JP3864840B2 - Piezoelectric ceramic composition, piezoelectric ceramic element, and method for producing piezoelectric ceramic composition - Google Patents

Piezoelectric ceramic composition, piezoelectric ceramic element, and method for producing piezoelectric ceramic composition Download PDF

Info

Publication number
JP3864840B2
JP3864840B2 JP2002132653A JP2002132653A JP3864840B2 JP 3864840 B2 JP3864840 B2 JP 3864840B2 JP 2002132653 A JP2002132653 A JP 2002132653A JP 2002132653 A JP2002132653 A JP 2002132653A JP 3864840 B2 JP3864840 B2 JP 3864840B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
ceramic composition
temperature
composition
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002132653A
Other languages
Japanese (ja)
Other versions
JP2004002051A (en
Inventor
雅彦 木村
陽 安藤
智之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002132653A priority Critical patent/JP3864840B2/en
Publication of JP2004002051A publication Critical patent/JP2004002051A/en
Application granted granted Critical
Publication of JP3864840B2 publication Critical patent/JP3864840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は圧電磁器組成物、圧電セラミック素子および圧電磁器組成物の製造方法に関し、特にたとえば、圧電セラミックフィルタ、圧電セラミック発振子および圧電セラミック振動子などの圧電セラミック素子などの材料として有用な圧電磁器組成物およびそれを用いた圧電セラミック素子などに関する。
【0002】
【従来の技術】
圧電セラミックフィルタ、圧電セラミック発振子および圧電セラミック振動子などの圧電セラミック素子に用いられる圧電磁器組成物として、従来、チタン酸ジルコン酸鉛(Pb(Tix Zr1-x )O3 )またはチタン酸鉛(PbTiO3 )を主成分とする圧電磁器組成物が広く用いられている。しかしながら、チタン酸ジルコン酸鉛またはチタン酸鉛を主成分とする圧電磁器組成物では、その組成中に鉛を多量に含有するため、製造過程において鉛酸化物の蒸発のため製品の均一性が低下するという問題があった。製造過程における鉛酸化物の蒸発による製品の均一性の低下を防止するためには、組成中に鉛をまったく含まないまたは少量のみ含む圧電磁器組成物が好ましい。
これに対して、組成式(Na1-x Lix )NbO3 で表される一連の化合物を主成分とする圧電磁器組成物では、その組成中に鉛酸化物を含有しないため、上記のような問題は生じない。
【0003】
【発明が解決しようとする課題】
ところが、組成式(Na1-x Lix )NbO3 で表される一連の化合物を主成分とする圧電磁器組成物では、機械的品質係数Qm が比較的小さい。このため、このような圧電磁器組成物では、たとえば圧電セラミックフィルタなどのように高い機械的品質係数Qm が要求される用途に対しては対応が困難であるという問題があった。
また、組成式(Na1-x Lix )NbO3 で表される一連の化合物を主成分とする圧電磁器組成物では、比較的低温で、室温において安定な結晶系から室温より高温域において安定な結晶系に相転移してしまい、その結果、相転移温度において共振周波数が大きく変化するという問題点がある。
【0004】
それゆえに、この発明の主たる目的は、組成式(Na1-x Lix )NbO3 で表されるようなNa、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物を主成分とし、機械的品質係数Qm を向上させた圧電磁器組成物を提供することである。
この発明の他の目的は、組成式(Na1-x Lix )NbO3 で表されるようなNa、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物を主成分とし、機械的品質係数Qm を向上させた圧電磁器組成物を用いた圧電セラミック素子を提供することである。
この発明のさらに他の目的は、組成式(Na1-x Lix )NbO3 で表されるようなNa、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物を主成分とし、機械的品質係数Qm を向上させた圧電磁器組成物の製造方法を提供することである。
【0005】
【課題を解決するための手段】
この発明にかかる圧電磁器組成物は、Na、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物を主成分とする圧電磁器組成物において、主成分の結晶系は、本来室温において安定な結晶系である菱面体晶とは異なり、本来室温より高い温度域で安定な結晶系である単斜晶が室温において準安定状態となっているものであることを特徴とする、圧電磁器組成物である
の発明にかかる圧電磁器組成物では、主成分となる化合物が、たとえば組成式(Na1-xLix)NbO3(ただし、0.02≦x≦0.30)で表される。
また、この発明にかかる圧電磁器組成物では、主成分となる化合物が、たとえば組成式(Na1-xLix)NbO3(ただし、0.08≦x≦0.18)で表される。
さらに、この発明にかかる圧電磁器組成物では、主成分となる化合物が、たとえば組成式(1−n)[(Na1-xLix1-yy](Nb1-zTaz)O3−nM1M2O3(ただし、0.02≦x≦0.30、0≦y≦0.2、0≦z≦0.2、0≦n≦0.1、M1は2価の金属元素、M2は4価の金属元素)で表される。この場合、M1は、たとえばMg、Ca、SrおよびBaからなる群から選ばれた少なくとも1種であり、M2は、たとえばTi、Zr、SnおよびHfからなる群から選ばれた少なくとも1種である。
また、この発明にかかる圧電セラミック素子は、この発明にかかる圧電磁器組成物からなる圧電磁器と、圧電磁器に形成される電極とを含む、圧電セラミック素子である。
この発明にかかる圧電磁器組成物の製造方法は、この発明にかかる圧電磁器組成物を製造する方法であって、圧電磁器組成物に分極処理を施した後に、単斜晶が安定状態である温度かそれ以上の温度でかつ主成分となる化合物が強誘電性を失う温度未満に圧電磁器組成物を加熱することを特徴とする、圧電磁器組成物の製造方法である。
この発明にかかる圧電磁器組成物の製造方法では、圧電磁器組成物を加熱する温度が、たとえば250℃から400℃の範囲内である。
【0006】
この発明では、Na、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物を主成分とする圧電磁器組成物において、主成分の結晶系は、本来室温において安定な結晶系である菱面体晶とは異なり、本来室温より高い温度域で安定な結晶系である単斜晶が室温において準安定状態となっているものであるようにする。ここで準安定状態とは、ある物質において、その温度を変えていくとき、相転移点で本来安定であるはずの結晶相に移らず、もとの結晶相が非常に長い非平衡状態としてそのまま続くような状態を指す。たとえば、チタン酸バリウム(BaTiO3)は、通常、室温では正方晶が安定であるが、1460℃以上の高温から急冷することによって、室温で六方晶のものを得ることが可能であることが知られている。ここでいう準安定状態とは、室温での六方晶のチタン酸バリウムと同様な状態を言う。また、この準安定状態は、低温から高温への温度変化に伴って生じるものではなく、高温から低温への温度変化に伴って生じるものであること、すなわち、より高温で本来安定であるはずの結晶相を低温で示す場合を指す。
こうすることによって、たとえば円板状の圧電セラミック振動子の厚み縦振動の機械的品質係数Qmについて言うと、Na、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物を主成分とする圧電磁器組成物において、たとえば、機械的品質係数Qmが500程度かそれ以下であったものが1000以上に向上する。
さらに、この発明にかかる圧電磁器組成物は、本来室温より高い温度域で安定な結晶系が室温において準安定状態となっているので、本来の相転移温度になっても相転移が生じず、共振周波数が大きく変化することがない。
この発明にかかる圧電磁器組成物の主成分、すなわち、Na、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物としては、組成式(Na1-xLix)NbO3(ただし、0.02≦x≦0.30)で表される化合物であることが、この発明の効果が顕著となり好ましい。また、このうち0.08≦x≦0.18の場合には、この発明の効果が特に顕著となりさらに好ましい。また、この発明は、組成式(1−n)[(Na1-xLix1-yy](Nb1-zTaz)O3−nM1M2O3(ただし、0.02≦x≦0.30、0≦y≦0.2、0≦z≦0.2、0≦n≦0.1、M1は2価の金属元素、M2は4価の金属元素)で表される化合物が主成分となる圧電磁器組成物についても効果がある。この場合、M1は、Mg、Ca、SrおよびBaからなる群から選ばれた少なくとも1種であり、M2は、Ti、Zr、SnおよびHfからなる群から選ばれた少なくとも1種であることが好ましい。
また、この発明にかかる圧電磁器組成物では、たとえば、組成式(Na1-xLix)NbO3と記述した場合にはおよそ(Na1-xLix)NbO3の組成式で表されておればよく、Na、Li、NbまたはOの比が化学量論組成から5%程度ずれていても特に差し支えない。また、この発明にかかる圧電磁器組成物には、Al、Mn、Fe、Si、Co、Pbなどが数パーセント程度混入されていても問題ない。
また、この発明にかかる圧電磁器組成物を製造する一方法としては、圧電磁器組成物に分極処理を施した後に、単斜晶が安定状態である温度かそれ以上の温度でかつ主成分となる化合物が強誘電性を失う温度未満に圧電磁器組成物を加熱する方法が有効である。このとき、圧電磁器組成物を加熱する温度は、250℃から400℃の範囲内であることが好ましい。
【0007】
この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明の実施の形態の詳細な説明から一層明らかとなろう。
【0008】
【発明の実施の形態】
(実施例)
まず、出発原料として、Na2 CO3 、Li2 CO3 、K2 CO3 、Nb25 、Ta25 、CaCO3 、BaCO3 、TiO2 およびZrO2 を用意し、これらを組成式(1−n)[(Na1-x Lix1-yy ](Nb1-z Taz )O3 −nM1M2O3 (ただし、0.01≦x≦0.35、0≦y≦0.25、0≦z≦0.25、0≦n≦0.2、M1はCaまたはBa、M2はTiまたはZr)となるように秤取して、ボールミルを用いて約16時間湿式混合して、混合物を得た。得られた混合物を乾燥した後、700〜900℃で仮焼して、仮焼物を得た。それから、この仮焼物を粗粉砕した後、有機バインダを適量加えてボールミルを用いて16時間湿式粉砕し、40メッシュのふるいを通して粒度調整を行った。次に、これを1500kg/cm2 の圧力で直径12mm、厚さ0.6mmの円板に成型し、これを大気中で1000〜1300℃で焼成することによって、円板状の磁器を得た。この磁器の表面(両主面)に、通常の方法により銀ペーストを塗布し焼付けて銀電極を形成した後、100〜250℃の絶縁オイル中で3〜10kV/mmの直流電圧を30〜60分間印加して分極処理を施し、圧電磁器(試料)を得た。そして、これらの試料を150〜500℃に加熱(熱処理)した。
【0009】
図1(a)には、試料No.7などのように組成式(Na0.87Li0.13)NbO3 で表される円板状の試料を電極を形成する前(未分極)に粉砕して得た粉末試料の室温でのX線回折プロファイルを示す。また、図1(b)には、同組成の円板状の試料に電極を形成し、分極を施した後、電極を除去し、粉砕して得た粉末試料の室温でのX線回折プロファイルを示す。図1(a)に示すプロファイルおよび図1(b)に示すプロファイルは、ほぼ同様のプロファイルと考えられる。発明者らが分析を行った結果では、図1(a)に示すプロファイルおよび図1(b)に示すプロファイルは、菱面体晶を示しているものと思われる。次に、同組成の円板状の試料に電極を形成し、分極を行った後に350℃に加熱した後、室温に戻して電極を取り除き、粉砕して得た粉末試料の室温でのX線回折プロファイルを図1(c)に示す。図1(c)に示すプロファイルは、図1(a)に示すプロファイルおよび図1(b)に示すプロファイルとは明らかに異なる。特に、2θが35〜45°付近において、それらのプロファイルには大きな相違がみられる。発明者らが分析を行った結果では、図1(c)に示すプロファイルは、単斜晶のプロファイルであるものと思われる。同組成の円板状の試料を電極を形成する前(未分極)に粉砕して得た粉末試料のX線回折を温度を変化させて行ったところ、図1(c)に見られるプロファイルは、200〜350℃付近の高温領域で安定な結晶相のプロファイルと一致することが明らかになった。分極処理の直後には、室温で菱面体晶と思われる結晶構造を示していた試料が、350℃の熱処理後には室温で単斜晶と思われる結晶構造を示した。分極後に熱処理を行うことによって本来高温で安定な結晶相が室温で準安定状態として実現されていることが明らかである。分極後に熱処理を施した試料を2ヶ月間放置し、再び同様のX線回折分析を行ったが同様の結果が得られた。
【0010】
同様に、組成式(1−n)[(Na1-x Lix1-yy ](Nb1-z Taz )O3 −nM1M2O3 (ただし、M1は2価の金属元素、M2は4価の金属元素)で表される本発明の範囲内の他の試料について熱処理前後の結晶系の調査を行ったが、いずれの試料でも同様の関係が見られた。また、本発明におけるQm の向上効果は、準安定状態である結晶相が実現した場合にのみ現われることが明らかになった。
【0011】
次に、これらの試料について、熱処理前後の円板状の圧電セラミック振動子の厚み縦振動基本波の電気機械結合係数kt および機械的品質係数Qm を測定した。それらの結果を表1および表2に示す。
【0012】
【表1】

Figure 0003864840
【0013】
【表2】
Figure 0003864840
【0014】
表1および表2に示す値は、同じ組成の試料のうち、最も大きな機械的品質係数Qm が得られた条件(仮焼温度、焼成温度、分極時の絶縁オイルの温度、直流電圧)の場合の値である。
なお、表1中の試料No.5は、熱処理温度が高すぎるため強誘電性および圧電性を失っており、本発明の範囲外である。また、表1中の試料No.10は、熱処理温度が低すぎるために、すなわち高温結晶相が安定となる温度に達していないために、結晶形が変化しておらず、本発明の範囲外である。
それに対して、表1および表2に示すように、本発明の範囲内にある試料については、いずれも機械的品質係数Qm が大幅に向上しており、特に、圧電セラミックフィルタ、圧電セラミック発振子、圧電セラミック振動子などの圧電セラミック素子などの材料として有用な圧電磁器組成物であることが明らかである。
【0015】
また、試料No.1〜28の各試料について、熱処理前および熱処理後において、−40℃〜400℃と条件を変動させたときの拡がり振動の共振周波数をインピーダンスアナライザを用いて測定し、共振周波数の大幅な変化(相転移の発生)がないかどうかを調べた。それらの結果を表3に示す。また、特に試料No.6を用いた圧電セラミック振動子について、熱処理前後において、温度と拡がり振動の共振周波数との関係をグラフにし、図2に示した。
【0016】
【表3】
Figure 0003864840
【0017】
表3および図2に示す結果から明らかなように、熱処理前においては、全ての試料について共振周波数の大幅な変化(相転移の発生)が確認され、熱処理後においては、試料No.5が脱分極により測定不可で、試料No.10が共振周波数の大幅な変化(相転移の発生)が確認されている。
それに対して、本発明の範囲内にある試料については、いずれも共振周波数の大幅な変化(相転移の発生)が確認されていない。
【0018】
一例として、図2に示すグラフより、熱処理前の試料No.6の共振周波数の温度変化が非直線的であるのに対して、熱処理後の試料No.6の共振周波数の温度変化は直線的であることが分かる。圧電セラミックフィルタ、圧電セラミック発振子および圧電セラミック振動子などにおいては、しばしば共振周波数の温度変化率が小さいことが要求される。このような場合に共振周波数の温度変化が直線的な挙動であれば、補正によって変化率を小さく抑えることが比較的容易に行える。それに対して、共振周波数の温度変化が非直線的の場合には、補正によって変化率を抑えることが困難である。さらに、熱処理前の試料No.6では、共振周波数の温度変化が、昇温時、降温時の別で、または、昇降温の速度によって変化する。すなわち、共振周波数の温度変化が履歴を持つ。一方、熱処理後の試料No.6においては、通常の使用温度である−40〜125℃の温度範囲でほとんど履歴が見られない。
【0019】
なお、この発明にかかる圧電磁器組成物は上記の実施例の組成に限定されるものではなく、発明の要旨の範囲内であれば有効である。
【0020】
また、上述の実施例では機械的品質係数Qm は円板状の圧電セラミック振動子の厚み縦振動についての例を示したが、本発明の効果は、円板状の圧電セラミック振動子の厚み縦振動に限定されず、拡がり振動、厚みすべり振動や厚み縦振動の高調波など、他の圧電セラミック素子として特にたとえば圧電セラミック発振子などに利用される他の振動モードにおいても、厚み縦振動の場合と同様に有効である。
【0021】
さらに、上述の実施例では周波数の温度変化は円板状の圧電セラミック振動子の拡がり振動についての例を示したが、本発明の効果は、円板状の圧電セラミック振動子の拡がり振動に限定されず、厚み縦振動や厚みすべり振動など、他の圧電セラミック素子としても同様に有効である。
【0022】
図3はこの発明にかかる圧電セラミック振動子の一例を示す斜視図であり、図4はその断面図解図である。図3および図4に示す圧電セラミック振動子10は、たとえば直方体状の圧電磁器12を含む。圧電磁器12は、2枚の圧電磁器層12aおよび12bを含む。これらの圧電磁器層12aおよび12bは、上述のこの発明にかかる圧電磁器組成物からなり、積層されかつ一体的に形成される。また、これらの圧電磁器層12aおよび12bは、図4の矢印で示すように、同じ厚み方向に分極されている。
【0023】
圧電磁器層12aおよび12bの間には、その中央にたとえば円形の振動電極14aが形成され、その振動電極14aから圧電磁器12の一端面にわたってたとえばT字形の引出電極16aが形成される。また、圧電磁器層12aの表面には、その中央にたとえば円形の振動電極14bが形成され、その振動電極14bから圧電磁器12の他端面にわたってたとえばT字形の引出電極16bが形成される。さらに、圧電磁器層12bの表面には、その中央にたとえば円形の振動電極14cが形成され、その振動電極14cから圧電磁器12の他端面にわたってたとえばT字形の引出電極16cが形成される。
【0024】
そして、引出電極16aにはリード線18aを介して一方の外部端子20aが接続され、引出電極16bおよび16cには別のリード線18bを介して他方の外部端子20bが接続される。
【0025】
なお、この発明は、上述の圧電セラミック振動子10以外の圧電セラミック振動子、圧電セラミックフィルタおよび圧電セラミック発振子などの他の圧電セラミック素子にも適用される。
【0026】
【発明の効果】
この発明によれば、組成式(Na1-x Lix )NbO3 で表されるようなNa、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物を主成分とし、機械的品質係数Qm を向上させ、鉛または鉛化合物をまったく含まないまたは少量のみ含む、圧電セラミックフィルタ、圧電セラミック発振子および圧電セラミック振動子などの圧電セラミック素子などの材料として有用な圧電磁器組成物およびそれを用いた圧電セラミック素子が得られる。
また、この発明にかかる圧電磁器組成物は、本来室温より高い温度域で安定な結晶系が室温において準安定状態となっているので、本来の相転移温度になっても相転移が生じず、共振周波数が大きく変化することがない。
【図面の簡単な説明】
【図1】組成式(Na0.87Li0.13)NbO3 で表される試料のX線回折プロファイルである。
【図2】組成式(Na0.87Li0.13)NbO3 で表される試料No.6を用いた熱処理前後の圧電セラミック振動子の拡がり振動の共振周波数の温度変化を示すグラフである。
【図3】この発明にかかる圧電セラミック振動子の一例を示す斜視図である。
【図4】図3に示す圧電セラミック振動子の断面図解図である。
【符号の説明】
10 圧電セラミック振動子
12 圧電磁器
12a、12b 圧電磁器層
14a、14b、14c 振動電極
16a、16b、16c 引出電極
18a、18b リード線
20a、20b 外部端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric ceramic composition, a piezoelectric ceramic element, and a method for manufacturing a piezoelectric ceramic composition, and in particular, a piezoelectric ceramic useful as a material for a piezoelectric ceramic element such as a piezoelectric ceramic filter, a piezoelectric ceramic oscillator, and a piezoelectric ceramic vibrator. The present invention relates to a composition and a piezoelectric ceramic element using the composition.
[0002]
[Prior art]
As a piezoelectric ceramic composition used for piezoelectric ceramic elements such as piezoelectric ceramic filters, piezoelectric ceramic resonators and piezoelectric ceramic vibrators, lead zirconate titanate (Pb (Ti x Zr 1-x ) O 3 ) or titanic acid has heretofore been used. Piezoelectric ceramic compositions mainly composed of lead (PbTiO 3 ) are widely used. However, a piezoelectric ceramic composition mainly composed of lead zirconate titanate or lead titanate contains a large amount of lead in the composition, so that the uniformity of the product is reduced due to evaporation of lead oxide in the manufacturing process. There was a problem to do. In order to prevent deterioration of product uniformity due to evaporation of lead oxide during the manufacturing process, a piezoelectric ceramic composition containing no lead or only a small amount in the composition is preferable.
On the other hand, a piezoelectric ceramic composition mainly composed of a series of compounds represented by the composition formula (Na 1-x Li x ) NbO 3 does not contain lead oxide in the composition, No problem arises.
[0003]
[Problems to be solved by the invention]
However, a piezoelectric ceramic composition mainly composed of a series of compounds represented by the composition formula (Na 1-x Li x ) NbO 3 has a relatively small mechanical quality factor Q m . Therefore, in such a piezoelectric ceramic composition, there is a problem that correspondence is difficult for applications for example a high mechanical quality factor Q m, such as a piezoelectric ceramic filter is required.
A piezoelectric ceramic composition mainly composed of a series of compounds represented by the composition formula (Na 1-x Li x ) NbO 3 is stable at a relatively low temperature at room temperature from a crystal system stable at a temperature higher than room temperature. As a result, there is a problem that the resonance frequency changes greatly at the phase transition temperature.
[0004]
Therefore, a main object of the present invention is to provide a compound having a perovskite structure mainly composed of elements of Na, Li, Nb and O as represented by the composition formula (Na 1-x Li x ) NbO 3. A piezoelectric ceramic composition having a main component and an improved mechanical quality factor Q m is provided.
Another object of the present invention is mainly composed of a compound having a perovskite structure mainly composed of Na, Li, Nb and O elements represented by the composition formula (Na 1-x Li x ) NbO 3. and then, it is to provide a piezoelectric ceramic element using the piezoelectric ceramic composition with improved mechanical quality factor Q m.
Still another object of the present invention is to provide a compound having a perovskite structure mainly composed of Na, Li, Nb and O elements represented by the composition formula (Na 1-x Li x ) NbO 3. and component is to provide a method for manufacturing a piezoelectric ceramic composition with improved mechanical quality factor Q m.
[0005]
[Means for Solving the Problems]
The piezoelectric ceramic composition according to the present invention is mainly composed of elements of Na, Li, Nb and O, and the piezoelectric ceramic composition mainly composed of a compound having a perovskite structure. Unlike rhombohedral crystals that are stable at room temperature, monoclinic crystals that are originally stable in a temperature range higher than room temperature are metastable at room temperature, It is a piezoelectric ceramic composition .
The piezoelectric ceramic composition according to this invention, a compound as a main component, for example the composition formula (Na 1-x Li x) NbO 3 ( however, 0.02 ≦ x ≦ 0.30) represented by.
In the piezoelectric ceramic composition according to the present invention, the main component compound is represented, for example, by the composition formula (Na 1-x Li x ) NbO 3 (where 0.08 ≦ x ≦ 0.18).
Furthermore, in the piezoelectric ceramic composition according to the present invention, the compound as the main component is, for example, the composition formula (1-n) [(Na 1−x Li x ) 1−y K y ] (Nb 1−z Ta z ). O 3 −nM1M2O 3 (where 0.02 ≦ x ≦ 0.30, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.2, 0 ≦ n ≦ 0.1, M1 is a divalent metal element, M2 is represented by a tetravalent metal element). In this case, M1 is at least one selected from the group consisting of Mg, Ca, Sr and Ba, for example, and M2 is at least one selected from the group consisting of Ti, Zr, Sn and Hf, for example .
The piezoelectric ceramic element according to the present invention is a piezoelectric ceramic element including a piezoelectric ceramic made of the piezoelectric ceramic composition according to the present invention and an electrode formed on the piezoelectric ceramic.
The method for producing a piezoelectric ceramic composition according to the present invention is a method for producing a piezoelectric ceramic composition according to the present invention, wherein the monoclinic crystal is in a stable state after the piezoelectric ceramic composition is polarized. A method for producing a piezoelectric ceramic composition, characterized in that the piezoelectric ceramic composition is heated at a temperature higher than that and below a temperature at which a compound as a main component loses ferroelectricity.
In the method for manufacturing a piezoelectric ceramic composition according to the present invention, the temperature for heating the piezoelectric ceramic composition is, for example, in the range of 250 ° C to 400 ° C.
[0006]
In this invention, in the piezoelectric ceramic composition mainly composed of elements of Na, Li, Nb, and O and mainly composed of a compound having a perovskite structure, the main component crystal system is a crystal system that is inherently stable at room temperature. Unlike the rhombohedral crystal , the monoclinic crystal, which is originally a stable crystal system in a temperature range higher than room temperature, should be in a metastable state at room temperature. Here, metastable state means that when changing the temperature of a certain substance, it does not move to the crystalline phase that should be stable at the phase transition point, and the original crystalline phase remains as a very long non-equilibrium state. Refers to the state that continues. For example, barium titanate (BaTiO 3 ) is usually stable in tetragonal crystals at room temperature, but it is known that hexagonal crystals can be obtained at room temperature by quenching from a high temperature of 1460 ° C. or higher. It has been. The metastable state here means a state similar to hexagonal barium titanate at room temperature. Also, this metastable state does not occur with a temperature change from low temperature to high temperature, but occurs with a temperature change from high temperature to low temperature, that is, it should be inherently stable at a higher temperature. This refers to the case where the crystal phase is shown at a low temperature.
By doing so, for example, say the mechanical quality factor Q m of the thickness longitudinal vibration of the disk-shaped piezoelectric ceramic vibrator, Na, Li, mainly consists of elements Nb and O, a compound having a perovskite structure In the piezoelectric ceramic composition containing as a main component, for example, a mechanical quality factor Qm of about 500 or less is improved to 1000 or more.
Furthermore, the piezoelectric ceramic composition according to the present invention is a metastable state at room temperature, which is inherently stable at a temperature range higher than room temperature, so that no phase transition occurs even at the original phase transition temperature, The resonance frequency does not change greatly.
The main component of the piezoelectric ceramic composition according to the present invention, that is, a compound mainly composed of elements of Na, Li, Nb and O and having a perovskite structure includes a composition formula (Na 1-x Li x ) NbO 3. (However, a compound represented by 0.02 ≦ x ≦ 0.30) is preferable because the effect of the present invention is remarkable. Of these, when 0.08 ≦ x ≦ 0.18, the effect of the present invention is particularly remarkable, which is further preferable. Further, the present invention is a composition formula (1-n) [(Na 1-x Li x) 1-y K y] (Nb 1-z Ta z) O 3 -nM1M2O 3 ( however, 0.02 ≦ x ≦ 0.30, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.2, 0 ≦ n ≦ 0.1, M1 is a divalent metal element, and M2 is a tetravalent metal element). The piezoelectric ceramic composition which is the main component is also effective. In this case, M1 is at least one selected from the group consisting of Mg, Ca, Sr and Ba, and M2 is at least one selected from the group consisting of Ti, Zr, Sn and Hf. preferable.
In the piezoelectric ceramic composition according to the present invention, for example, when the composition formula (Na 1-x Li x ) NbO 3 is described, it is represented by the composition formula of (Na 1-x Li x ) NbO 3. It is sufficient that the ratio of Na, Li, Nb or O deviates from the stoichiometric composition by about 5%. Further, the piezoelectric ceramic composition according to the present invention may be mixed with about several percent of Al, Mn, Fe, Si, Co, Pb, or the like.
Further, as one method for producing the piezoelectric ceramic composition according to the present invention, after the piezoelectric ceramic composition is subjected to polarization treatment, the monoclinic crystal becomes a stable component at a temperature at or above a stable state. A method of heating the piezoelectric ceramic composition below the temperature at which the compound loses ferroelectricity is effective. At this time, it is preferable that the temperature which heats a piezoelectric ceramic composition exists in the range of 250 to 400 degreeC.
[0007]
The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of the embodiments of the present invention with reference to the drawings.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
(Example)
First, Na 2 CO 3 , Li 2 CO 3 , K 2 CO 3 , Nb 2 O 5 , Ta 2 O 5 , CaCO 3 , BaCO 3 , TiO 2 and ZrO 2 are prepared as starting materials, and these are represented by the composition formula (1-n) [(Na 1-x Li x) 1-y K y] (Nb 1-z Ta z) O 3 -nM1M2O 3 ( however, 0.01 ≦ x ≦ 0.35,0 ≦ y ≦ 0.25, 0 ≦ z ≦ 0.25, 0 ≦ n ≦ 0.2, M1 is Ca or Ba, M2 is Ti or Zr), and wet-mixed for about 16 hours using a ball mill To obtain a mixture. The obtained mixture was dried and calcined at 700 to 900 ° C. to obtain a calcined product. Then, this calcined product was coarsely pulverized, an appropriate amount of an organic binder was added, and wet pulverized for 16 hours using a ball mill, and the particle size was adjusted through a 40-mesh sieve. Next, this was molded into a disc having a diameter of 12 mm and a thickness of 0.6 mm at a pressure of 1500 kg / cm 2 , and this was fired at 1000 to 1300 ° C. in the atmosphere to obtain a disc-shaped porcelain. . After applying a silver paste on the surface (both main surfaces) of this porcelain and baking it to form a silver electrode, a DC voltage of 3 to 10 kV / mm is applied in an insulating oil at 100 to 250 ° C. for 30 to 60. The piezoelectric ceramic (sample) was obtained by applying a polarization treatment for a minute. These samples were heated (heat treatment) to 150 to 500 ° C.
[0009]
In FIG. X-ray diffraction profile at room temperature of a powder sample obtained by pulverizing a disk-shaped sample represented by the composition formula (Na 0.87 Li 0.13 ) NbO 3 before forming an electrode (unpolarized) such as 7 Indicates. FIG. 1B shows an X-ray diffraction profile at room temperature of a powder sample obtained by forming an electrode on a disk-shaped sample having the same composition, applying polarization, removing the electrode, and pulverizing the sample. Indicates. The profile shown in FIG. 1A and the profile shown in FIG. 1B are considered to be substantially similar profiles. As a result of the analysis conducted by the inventors, it is considered that the profile shown in FIG. 1A and the profile shown in FIG. 1B show rhombohedral crystals. Next, an electrode is formed on a disk-shaped sample of the same composition, polarized, heated to 350 ° C., then returned to room temperature, the electrode removed, and pulverized powder sample obtained at room temperature. The diffraction profile is shown in FIG. The profile shown in FIG. 1 (c) is clearly different from the profile shown in FIG. 1 (a) and the profile shown in FIG. 1 (b). In particular, when 2θ is around 35 to 45 °, there is a great difference in their profiles. As a result of the analysis by the inventors, it is considered that the profile shown in FIG. 1C is a monoclinic profile. When X-ray diffraction of a powder sample obtained by pulverizing a disk-shaped sample having the same composition before forming an electrode (unpolarized) was performed while changing the temperature, the profile shown in FIG. It was clarified that it coincides with a stable crystal phase profile in a high temperature region around 200 to 350 ° C. Immediately after the polarization treatment, a sample that had a rhombohedral crystal structure at room temperature showed a monoclinic crystal structure at room temperature after heat treatment at 350 ° C. It is apparent that a crystal phase that is inherently stable at high temperature is realized as a metastable state at room temperature by performing heat treatment after polarization. A sample subjected to heat treatment after polarization was left for 2 months and the same X-ray diffraction analysis was performed again, but similar results were obtained.
[0010]
Similarly, composition formula (1-n) [(Na 1-x Li x) 1-y K y] (Nb 1-z Ta z) O 3 -nM1M2O 3 ( however, M1 is a bivalent metal element, M2 The crystal system before and after the heat treatment was examined for other samples within the scope of the present invention represented by tetravalent metal element), and the same relationship was found in all the samples. Further, it has been clarified that the effect of improving Q m in the present invention appears only when a metastable crystalline phase is realized.
[0011]
Next, for these samples, the electromechanical coupling coefficient k t and the mechanical quality factor Q m of the thickness longitudinal vibration fundamental wave of the disk-shaped piezoelectric ceramic vibrator before and after the heat treatment were measured. The results are shown in Tables 1 and 2.
[0012]
[Table 1]
Figure 0003864840
[0013]
[Table 2]
Figure 0003864840
[0014]
Values shown in Table 1 and Table 2 are of the same composition of the sample, the greatest mechanical quality factor Q m are obtained conditions (calcination temperature, firing temperature, temperature of the polarization at the time of the insulating oil, DC voltage) of Is the case value.
In addition, sample No. in Table 1 No. 5 loses ferroelectricity and piezoelectricity because the heat treatment temperature is too high, and is outside the scope of the present invention. Sample No. in Table 1 No. 10 is out of the scope of the present invention because the heat treatment temperature is too low, that is, the temperature does not reach a temperature at which the high-temperature crystal phase becomes stable, and the crystal form does not change.
On the other hand, as shown in Tables 1 and 2, the mechanical quality factor Q m of all the samples within the scope of the present invention is greatly improved. In particular, the piezoelectric ceramic filter, the piezoelectric ceramic oscillation It is apparent that the piezoelectric ceramic composition is useful as a material for a piezoelectric ceramic element such as an element or a piezoelectric ceramic vibrator.
[0015]
Sample No. For each of the samples 1 to 28, before and after heat treatment, the resonance frequency of the spread vibration when the condition is changed to −40 ° C. to 400 ° C. is measured using an impedance analyzer. It was examined whether there was any occurrence of phase transition. The results are shown in Table 3. In particular, sample No. FIG. 2 is a graph showing the relationship between the temperature and the resonance frequency of the spreading vibration before and after the heat treatment for the piezoelectric ceramic vibrator using No. 6. As shown in FIG.
[0016]
[Table 3]
Figure 0003864840
[0017]
As is clear from the results shown in Table 3 and FIG. 2, a significant change in resonance frequency (occurrence of phase transition) was confirmed for all the samples before the heat treatment. 5 cannot be measured due to depolarization. No. 10 shows a significant change in resonance frequency (occurrence of phase transition).
On the other hand, no significant change in the resonance frequency (occurrence of phase transition) has been confirmed for any sample within the scope of the present invention.
[0018]
As an example, from the graph shown in FIG. 6 is non-linear, while the sample No. 6 after the heat treatment is non-linear. It can be seen that the temperature change of the resonance frequency of 6 is linear. Piezoelectric ceramic filters, piezoelectric ceramic oscillators, piezoelectric ceramic vibrators, and the like are often required to have a low temperature change rate of the resonance frequency. In such a case, if the temperature change of the resonance frequency is a linear behavior, the rate of change can be suppressed relatively easily by correction. On the other hand, when the temperature change of the resonance frequency is non-linear, it is difficult to suppress the change rate by correction. Furthermore, sample No. before heat treatment. 6, the temperature change of the resonance frequency changes at the time of temperature rise, at the time of temperature fall, or according to the rate of temperature rise and fall. That is, the temperature change of the resonance frequency has a history. On the other hand, the sample No. after heat treatment. No. 6 shows almost no history in the temperature range of −40 to 125 ° C., which is a normal use temperature.
[0019]
The piezoelectric ceramic composition according to the present invention is not limited to the composition of the above-described examples, and is effective as long as it is within the scope of the gist of the invention.
[0020]
In the above embodiment, the mechanical quality factor Q m is an example of the thickness longitudinal vibration of the disk-shaped piezoelectric ceramic vibrator. However, the effect of the present invention is that the thickness of the disk-shaped piezoelectric ceramic vibrator is It is not limited to longitudinal vibration, but also in other vibration modes used for other piezoelectric ceramic elements, such as piezoelectric ceramic oscillators, such as spread vibration, thickness shear vibration, and harmonics of thickness longitudinal vibration. As effective as the case.
[0021]
Further, in the above-described embodiments, the temperature change of the frequency is an example of the spreading vibration of the disk-shaped piezoelectric ceramic vibrator, but the effect of the present invention is limited to the spreading vibration of the disk-shaped piezoelectric ceramic vibrator. However, it is also effective as other piezoelectric ceramic elements such as thickness longitudinal vibration and thickness shear vibration.
[0022]
FIG. 3 is a perspective view showing an example of the piezoelectric ceramic vibrator according to the present invention, and FIG. 4 is a cross-sectional view. The piezoelectric ceramic vibrator 10 shown in FIGS. 3 and 4 includes, for example, a rectangular parallelepiped piezoelectric ceramic 12. The piezoelectric ceramic 12 includes two piezoelectric ceramic layers 12a and 12b. These piezoelectric ceramic layers 12a and 12b are made of the above-described piezoelectric ceramic composition according to the present invention, and are laminated and integrally formed. These piezoelectric ceramic layers 12a and 12b are polarized in the same thickness direction as indicated by arrows in FIG.
[0023]
Between the piezoelectric ceramic layers 12a and 12b, for example, a circular vibrating electrode 14a is formed at the center, and for example, a T-shaped lead electrode 16a is formed from the vibrating electrode 14a to one end face of the piezoelectric ceramic 12. Further, on the surface of the piezoelectric ceramic layer 12a, for example, a circular vibrating electrode 14b is formed at the center, and for example, a T-shaped lead electrode 16b is formed from the vibrating electrode 14b to the other end face of the piezoelectric ceramic 12. Further, on the surface of the piezoelectric ceramic layer 12b, for example, a circular vibrating electrode 14c is formed at the center thereof, and for example, a T-shaped extraction electrode 16c is formed from the vibrating electrode 14c to the other end surface of the piezoelectric ceramic 12.
[0024]
One external terminal 20a is connected to the lead electrode 16a via a lead wire 18a, and the other external terminal 20b is connected to the lead electrodes 16b and 16c via another lead wire 18b.
[0025]
The present invention is also applicable to other piezoelectric ceramic elements such as piezoelectric ceramic vibrators, piezoelectric ceramic filters, and piezoelectric ceramic oscillators other than the piezoelectric ceramic vibrator 10 described above.
[0026]
【The invention's effect】
According to the present invention, the main component is a compound having a perovskite structure mainly composed of elements of Na, Li, Nb and O as represented by the composition formula (Na 1-x Li x ) NbO 3 , the mechanical quality factor Q m improves, containing a small amount or do not contain lead or lead compounds at all only, piezoelectric ceramic filter, useful piezoelectric ceramic composition as a material such as a piezoelectric ceramic element such as a piezoelectric ceramic oscillator and a piezoelectric ceramic oscillator And a piezoelectric ceramic element using the same.
In addition, the piezoelectric ceramic composition according to the present invention has a metastable state at room temperature, which is inherently stable in a temperature range higher than room temperature, so that no phase transition occurs even at the original phase transition temperature, The resonance frequency does not change greatly.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction profile of a sample represented by a composition formula (Na 0.87 Li 0.13 ) NbO 3 .
FIG. 2 shows a sample No. represented by a composition formula (Na 0.87 Li 0.13 ) NbO 3 . 6 is a graph showing the temperature change of the resonance frequency of the expansion vibration of the piezoelectric ceramic vibrator before and after heat treatment using FIG.
FIG. 3 is a perspective view showing an example of a piezoelectric ceramic vibrator according to the present invention.
4 is a cross-sectional schematic view of the piezoelectric ceramic vibrator shown in FIG. 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Piezoelectric ceramic vibrator | oscillator 12 Piezoelectric ceramic 12a, 12b Piezoelectric ceramic layers 14a, 14b, 14c Vibration electrode 16a, 16b, 16c Lead electrode 18a, 18b Lead wire 20a, 20b External terminal

Claims (8)

Na、Li、NbおよびOの元素で主に構成され、ぺロブスカイト構造を有する化合物を主成分とする圧電磁器組成物において、
前記主成分の結晶系は、本来室温において安定な結晶系である菱面体晶とは異なり、本来室温より高い温度域で安定な結晶系である単斜晶が室温において準安定状態となっているものであることを特徴とする、圧電磁器組成物。
In a piezoelectric ceramic composition mainly composed of elements of Na, Li, Nb and O and having a perovskite structure as a main component,
Unlike the rhombohedral crystal, which is essentially a stable crystal system at room temperature, the monoclinic crystal, which is originally a stable crystal system at a temperature range higher than room temperature, is metastable at room temperature. A piezoelectric ceramic composition, characterized in that
前記主成分となる化合物が組成式(Na1-xLix)NbO3(ただし、0.02≦x≦0.30)で表される、請求項1に記載の圧電磁器組成物。2. The piezoelectric ceramic composition according to claim 1, wherein the main component compound is represented by a composition formula (Na 1-x Li x ) NbO 3 (where 0.02 ≦ x ≦ 0.30). 前記主成分となる化合物が組成式(Na1-xLix)NbO3(ただし、0.08≦x≦0.18)で表される、請求項に記載の圧電磁器組成物。 3. The piezoelectric ceramic composition according to claim 2 , wherein the main component compound is represented by a composition formula (Na 1-x Li x ) NbO 3 (where 0.08 ≦ x ≦ 0.18). 前記主成分となる化合物が組成式(1−n)[(Na1-xLix1-yy](Nb1-zTaz)O3−nM1M2O3(ただし、0.02≦x≦0.30、0≦y≦0.2、0≦z≦0.2、0≦n≦0.1、M1は2価の金属元素、M2は4価の金属元素)で表される、請求項1に記載の圧電磁器組成物。The compound as the main component is represented by the composition formula (1-n) [(Na 1−x Li x ) 1−y K y ] (Nb 1−z Ta z ) O 3 −nM1M2O 3 (where 0.02 ≦ x ≦ 0.30, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.2, 0 ≦ n ≦ 0.1, M1 is a divalent metal element, and M2 is a tetravalent metal element). The piezoelectric ceramic composition according to claim 1 . 前記M1は、Mg、Ca、SrおよびBaからなる群から選ばれた少なくとも1種であり、前記M2は、Ti、Zr、SnおよびHfからなる群から選ばれた少なくとも1種である、請求項に記載の圧電磁器組成物。The M1 is at least one selected from the group consisting of Mg, Ca, Sr and Ba, and the M2 is at least one selected from the group consisting of Ti, Zr, Sn and Hf. 4. The piezoelectric ceramic composition according to 4. 請求項1ないし請求項のいずれかに記載の圧電磁器組成物からなる圧電磁器、および
前記圧電磁器に形成される電極を含む、圧電セラミック素子。
A piezoelectric ceramic element comprising: a piezoelectric ceramic comprising the piezoelectric ceramic composition according to any one of claims 1 to 5 ; and an electrode formed on the piezoelectric ceramic.
請求項1ないし請求項のいずれかに記載の圧電磁器組成物を製造する方法であって、
前記圧電磁器組成物に分極処理を施した後に、単斜晶が安定状態である温度かそれ以上の温度でかつ前記主成分となる化合物が強誘電性を失う温度未満に前記圧電磁器組成物を加熱する、圧電磁器組成物の製造方法。
A method for producing a piezoelectric ceramic composition according to any one of claims 1 to 5 ,
After the piezoelectric ceramic composition is subjected to polarization treatment, the piezoelectric ceramic composition is brought to a temperature at which the monoclinic crystal is in a stable state or higher and below the temperature at which the main component compound loses ferroelectricity. The manufacturing method of the piezoelectric ceramic composition which heats.
前記圧電磁器組成物を加熱する温度が250℃から400℃の範囲内である、請求項に記載の圧電磁器組成物の製造方法。The method for producing a piezoelectric ceramic composition according to claim 7 , wherein a temperature for heating the piezoelectric ceramic composition is in a range of 250 ° C to 400 ° C.
JP2002132653A 2001-05-29 2002-05-08 Piezoelectric ceramic composition, piezoelectric ceramic element, and method for producing piezoelectric ceramic composition Expired - Fee Related JP3864840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132653A JP3864840B2 (en) 2001-05-29 2002-05-08 Piezoelectric ceramic composition, piezoelectric ceramic element, and method for producing piezoelectric ceramic composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001159867 2001-05-29
JP2002099586 2002-04-02
JP2002132653A JP3864840B2 (en) 2001-05-29 2002-05-08 Piezoelectric ceramic composition, piezoelectric ceramic element, and method for producing piezoelectric ceramic composition

Publications (2)

Publication Number Publication Date
JP2004002051A JP2004002051A (en) 2004-01-08
JP3864840B2 true JP3864840B2 (en) 2007-01-10

Family

ID=30448998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132653A Expired - Fee Related JP3864840B2 (en) 2001-05-29 2002-05-08 Piezoelectric ceramic composition, piezoelectric ceramic element, and method for producing piezoelectric ceramic composition

Country Status (1)

Country Link
JP (1) JP3864840B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044902B2 (en) * 2005-08-01 2012-10-10 日立電線株式会社 Piezoelectric thin film element
CN101038950B (en) 2006-03-17 2010-06-23 日本碍子株式会社 Piezoelectric ceramic and method of manufacturing the same
KR101409662B1 (en) * 2010-01-29 2014-06-18 니혼도꾸슈도교 가부시키가이샤 Lead-free piezoelectric ceramic composition, piezoelectric element comprising same, knock sensor, and process for production of lead-free piezoelectric ceramic composition
IN2014DN00272A (en) * 2011-07-13 2015-06-05 Ngk Spark Plug Co
JP5476344B2 (en) * 2011-07-28 2014-04-23 日本特殊陶業株式会社 Dielectric porcelain composition, capacitor, and method for producing dielectric porcelain composition
EP2867930B1 (en) * 2012-08-27 2018-10-24 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
JP7320888B2 (en) * 2020-07-28 2023-08-04 国立研究開発法人産業技術総合研究所 Multifunctional multi-piezo material with piezoelectricity and mechanoluminescence

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343680B1 (en) * 1966-08-11 1978-11-21
JP3654408B2 (en) * 1998-02-18 2005-06-02 株式会社村田製作所 Piezoelectric ceramic composition
JP3531803B2 (en) * 1999-02-24 2004-05-31 株式会社豊田中央研究所 Alkali metal containing niobium oxide based piezoelectric material composition

Also Published As

Publication number Publication date
JP2004002051A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3482394B2 (en) Piezoelectric ceramic composition
KR100282598B1 (en) Piezoelectric Ceramic Composition
JP3788198B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP3654408B2 (en) Piezoelectric ceramic composition
KR100645753B1 (en) Piezoelectric ceramic composition, piezoelectric ceramic device, and method for manufacturing the piezoelectric ceramic composition
JP3931513B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP3671791B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP4281726B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic and piezoelectric ceramic element
JP3570294B2 (en) Piezoelectric ceramic material and piezoelectric ceramic sintered body obtained using the same
JP3864840B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic element, and method for producing piezoelectric ceramic composition
JP3750507B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP3791299B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP3613140B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
KR100200181B1 (en) Piezoelectric ceramic and manufacturing method thereof
JP4449331B2 (en) Piezoelectric ceramic and piezoelectric ceramic element using the same
JP3617411B2 (en) Piezoelectric ceramic vibrator
JP3646619B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP3912098B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP2009242188A (en) Piezoelectric ceramic composition, piezoelectric element and resonator
JP3815197B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP4479089B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP2009096688A (en) Piezoelectric porcelain composition and resonator
KR20020056851A (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP2003002741A (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JPH06191934A (en) Piezoelectric ceramic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees