The production of a 2 Cu 3 O x was carried out. The SmBa 2 Cu 3 O x crystal used as the seed crystal is Sm 2 O 3 powder, Ba
O 2 powder and CuO powder were weighed so that the element ratio of Sm, Ba, and Cu was 1.2: 1.8: 2.6, 0.5% by weight of Pt powder was added and kneaded, and then oxygen was added. 900 in the airflow
Calcination at 10 ° C for 10 hours, crushing again, molding with a press molding machine to a thickness of 10 mm using a die with a diameter of 28 mm, and further isostatic molding at a pressure of 2 t / cm 2 were used as raw materials. And This was heated to 1150 ° C., kept at this temperature for 1 hour, cooled to 1070 ° C. in 1 hour, and then gradually cooled to 1030 ° C. at 1 ° C./h to prepare a bulk body.

【0014】このバルク体の結晶粒は粒界のない種結晶
を切り出すのに十分な大きさで、これから直径5mm、
厚さ1mmの種結晶を劈開面(ab面)を利用して、円
盤の厚さ方向がc軸方向になるように複数枚を切り出し
た。この組織を偏光顕微鏡で観察したところ、内部にS
2 BaCu35 相が分散しているが、マトリックス
は方位の揃ったSmBa2 Cu3x であることがわか
った。またa・b軸は観察される双晶の方向から判断し
た。
The crystal grains of this bulk body are large enough to cut out seed crystals without grain boundaries, and the diameter from this is 5 mm.
A plurality of seed crystals having a thickness of 1 mm were cut out by using the cleavage plane (ab plane) so that the thickness direction of the disk was the c-axis direction. When this structure was observed with a polarization microscope, S
It was found that the m 2 BaCu 3 O 5 phase was dispersed, but the matrix was SmBa 2 Cu 3 O x with uniform orientation. The a and b axes were judged from the observed twinning directions.

【0015】YBa2 Cu3x の原料は、Y23
末、BaO2 粉末とCuO粉末をY,Ba,Cuの元素
比が1.3:1.7:2.4になるように秤量し、更に
重量比で0.5%のPt粉末を加え混練後、酸素気流中
で800℃、10時間の仮焼を行い、再び粉砕してプレ
ス成形機により直径80mmの金型を用いて厚さ15m
mに成形し、更に2t/cm2 の圧力で静水圧成形を行
ったものを使用した。なお上記Pt粉末は臨界電流密度
を上昇させる微細分散相の析出を促進させるためのもの
である。
The raw material of YBa 2 Cu 3 O x is Y 2 O 3 powder, BaO 2 powder and CuO powder such that the element ratio of Y, Ba and Cu is 1.3: 1.7: 2.4. Weigh, add 0.5% Pt powder by weight ratio, knead, calcinate at 800 ° C. for 10 hours in an oxygen stream, pulverize again, and use a press molding machine with a die having a diameter of 80 mm. 15m thick
It was used after being molded to m and further subjected to hydrostatic molding at a pressure of 2 t / cm 2 . The Pt powder is for promoting the precipitation of the fine dispersed phase which raises the critical current density.

【0016】これを1150℃に加熱し、この温度で1
時間保持した。その後、1030℃まで30分で冷却
し、この温度において、2つのSmBa2 Cu3x
結晶の平面を結晶方位をあわせて、図3に示したよう
に、原料の平面の中心から対称にそれぞれ約1cmの距
離をおいて接触させた。その後1005℃まで30分で
冷却し、更に960℃まで平均0.5℃/hで徐冷を行
い、室温まで炉冷した。更にその後、超電導性を与える
ために、酸素気流中で450℃、100時間のアニール
を行った。
This is heated to 1150 ° C. and at this temperature 1
Held for hours. Then, the mixture was cooled to 1030 ° C. in 30 minutes, and at this temperature, the planes of the two SmBa 2 Cu 3 O x seed crystals were aligned with the crystal orientations and symmetrically from the center of the plane of the raw material, as shown in FIG. They were brought into contact with each other with a distance of about 1 cm. After that, the temperature was cooled to 1005 ° C. in 30 minutes, further gradually cooled to 960 ° C. at an average rate of 0.5 ° C./h, and furnace cooled to room temperature. After that, in order to give superconductivity, annealing was performed at 450 ° C. for 100 hours in an oxygen stream.

【0017】このように作製された試料は図3にその模
式図を示すように、種結晶1A,1Bを起点として試料
のほぼ全面に沿面成長しており(3A,3B)、その中
心部で2つの成長面が接触している様子が肉眼で観察さ
れた。2つの結晶が成長して接触した面4(以下、接触
面)を中心とした試料断面5の様子を偏光顕微鏡で観察
した。この顕微鏡の観察結果を図4に示す。組織はab
面にほぼ平行に入るクラック11、双晶模様(微細であ
るため、図4では描写していない)、ボイド12および
2μm以下に分散したY2 BaCuO5 相(微細である
ため、図4では描写していない)が観察されるが、偏光
顕微鏡のコントラストではその接触面4が区別がつかな
いほど、組織が接合されていた。クラックと双晶模様か
ら、接触面の両側の結晶は種結晶の方位を引き継いで、
同じ結晶方位を向いていることがわかった。
As shown in the schematic view of FIG. 3, the sample thus produced has surface-grown on almost the entire surface of the sample (3A, 3B) starting from seed crystals 1A, 1B, and at the center thereof. It was visually observed that the two growth surfaces were in contact with each other. A state of a sample cross section 5 centering on a surface 4 (hereinafter, contact surface) where two crystals grow and contact each other was observed with a polarization microscope. The observation result of this microscope is shown in FIG. Organization is ab
Cracks 11 that are almost parallel to the plane, twin pattern (not shown in FIG. 4 because it is fine), voids 12 and Y 2 BaCuO 5 phase dispersed to 2 μm or less (because it is fine, it is shown in FIG. 4). However, the tissue was joined so that the contact surface 4 was indistinguishable by the contrast of the polarization microscope. From the crack and the twinning pattern, the crystals on both sides of the contact surface inherit the orientation of the seed crystal,
It turned out that they were oriented in the same crystal orientation.

【0018】この接触部分の輸送特性を調べるために、
図3の点線のように、接触部分を中心として長さ15m
m、断面積1mm2 の試料6を切り出し、接触面両側を
電圧端子をとって、直流4端子法により臨界電流密度を
測定した。この結果、77K,1Tの磁場中(磁場はc
軸に平行)で約10000A/cm2 の高い臨界電流密
度を有することがわかった。
In order to investigate the transport characteristics of this contact portion,
As shown by the dotted line in Fig. 3, the length is 15m centering on the contact area
A sample 6 having an area of m and a cross-sectional area of 1 mm 2 was cut out, voltage terminals were set on both sides of the contact surface, and the critical current density was measured by a direct current 4-terminal method. As a result, in the magnetic field of 77K, 1T (the magnetic field is c
It was found to have a high critical current density of about 10,000 A / cm 2 (parallel to the axis).

【0019】[0019]

【発明の効果】以上説明したように、結晶方位を揃えて
複数箇所にシーディングすることにより、磁場中でも臨
界電流密度の大きなバルク材料の製造が可能である。
As described above, it is possible to manufacture a bulk material having a large critical current density even in a magnetic field by aligning the crystal orientation and seeding at a plurality of locations.

【図面の簡単な説明】[Brief description of drawings]

【図1】結晶方位を揃えた種結晶を2箇所にシーディン
グして、結晶成長させて作製したバルク超電導材料の断
面の模式図
FIG. 1 is a schematic cross-sectional view of a bulk superconducting material produced by seeding seed crystals with uniform crystal orientation at two locations and growing the crystals.

【図2】REBa2 Cu3x 相近傍の擬2元系状態図FIG. 2 Phase diagram of pseudo binary system near the REBa 2 Cu 3 O x phase

【図3】実施例において作製したバルク材料と種結晶の
位置、臨界電流密度を測定した試料を切り出した位置お
よび顕微鏡観察した面の位置を示した模式図
FIG. 3 is a schematic diagram showing the positions of the bulk material and the seed crystal prepared in the example, the position of the sample from which the critical current density was measured, and the position of the surface observed by a microscope.

【図4】実施例で観察した偏光顕微鏡観察結果を示す模
式図
FIG. 4 is a schematic diagram showing the results of observation with a polarizing microscope observed in Examples.

【符号の説明】[Explanation of symbols]

1A,1B 種結晶 2 原料酸化物の混合・成形体 3,3A,3B 結晶 4 結晶が成長して接触した面 5 試料断面 6 試料 11 クラック 12 ボイド 1A, 1B seed crystal 2 mixed / formed body of raw material oxide 3, 3A, 3B crystal 4 surface where crystal grows and contacts 5 sample cross section 6 sample 11 crack 12 void

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融・結晶成長を利用したREBa2
3x 系(REはY,La,Nd,Sm,Eu,G
d,Dy,Ho,Er,Tm,Yb,Luからなる群か
ら選ばれた1種以上の元素)超電導材料の製造方法にお
いて、結晶成長を行わせるREBa2 Cu3x (以下
RE1という)の原料酸化物の混合・成形体をRE1の
包晶温度より高い温度に加熱せしめ、RE1よりも高い
包晶温度を有する結晶方位の揃った複数のREBa2
3x (以下RE2という)種結晶の一結晶面を、R
E1とRE2の包晶温度の間の温度で結晶方位を揃えて
RE1の原料酸化物の混合・成形体上の複数の箇所に接
触させ、RE1の包晶温度近傍で徐冷することによっ
て、前記複数の箇所から結晶成長を行わせることを特徴
とする結晶方位の揃った大傾角粒界のない酸化物超電導
材料の製造方法。
1. REBa 2 C utilizing melting and crystal growth
u 3 O x system (RE is Y, La, Nd, Sm, Eu, G
d, Dy, Ho, Er, Tm, Yb, and Lu) in a method for producing a superconducting material) of REBa 2 Cu 3 O x (hereinafter, referred to as RE 1) for performing crystal growth. A plurality of REBa 2 C having uniform crystal orientation and having a peritectic temperature higher than RE1 is prepared by heating the mixed / formed body of the raw material oxides to a temperature higher than the peritectic temperature of RE1.
u 3 O x (hereinafter referred to as RE2)
By aligning the crystal orientation at a temperature between the peritectic temperatures of E1 and RE2 and bringing them into contact with a plurality of locations on the mixed / formed body of the raw material oxide of RE1, and gradually cooling near the peritectic temperature of RE1, A method for producing an oxide superconducting material having a large tilt angle grain boundary in which crystal orientations are uniform, which is characterized in that crystals are grown from a plurality of locations.
JP12306093A 1993-04-28 1993-04-28 Manufacturing method of oxide superconducting material Expired - Lifetime JP3237953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12306093A JP3237953B2 (en) 1993-04-28 1993-04-28 Manufacturing method of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12306093A JP3237953B2 (en) 1993-04-28 1993-04-28 Manufacturing method of oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH06316496A true JPH06316496A (en) 1994-11-15
JP3237953B2 JP3237953B2 (en) 2001-12-10

Family

ID=14851210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12306093A Expired - Lifetime JP3237953B2 (en) 1993-04-28 1993-04-28 Manufacturing method of oxide superconducting material

Country Status (1)

Country Link
JP (1) JP3237953B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256521B1 (en) 1997-09-16 2001-07-03 Ut-Battelle, Llc Preferentially oriented, High temperature superconductors by seeding and a method for their preparation
US6627582B2 (en) * 2000-03-10 2003-09-30 Nippon Steel Corporation Large superconductor and its intermediate, and method for manufacturing the same
JP2006137619A (en) * 2004-11-10 2006-06-01 Nippon Steel Corp Superconducting bulk body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256521B1 (en) 1997-09-16 2001-07-03 Ut-Battelle, Llc Preferentially oriented, High temperature superconductors by seeding and a method for their preparation
US6627582B2 (en) * 2000-03-10 2003-09-30 Nippon Steel Corporation Large superconductor and its intermediate, and method for manufacturing the same
DE10111778B4 (en) * 2000-03-10 2008-01-10 Nippon Steel Corp. Superconductor intermediate and its use
JP2006137619A (en) * 2004-11-10 2006-06-01 Nippon Steel Corp Superconducting bulk body
JP4589698B2 (en) * 2004-11-10 2010-12-01 新日本製鐵株式会社 Superconducting bulk material

Also Published As

Publication number Publication date
JP3237953B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
Morita et al. Processing and properties of QMG materials
US5786304A (en) Joining product of oxide superconducting material and process for producing the same
US4824826A (en) Millimeter size single crystals of superconducting YBa2 Cu3 O.sub.
EP1435347B1 (en) Method of joining oxide superconductor and oxide superconductor joiner
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
US7718573B2 (en) Method for producing oxide superconductor, oxide superconductor and substrate material for supporting precursor of the same
JP3237953B2 (en) Manufacturing method of oxide superconducting material
US5597782A (en) Method for microwave processing of high temperature superconductors
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
JPH0640775A (en) Joined body of oxide superconducting material and its production
JP3237952B2 (en) Manufacturing method of oxide superconducting material
US5273956A (en) Textured, polycrystalline, superconducting ceramic compositions and method of preparation
JP3219563B2 (en) Metal oxide and method for producing the same
JP2840349B2 (en) High Tc superconductor and method of manufacturing the same
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH10231197A (en) Production of oxide superconducting material
Itskovich et al. A modified method for obtaining highly textured YBaCu ceramics
JP3787613B2 (en) High-temperature superconducting copper oxide excellent in critical current density characteristics and / or irreversible magnetic field characteristics, and high-temperature superconducting material containing the high-temperature superconducting copper oxide
Hidaka et al. Recent developments in high-Tc single crystal growth in Japan: Bulk and thin film: Bulk single crystals
JPH06183730A (en) Production of oxide superconductive bulky material
JP2518969B2 (en) Oxide superconductor and method for manufacturing the same
JPH03112899A (en) Production of oriented oxide superconductor
JPH07187671A (en) Oxide superconductor and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12

EXPY Cancellation because of completion of term