JPH06315196A - Characteristic control method for piezoelectric body - Google Patents

Characteristic control method for piezoelectric body

Info

Publication number
JPH06315196A
JPH06315196A JP10209393A JP10209393A JPH06315196A JP H06315196 A JPH06315196 A JP H06315196A JP 10209393 A JP10209393 A JP 10209393A JP 10209393 A JP10209393 A JP 10209393A JP H06315196 A JPH06315196 A JP H06315196A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric body
thermal shock
frequency
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10209393A
Other languages
Japanese (ja)
Inventor
Takayuki Kamae
隆行 鎌江
Yutaka Ariake
裕 有明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10209393A priority Critical patent/JPH06315196A/en
Publication of JPH06315196A publication Critical patent/JPH06315196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PURPOSE:To obtain a piezoelectric body whose piezoelectric characteristic will not be changed even when a thermal shock is added by performing a polarization processing to the piezoelectric body, and performing an inverse polarization processing so that a difference between a preliminarily decided resonance frequency and an antiresonance frequency can be obtained. CONSTITUTION:Each kind of oxide Pb3O4, SnO2, Sb2O3, Nb2O5, ZrO2, TiO2 and MnCO3 is used to mix so that the oxide is composed with Zr and Ti of 50-100mol, and Sn, Sb, and Nb of 50-0mol for Pb of 100mol, and molded by adding an organic binder, and the molded body is baked. So that a piezoelectric porcelain can be manufactured. The polarization processing is performed to this piezoelectric body in almost 2 hours at 100-160 deg.C by impressing a high electric field which is 40-60kV/cm. The frequency characteristic of the piezoelectric body to which the polarization processing is operated is measured, and a difference DELTAf between a resonance frequency fa and an antiresonance frequency fr is obtained. Next, the frequency of the piezoelectric body is made close to a specific frequency by decreasing the DELTAf by impressing (inverse polarizing) the electric field having a constant strength to a direction different from the polarizing direction of the piezoelectric body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧電体の特性制御方法に
関し、より詳細には圧電ブザー、圧電スピーカーなどの
発音体、フィルター、レゾネータ、ディスクリミネータ
又はアクチュエーター等として用いられる圧電体の特性
制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the characteristics of a piezoelectric body, and more specifically, it controls the characteristics of a piezoelectric body used as a sounding body such as a piezoelectric buzzer or a piezoelectric speaker, a filter, a resonator, a discriminator or an actuator. Regarding the method.

【0002】[0002]

【従来の技術】応力を印加することにより電気分極が発
生し、逆に電界により機械的歪が発生する圧電効果を利
用した圧電部品は、今日色々な分野で用いられている。
前記圧電体材料の代表的なものとして、チタン酸鉛とジ
ルコン酸鉛とを主成分とする、いわゆるPZT系磁器が
挙げられる。該PZT系磁器は、種々の用途に用いられ
ているが、その一つとして例えば圧電共振子に用いられ
ている。
2. Description of the Related Art Piezoelectric parts that utilize the piezoelectric effect in which electric polarization is generated by applying stress and mechanical strain is generated by an electric field, are used in various fields today.
Typical examples of the piezoelectric material include so-called PZT-based porcelain containing lead titanate and lead zirconate as main components. The PZT-based porcelain is used for various purposes, and one of them is used, for example, as a piezoelectric resonator.

【0003】該圧電共振子等を構成する強誘電体用磁器
は、原料を特定の条件で焼結させることにより得られる
が、焼結直後においては一般に各ドメインの分極方向は
揃っていない。この焼結体に、例えば前記圧電体のキュ
リー点より低い温度である100〜160℃で約2時
間、40〜60kV/cmの高電界を印加する、いわゆ
る分極処理を施すことにより分極軸の方向が揃い、前記
した圧電効果を示すようになる。
The ferroelectric ceramics constituting the piezoelectric resonator or the like can be obtained by sintering a raw material under specific conditions, but generally the polarization directions of the domains are not aligned immediately after sintering. The direction of the polarization axis is obtained by applying a so-called polarization treatment to this sintered body, for example, by applying a high electric field of 40 to 60 kV / cm at 100 to 160 ° C., which is a temperature lower than the Curie point of the piezoelectric body, for about 2 hours. Are aligned, and the piezoelectric effect described above is exhibited.

【0004】しかし、分極処理後の圧電体は使用するに
従って、あるいは使用しなくてもその分極状態が緩和
し、長時間の使用や放置によりその圧電特性が劣化す
る。
However, the polarized state of the piezoelectric body after the polarization treatment is relaxed with or without use, and the piezoelectric characteristics are deteriorated by long-term use or standing.

【0005】前記PZT系磁器においても、長時間の使
用や放置によりその圧電特性が劣化し易く、特に熱衝撃
を受けることにより圧電特性が変化し易い。
Also in the PZT-based porcelain, its piezoelectric characteristics are apt to deteriorate due to long-term use and leaving, and especially the piezoelectric characteristics are likely to change due to thermal shock.

【0006】そこで、こうした圧電特性の経時変化や耐
熱衝撃に対する圧電特性の変化を減少させる方法とし
て、従来は常温より高く該圧電体のキュリー温度より低
い60〜120℃で数時間加熱保温したり、常温より低
い−100〜0℃の低温で数時間放置するか、又は予め
熱衝撃を与えることにより圧電特性の変化を強制的に短
時間で減少させる、いわゆるエージングを行っていた。
[0006] Therefore, as a method for reducing such changes in piezoelectric characteristics over time and changes in piezoelectric characteristics due to thermal shock, conventionally, heat insulation is performed at 60 to 120 ° C higher than room temperature and lower than the Curie temperature of the piezoelectric body for several hours, The so-called aging has been performed in which the change in piezoelectric characteristics is forcibly reduced in a short time by leaving it at a low temperature of −100 to 0 ° C. lower than room temperature for several hours, or by applying a thermal shock in advance.

【0007】前記熱衝撃を与えるエージング方法として
は、例えば圧電体の電極をオープンにした状態で、該圧
電体のキュリー点より低い100〜200℃程度の温度
を有する恒温槽に入れ、数時間放置した後、再び急激に
室温まで冷却する方法が挙げられる。
As the aging method of applying the thermal shock, for example, with the electrodes of the piezoelectric body open, the piezoelectric body is placed in a constant temperature bath having a temperature of about 100 to 200 ° C. lower than the Curie point of the piezoelectric body and left for several hours. After that, a method of rapidly cooling to room temperature again can be mentioned.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記したエー
ジング方法は処理温度や処理時間などの処理条件が明確
でなく、また前記エージング方法により充分にエージン
グがなされ、時間の経過に従って圧電特性が変化しない
かどうかがはっきりしないため、圧電特性の信頼性を保
障することは難しいという課題があった。
However, in the above-mentioned aging method, the processing conditions such as the processing temperature and the processing time are not clear, and the aging method allows sufficient aging so that the piezoelectric characteristics do not change with the passage of time. Since it is unclear whether or not it is difficult to guarantee the reliability of the piezoelectric characteristics.

【0009】本発明は上記課題に鑑み発明されたもので
あって、エージングの条件を明確にすることができ、前
記エージングにより圧電特性の信頼性を保障することが
できるような圧電体の特性制御方法を提供することを目
的としている。
The present invention has been invented in view of the above-mentioned problems, and it is a characteristic control of a piezoelectric body that can clarify the conditions of aging and ensure the reliability of piezoelectric characteristics by the aging. It is intended to provide a way.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る圧電体の特性制御方法は、予め分極処理
が施された圧電体に該分極方向と異なる向きの電場を与
え(逆分極又は逆分極処理し)、前記圧電体の共振周波
数と反共振周波数との差を予め求めておいた特定の周波
数に近づけることを特徴としている。以降、前記方法を
逆分極方法とも表現する。
In order to achieve the above object, a method for controlling the characteristics of a piezoelectric body according to the present invention is to apply an electric field in a direction different from the polarization direction to a piezoelectric body that has been previously polarized. Polarization or reverse polarization) to bring the difference between the resonance frequency and the anti-resonance frequency of the piezoelectric material close to a specific frequency that has been obtained in advance. Hereinafter, the method is also referred to as a reverse polarization method.

【0011】また本発明に係る圧電体の特性制御方法
は、予め分極処理が施された圧電体に該分極方向と異な
る向きの電場を与え、前記圧電体の電気機械結合係数を
予め求めておいた特定の電気機械結合係数に近づけるこ
とを特徴としている。
Further, in the method for controlling the characteristics of the piezoelectric body according to the present invention, an electric field in a direction different from the polarization direction is applied to the piezoelectric body which has been subjected to the polarization treatment in advance, and the electromechanical coupling coefficient of the piezoelectric body is obtained in advance. It is characterized in that it approaches the specific electromechanical coupling coefficient.

【0012】本発明に係る圧電体の特性制御方法におい
ては、まず初めに予め分極処理が施されている圧電体の
周波数特性を測定し、共振周波数faと反共振周波数f
rの差Δf(=fa−fr)を求めておく。前記分極処
理の条件としては、例えば前記した100〜160℃で
約2時間、40〜60kV/cmの高電界を印加する条
件が挙げられる。
In the method of controlling the characteristic of the piezoelectric body according to the present invention, first, the frequency characteristic of the piezoelectric body which has been subjected to the polarization treatment in advance is measured, and the resonance frequency fa and the anti-resonance frequency f are measured.
The difference Δf (= fa−fr) of r is obtained. The conditions of the polarization treatment include, for example, conditions of applying a high electric field of 40 to 60 kV / cm at 100 to 160 ° C. for about 2 hours.

【0013】次に、前記圧電体の分極方向とは異なる向
きに一定の強さの電界を印加(逆分極)することにより
Δfを減少させ、前記逆分極処理の施された圧電体のΔ
fを測定する。この場合、逆分極処理を施す電界の向き
は初めに分極処理を施した方向と異なる向きであれば、
必ずしも180°逆の向きでなくてもよく、3次元のど
の方向であってもかまわない。その後前記圧電体に、前
記したように例えば圧電体の電極をオープンにした状態
で、該圧電体のキュリー点より低い100〜200℃程
度の温度に設定した恒温槽に入れて数時間放置した後、
再び急激に室温まで冷却する等の条件の熱衝撃を与え
て、Δfがどの程度変化したかを測定する。
Next, by applying an electric field of a constant strength in a direction different from the polarization direction of the piezoelectric body (reverse polarization), Δf is decreased, and Δf of the piezoelectric body subjected to the reverse polarization treatment is reduced.
f is measured. In this case, if the direction of the electric field applied with the reverse polarization is different from the direction applied with the polarization first,
The direction does not necessarily have to be 180 ° opposite, and may be any direction in three dimensions. After that, in the piezoelectric body, for example, in a state where the electrodes of the piezoelectric body are opened as described above, after being placed in a constant temperature bath set at a temperature of 100 to 200 ° C. lower than the Curie point of the piezoelectric body and left for several hours. ,
A thermal shock is applied again such that the temperature is rapidly cooled to room temperature, and how much Δf changes is measured.

【0014】次に、前記圧電体と同様の材料からなり、
同様の形状、電極位置、電極形状を有する圧電体につ
き、逆分極処理を施す際の電界の強さや方向を変えてΔ
fを低下させ、さらに同様の熱衝撃を与え、熱衝撃を与
える前のΔfと熱衝撃を与えた後のΔfとを測定する。
前記した一連の実験により得られた結果を検討し、熱衝
撃前後でΔfの値の変化しない条件を求める。
Next, it is made of the same material as the piezoelectric body,
For a piezoelectric body having the same shape, electrode position, and electrode shape, change the strength and direction of the electric field when performing reverse polarization processing, and
Then, f is lowered and the same thermal shock is applied, and Δf before the thermal shock and Δf after the thermal shock are measured.
The results obtained by the series of experiments described above will be examined to determine the conditions under which the value of Δf does not change before and after thermal shock.

【0015】前記方法により求められたΔfの値を有す
る材料は、熱衝撃により圧電特性が変化しないことか
ら、再度の熱衝撃や長時間の使用によってもその圧電特
性は変化しないと考えられる。
Since the piezoelectric property of the material having the value of Δf obtained by the above method does not change due to thermal shock, it is considered that the piezoelectric property does not change even if it is subjected to thermal shock again or it is used for a long time.

【0016】従って、予め分極処理の施された材料に、
このようにして求めたΔfの値にできるだけ近づくよう
に逆分極処理を施すことにより、熱衝撃や長時間の使用
により圧電特性の変化しない圧電体を得ることができ
る。
Therefore, a material which has been subjected to a polarization treatment in advance is
By performing the reverse polarization treatment so as to be as close as possible to the value of Δf thus obtained, it is possible to obtain a piezoelectric body whose piezoelectric characteristics do not change due to thermal shock or long-term use.

【0017】逆分極処理を施すことによりその圧電特性
を抑制することは、従来より知られていたが、このよう
に逆分極処理を施すことにより耐熱衝撃性を制御できる
ことは、今まで知られていなかった。
It has been conventionally known that the piezoelectric property is suppressed by performing the reverse polarization treatment, but it has been known until now that the thermal shock resistance can be controlled by performing the reverse polarization treatment. There wasn't.

【0018】また、前記した方法において熱衝撃を与え
る前のΔfと熱衝撃を与えた後のΔfの関係を求めてお
くことにより、逆に逆分極処理後のΔfを測定すれば、
熱衝撃を加えればΔfがどの程度シフトするかを予想す
ることができる。
Further, by obtaining the relationship between Δf before thermal shock and Δf after thermal shock in the above-mentioned method, conversely, if Δf after reverse polarization treatment is measured,
It is possible to predict how much Δf will shift if a thermal shock is applied.

【0019】[0019]

【作用】本発明に係る圧電体の特性制御方法によれば、
予め分極処理が施された圧電体に該分極方向と異なる向
きの電場を与え、前記圧電体の共振周波数と反共振周波
数との差を予め求めておいた特定の周波数に近づけるこ
とにより、熱衝撃を与えてもその圧電特性が変化しない
ように圧電特性の制御がなされ、また長時間の使用によ
ってもその圧電特性が変化しないように圧電特性の制御
がなされる。
According to the method of controlling the characteristics of the piezoelectric body according to the present invention,
A thermal shock is generated by applying an electric field in a direction different from the polarization direction to a piezoelectric body that has been subjected to a polarization process in advance, and bringing the difference between the resonance frequency and the antiresonance frequency of the piezoelectric body close to a specific frequency that has been obtained in advance. The piezoelectric characteristic is controlled so that the piezoelectric characteristic does not change even when the voltage is applied, and the piezoelectric characteristic is controlled so that the piezoelectric characteristic does not change even when used for a long time.

【0020】また本発明に係る圧電体の特性制御方法に
よれば、予め分極処理が施された圧電体に該分極方向と
異なる向きの電場を与え、前記圧電体の電気機械結合係
数を予め求めておいた特定の電気機械結合係数に近づけ
ることにより、前記の場合と同様に熱衝撃を与えてもそ
の圧電特性が変化しないように圧電特性の制御がなさ
れ、また長時間の使用によってもその圧電特性が変化し
ないように圧電特性の制御がなされる。
Further, according to the method of controlling the characteristics of the piezoelectric body according to the present invention, an electric field having a direction different from the polarization direction is applied to the piezoelectric body that has been subjected to the polarization treatment in advance, and the electromechanical coupling coefficient of the piezoelectric body is obtained in advance. By approaching the specified electromechanical coupling coefficient, the piezoelectric characteristics are controlled so that the piezoelectric characteristics do not change even when a thermal shock is applied, as in the case described above, and even after long-term use, the piezoelectric characteristics are controlled. The piezoelectric characteristics are controlled so that the characteristics do not change.

【0021】[0021]

【実施例及び比較例】以下、本発明に係る圧電体の特性
制御方法の実施例及び比較例を説明する。本実施例では
広がり振動モードを利用した圧電共振子の材料としてP
ZT系の圧電磁器を用いた。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the method for controlling the characteristics of the piezoelectric material according to the present invention will be described below. In this embodiment, P is used as the material of the piezoelectric resonator utilizing the spreading vibration mode.
A ZT type piezoelectric ceramic was used.

【0022】まず、圧電磁器の原料として、Pb3
4 、SnO2 、Sb23 、Nb25 、ZrO2 、T
iO2 、MnCO3 の各種酸化物を用い、これら酸化物
をPb100モルに対しZr及びTiが50〜100モ
ル、Sn、Sb及びNbが50〜0モルの組成になるよ
うに配合し、ポットミルで24時間湿式混合を行った。
次に、混合した原料を乾燥させた後、700〜950℃
の温度範囲で仮焼した。さらに、適量の有機バインダを
加えて乾式混合し、メッシュの容器に通して整粒した。
その後、整粒した粉体に1000〜1500kg/cm
2 の圧力を加えて100×100×50(mm)の板状
成形体を作製し、1000〜1300℃の温度範囲で本
焼を行なうことにより圧電磁器を得た。さらに、この焼
結体の厚さを0.5mmにラッピング後、振動電極の電
極パターンを銀蒸着により作製し、1〜10KV/mm
の直流電圧を印加して分極処理を施し、その後切断加工
して圧電共振子とした。このようにして得た圧電共振子
は、その幅が4.5mm、長さが4.5mmであった。
First, as a raw material for a piezoelectric ceramic, Pb 3 O
4 , SnO 2 , Sb 2 O 3 , Nb 2 O 5 , ZrO 2 , T
Various oxides of iO 2 and MnCO 3 were used, and these oxides were blended in a composition of 50 to 100 moles of Zr and Ti and 50 to 0 moles of Sn, Sb and Nb with respect to 100 moles of Pb, and then mixed in a pot mill. Wet mixing was performed for 24 hours.
Next, after drying the mixed raw material, 700-950 degreeC
It was calcined in the temperature range of. Further, an appropriate amount of organic binder was added and dry-mixed, and the mixture was passed through a mesh container for sizing.
Then, 1000 to 1500 kg / cm for the sized powder.
A pressure of 2 was applied to prepare a 100 × 100 × 50 (mm) plate-shaped molded body, and main firing was performed in a temperature range of 1000 to 1300 ° C. to obtain a piezoelectric ceramic. Furthermore, after lapping the thickness of this sintered body to 0.5 mm, the electrode pattern of the vibrating electrode was produced by silver vapor deposition, and 1 to 10 KV / mm
Then, a direct current voltage was applied to perform polarization treatment, and then cutting processing was performed to obtain a piezoelectric resonator. The piezoelectric resonator thus obtained had a width of 4.5 mm and a length of 4.5 mm.

【0023】前記分極処理の後、インピーダンスの周波
数特性を測定したところ、共振周波数と反共振周波数の
差(Δf)としてΔf≒60(kHz)の値を得た。
After the polarization treatment, the frequency characteristic of impedance was measured, and a value of Δf≈60 (kHz) was obtained as the difference (Δf) between the resonance frequency and the antiresonance frequency.

【0024】ここで注意すべき点は、fr、fa、Δf
が振動モードや圧電共振子の寸法、焼成後の圧電体密度
に依存するので基本的には同じ製造のロットでの検討が
好ましい。特に本実施例でとりあげた拡がり振動モード
では、下記の数1式で与えられる周波数となるため、寸
法を固定する必要がある。また先に述べた圧電体密度等
は周波数定数Nに影響を与えるが、製造条件を管理して
いれば、大きく影響されない。
The points to be noted here are fr, fa, and Δf.
Depends on the vibration mode, the size of the piezoelectric resonator, and the density of the piezoelectric material after firing, so that basically the same manufacturing lot is preferable. In particular, in the spreading vibration mode taken up in this embodiment, the frequency is given by the following mathematical formula 1, so it is necessary to fix the dimensions. Further, although the piezoelectric density and the like described above affect the frequency constant N, they are not greatly affected if the manufacturing conditions are controlled.

【0025】[0025]

【数1】 [Equation 1]

【0026】次に、前記圧電共振子に種々の強さの電界
を印加して逆分極処理を施すことによりΔfを低下さ
せ、逆分極処理後のΔfを測定し、さらに熱衝撃試験を
行ってΔf、fr、faがそれぞれどの程度変化したか
を測定した。
Next, an electric field of various strengths is applied to the piezoelectric resonator to subject it to reverse polarization to reduce Δf, and Δf after the reverse polarization is measured, and a thermal shock test is conducted. It was measured how much each of Δf, fr, and fa changed.

【0027】熱衝撃試験は、前記圧電共振子を電気的に
オープンにした状態で150℃の恒温槽に入れ、1時間
放置した後、再び急激に室温に冷却する熱サイクルを一
回与える条件で行った。
In the thermal shock test, the piezoelectric resonator is placed in a thermostat at 150 ° C. in an electrically open state, left for 1 hour, and then rapidly cooled to room temperature again. went.

【0028】表1〜3は、その結果を示すものであり、
表1は熱衝撃試験前のΔfと熱衝撃試験後のΔfの変化
率との関係を示し、表2は熱衝撃試験前のΔfと熱衝撃
試験後のfrの変化率との関係を示し、表3は熱衝撃試
験前のΔfと熱衝撃試験後のfaの変化率との関係を示
す。なお、表1〜3に示すように、実施例においては同
様の試験を2回繰り返した。
Tables 1 to 3 show the results,
Table 1 shows the relationship between Δf before the thermal shock test and the change rate of Δf after the thermal shock test, and Table 2 shows the relationship between the Δf before the thermal shock test and the change rate of fr after the thermal shock test, Table 3 shows the relationship between Δf before the thermal shock test and the rate of change of fa after the thermal shock test. In addition, as shown in Tables 1-3, the same test was repeated twice in the examples.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】表1〜3から、熱衝撃試験後にΔf、f
r、faが変化しない熱衝撃前のΔfの値は、いずれも
Δf≒45(kHz)であることがわかる。また、表2
〜3から、Δf≒45(kHz)ではΔfが変化しない
だけでなくfaやfrの値も変化しておらず、熱衝撃性
に優れた圧電体となっていることが分かる。さらに、同
様の試験を2回行ってもその値が変化しないことから再
現性も良好で、その信頼性が非常に高いことが分かる。
From Tables 1 to 3, Δf and f after the thermal shock test
It can be seen that the values of Δf before thermal shock where r and fa do not change are both Δf≈45 (kHz). Also, Table 2
From ~ 3, it can be seen that not only Δf does not change when Δf≈45 (kHz), but also the values of fa and fr do not change, and the piezoelectric body has excellent thermal shock resistance. Furthermore, since the value does not change even if the same test is performed twice, the reproducibility is good and the reliability is very high.

【0033】また一般によく知られているように、熱衝
撃に対して特性が安定な材料は、経時変化も少ないとい
うことから、本発明の方法を施した圧電体は経時安定性
も優れることが容易に推定できる。さらに、電気機械結
合係数Kpは近似的に反共振周波数frと共振周波数f
aにより求めることができるので、電気機械結合係数K
pも同様に制御できることになる。例えば拡がり振動モ
ードでは、圧電共振子の寸法により値は異なるが、下記
の数2式により与えられる。
Further, as is generally well known, a material having stable properties against thermal shock is less likely to change with time. Therefore, the piezoelectric body subjected to the method of the present invention is also excellent in stability with time. It can be easily estimated. Further, the electromechanical coupling coefficient Kp is approximately equal to the anti-resonance frequency fr and the resonance frequency f.
Since it can be obtained from a, the electromechanical coupling coefficient K
Similarly, p can be controlled. For example, in the spreading vibration mode, the value varies depending on the size of the piezoelectric resonator, but is given by the following mathematical expression 2.

【0034】[0034]

【数2】 [Equation 2]

【0035】次に比較例として同様の磁器を用い、初め
の分極処理の条件を変えることによりΔfを変化させ、
逆分極処理は施さず、その後前記した条件と同様の熱衝
撃試験を行って、熱衝撃試験前のΔfの値と熱衝撃試験
後のΔf、fa、frの変化率との関係を調べた。結果
を表4〜6に示す。
Next, as a comparative example, the same porcelain was used, and Δf was changed by changing the conditions of the first polarization treatment.
The reverse polarization treatment was not performed, and then a thermal shock test under the same conditions as described above was performed to examine the relationship between the value of Δf before the thermal shock test and the rate of change of Δf, fa, fr after the thermal shock test. The results are shown in Tables 4-6.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】表4〜6から明らかなように、最初の分極
処理のみでは、熱衝撃試験を行った後にΔfの変化率が
0になる条件は存在せず、熱衝撃により必ずΔfの値が
減少しており、またfr、faともかなり変化している
ため、最初の分極処理のみでは耐熱衝撃特性は改善でき
ないことがわかる。また、このデータは、Δfが大きく
圧電特性に優れたもの程、熱衝撃によるfr、faの変
化率が大きくなるという好ましくない結果を示してい
る。
As is clear from Tables 4 to 6, there is no condition that the change rate of Δf becomes 0 after the thermal shock test only by the first polarization treatment, and the value of Δf always decreases due to the thermal shock. In addition, since both fr and fa are considerably changed, it can be understood that the thermal shock resistance cannot be improved only by the first polarization treatment. Further, this data shows an unfavorable result that the larger the Δf is and the better the piezoelectric characteristics are, the larger the rate of change of fr and fa due to thermal shock is.

【0040】このように、本実施例に係る圧電体の特性
制御方法にあっては、分極処理を施した後、特定のΔf
になるように逆分極処理を施すことにより、熱衝撃を与
えてもその圧電特性が変化しない圧電体を得ることがで
き、また経時変化も少なくすることができると考えられ
る。
As described above, in the method of controlling the characteristics of the piezoelectric body according to the present embodiment, after the polarization process is performed, the specific Δf
It is considered that by performing the reverse polarization treatment so that the piezoelectric property does not change even when a thermal shock is applied, the change over time can be reduced.

【0041】[0041]

【発明の効果】以上詳述したように本発明に係る圧電体
の特性制御方法にあっては、予め分極処理が施された圧
電体に該分極方向と異なる向きの電場を与え、前記圧電
体の共振周波数と反共振周波数との差を予め求めておい
た特定の周波数に近づける方法を採用しているので、熱
衝撃を与えてもその圧電特性が変化せず、また長時間の
使用によっても圧電特性が変化しない圧電特性を有する
圧電体を得ることができ、また、逆分極処理後のΔfの
値が予め求めておいた特定の周波数とどの程度異なるか
を比較することにより、熱衝撃による圧電特性の変化を
予測することができる。
As described in detail above, in the method for controlling the characteristics of a piezoelectric body according to the present invention, an electric field in a direction different from the polarization direction is applied to a piezoelectric body that has been subjected to a polarization treatment in advance. Since the method of bringing the difference between the resonance frequency and the anti-resonance frequency close to the specific frequency that was previously obtained is adopted, its piezoelectric characteristics do not change even when a thermal shock is applied, and even after long-term use It is possible to obtain a piezoelectric body having a piezoelectric characteristic in which the piezoelectric characteristic does not change, and by comparing how much the value of Δf after reverse polarization processing differs from a specific frequency obtained in advance, it is possible to obtain It is possible to predict changes in piezoelectric characteristics.

【0042】また本発明に係る圧電体の特性制御方法に
あっては、予め分極処理が施された圧電体に該分極方向
と異なる向きの電場を与え、前記圧電体の電気機械結合
係数を予め求めておいた特定の電気機械結合係数に近づ
ける方法を採用しているので、前記の場合と同様に熱衝
撃を与えてもその圧電特性が変化せず、また長時間の使
用によっても圧電特性が変化しない圧電特性を有する圧
電体を得ることができ、また逆分極処理後のΔfの値が
予め求めておいた特定の周波数とどの程度異なるかを比
較することにより、熱衝撃による電気機械結合係数の変
化を予測することもできる。
Further, in the method of controlling the characteristics of the piezoelectric body according to the present invention, an electric field in a direction different from the polarization direction is applied to the piezoelectric body that has been subjected to the polarization treatment in advance, and the electromechanical coupling coefficient of the piezoelectric body is calculated in advance. Since the method of approaching the specified electromechanical coupling coefficient is adopted, the piezoelectric characteristics do not change even when a thermal shock is applied as in the case above, and the piezoelectric characteristics remain unchanged even after long-term use. It is possible to obtain a piezoelectric body having a piezoelectric characteristic that does not change, and by comparing how the value of Δf after reverse polarization treatment differs from a specific frequency that has been obtained in advance, the electromechanical coupling coefficient due to thermal shock can be obtained. Can also predict changes in

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 予め分極処理が施された圧電体に該分極
方向と異なる向きの電場を与え、前記圧電体の共振周波
数と反共振周波数との差を予め求めておいた特定の周波
数に近づけることを特徴とする圧電体の特性制御方法。
1. An electric field having a direction different from the polarization direction is applied to a piezoelectric body that has been subjected to a polarization process in advance to bring the difference between the resonance frequency and the anti-resonance frequency of the piezoelectric body close to a specific frequency that has been obtained in advance. A characteristic control method for a piezoelectric body, comprising:
【請求項2】 予め分極処理が施された圧電体に該分極
方向と異なる向きの電場を与え、前記圧電体の電気機械
結合係数を予め求めておいた特定の電気機械結合係数に
近づけることを特徴とする圧電体の特性制御方法。
2. An electric field in a direction different from the polarization direction is applied to a piezoelectric body that has been subjected to a polarization treatment in advance so as to bring the electromechanical coupling coefficient of the piezoelectric body close to a specific electromechanical coupling coefficient that has been obtained in advance. A characteristic control method for a piezoelectric body.
JP10209393A 1993-04-28 1993-04-28 Characteristic control method for piezoelectric body Pending JPH06315196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10209393A JPH06315196A (en) 1993-04-28 1993-04-28 Characteristic control method for piezoelectric body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10209393A JPH06315196A (en) 1993-04-28 1993-04-28 Characteristic control method for piezoelectric body

Publications (1)

Publication Number Publication Date
JPH06315196A true JPH06315196A (en) 1994-11-08

Family

ID=14318167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10209393A Pending JPH06315196A (en) 1993-04-28 1993-04-28 Characteristic control method for piezoelectric body

Country Status (1)

Country Link
JP (1) JPH06315196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508658A (en) * 2022-11-21 2022-12-23 南京霆升医疗科技有限公司 Method and device for automatic polarization analysis of piezoelectric ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508658A (en) * 2022-11-21 2022-12-23 南京霆升医疗科技有限公司 Method and device for automatic polarization analysis of piezoelectric ceramics
CN115508658B (en) * 2022-11-21 2023-03-14 南京霆升医疗科技有限公司 Method and device for automatic polarization analysis of piezoelectric ceramics

Similar Documents

Publication Publication Date Title
US3268453A (en) Piezoelectric ceramic compositions
KR100282598B1 (en) Piezoelectric Ceramic Composition
JP2002068835A (en) Piezoelectric ceramic composition
JPH11228228A (en) Piezoelectric ceramic composition
KR100645753B1 (en) Piezoelectric ceramic composition, piezoelectric ceramic device, and method for manufacturing the piezoelectric ceramic composition
KR100200180B1 (en) Piezoelectric ceramics and manufacturing method thereof
JP2001039766A (en) Piezoelectric element
JPH10279352A (en) Production of piezoelectric ceramics
JP3864840B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic element, and method for producing piezoelectric ceramic composition
JPH06315196A (en) Characteristic control method for piezoelectric body
JPH06263535A (en) Piezoelectric ceramic
JPH09132456A (en) Piezoelectric porcelain
JPH08293635A (en) Piezoelectric ceramic
JP3781317B2 (en) Piezoelectric ceramic material
JPH07315926A (en) Piezoelectric porcelain composition for ceramic filter device excellent in moisture resistance
Shrout et al. Low field poling of soft PZTs
JPH06256061A (en) Piezoelectric porcelain
JP2001206767A (en) Piezoelectric porcelain and its manufacturing method
JP2004067437A (en) Piezoelectric ceramic composition
JPH07172914A (en) Production of piezoelectric material
JP3188921B2 (en) Dielectric ceramic composition and device
JPH06252468A (en) Piezoelectric porcelain
JPH0873267A (en) Piezoelectric material
JPH02137283A (en) Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic
de Medeiros et al. Influence of poling temperature on aging and thermal stability of PZT ceramics