JPH06314821A - Formation of p-type gallium nitride compound semiconductor - Google Patents

Formation of p-type gallium nitride compound semiconductor

Info

Publication number
JPH06314821A
JPH06314821A JP12488993A JP12488993A JPH06314821A JP H06314821 A JPH06314821 A JP H06314821A JP 12488993 A JP12488993 A JP 12488993A JP 12488993 A JP12488993 A JP 12488993A JP H06314821 A JPH06314821 A JP H06314821A
Authority
JP
Japan
Prior art keywords
compound semiconductor
gallium nitride
protective film
type
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12488993A
Other languages
Japanese (ja)
Other versions
JP2790235B2 (en
Inventor
Takao Yamada
孝夫 山田
Masayuki Senoo
雅之 妹尾
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP12488993A priority Critical patent/JP2790235B2/en
Publication of JPH06314821A publication Critical patent/JPH06314821A/en
Application granted granted Critical
Publication of JP2790235B2 publication Critical patent/JP2790235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To acquire a p-type layer of low resistance by realizing a low resistance of a gallium nitride compound semiconductor layer doped with a p-type dopant and by making it uniform in a depth direction by selective formation. CONSTITUTION:After a protective film is selectively formed in a surface of a gallium nitride compound semiconductor layer doped with p-type dopant, the gallium nitride compound semiconductor layer is annealed at 400 deg.C or higher to realize a low resistance, and a difference of resistivity is provided to the same gallium nitride compound semiconductor layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はp型ドーパントをドープ
した窒化ガリウム系化合物半導体のp型化方法に係り、
特に同一窒化ガリウム系化合物半導体層内で抵抗率に差
を設ける方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for converting a gallium nitride-based compound semiconductor doped with a p-type dopant into p-type,
In particular, it relates to a method of providing a difference in resistivity within the same gallium nitride-based compound semiconductor layer.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパント(p型不純物)をドープした
高抵抗なi(insulator)型の窒化ガリウム系化合物半
導体を積層したいわゆるMIS構造の青色発光ダイオー
ドが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Since gallium nitride-based compound semiconductors such as AlGaN have a direct transition and the bandgap changes from 1.95 eV to 6 eV, they are regarded as promising materials for light emitting devices such as light emitting diodes and laser diodes. At present, in a light emitting device using this material, a high-resistance i (insulator) type gallium nitride compound semiconductor laminated with a p-type dopant (p-type impurity) is laminated on an n-type gallium nitride compound semiconductor. A so-called blue light emitting diode having a MIS structure is known.

【0003】MIS構造の発光素子は、一般に発光出力
が非常に低く、実用化するには未だ不十分であった。高
抵抗なi型を低抵抗なp型とし、発光出力を向上させた
p−n接合の発光素子を実現するための技術として、例
えば特開平2−257679号公報、特開平3−218
325号公報において、i型窒化ガリウム系化合物半導
体層に電子線を照射する技術が開示されている。また我
々は、特願平3−357046号でi型窒化ガリウム系
化合物半導体層を400℃以上でアニーリングすること
により低抵抗なp型とする技術を提案した。
A light emitting device having a MIS structure generally has a very low light emission output, which is still insufficient for practical use. As a technique for realizing a pn junction light-emitting device having an improved light emission output by changing a high-resistance i-type to a low-resistance p-type, for example, JP-A-2-257679 and JP-A-3-218 are known.
Japanese Patent No. 325 discloses a technique of irradiating an i-type gallium nitride compound semiconductor layer with an electron beam. Also, in Japanese Patent Application No. 3-357046, we have proposed a technique for making a low resistance p-type by annealing an i-type gallium nitride compound semiconductor layer at 400 ° C. or higher.

【0004】[0004]

【発明が解決しようとする課題】前記のようにp型化方
法には大別して電子線照射とアニーリングと二種類の方
法があるが、電子線照射による方法では電子線を照射し
た部分を選択的にp型化できるという利点があるが、電
子線が照射される深さ方向のみしか低抵抗にできないと
いう欠点がある。一方、アニーリングではp型ドーパン
トをドープした窒化ガリウム系化合物半導体層深さ方向
均一にp型化できるというという利点はあるが、全体を
p型化してしまい選択的にp型化することが困難である
という欠点がある。p型ドーパントをドープした窒化ガ
リウム系化合物半導体層を選択的にp型化することがで
きれば、発光素子とした場合に例えば電流狭窄層を形成
することができ、レーザーダイオード等を実現すること
が可能となる。従って本発明はこのような事情を鑑みて
成されたもので、その目的とするところはp型ドーパン
トをドープした窒化ガリウム系化合物半導体層を低抵抗
にすると共に、深さ方向均一に、しかも選択的にp型化
することにある。
As described above, there are roughly two types of p-type conversion methods, electron beam irradiation and annealing. In the method using electron beam irradiation, the portion irradiated with the electron beam is selectively selected. However, there is a disadvantage in that the resistance can be reduced only in the depth direction of electron beam irradiation. On the other hand, the anneal has an advantage that the gallium nitride-based compound semiconductor layer doped with a p-type dopant can be made uniform p-type in the depth direction, but it is difficult to selectively make p-type because the whole is made p-type. There is a drawback. If the gallium nitride-based compound semiconductor layer doped with a p-type dopant can be selectively made p-type, for example, a current confinement layer can be formed in the case of a light emitting device, and a laser diode or the like can be realized. Becomes Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to make a gallium nitride-based compound semiconductor layer doped with a p-type dopant have a low resistance and to select it uniformly in the depth direction. To make it p-type.

【0005】[0005]

【課題を解決するための手段】本発明の窒化ガリウム系
化合物半導体のp型化方法は、p型ドーパントをドープ
した窒化ガリウム系化合物半導体層表面に選択的に保護
膜を形成した後、その窒化ガリウム系化合物半導体層を
400℃以上でアニーリングすることにより低抵抗にす
ると共に、同一窒化ガリウム系化合物半導体層に抵抗率
の差を設けることを特徴とする。
According to the method of making a gallium nitride-based compound semiconductor p-type according to the present invention, a protective film is selectively formed on the surface of a gallium nitride-based compound semiconductor layer doped with a p-type dopant, and then the nitride film is nitrided. The gallium-based compound semiconductor layer is annealed at 400 ° C. or higher to have a low resistance, and the same gallium nitride-based compound semiconductor layer is provided with a difference in resistivity.

【0006】本発明のp型化方法において、p型ドーパ
ントをドープした窒化ガリウム系化合物半導体とは、例
えばZn、Cd、Be、Mg、Ca等公知のp型ドーパ
ントをドープした一般式InXAlYGa1-X-YN(0≦X
≦1)で表される窒化ガリウム系化合物半導体をいう。
この窒化ガリウム系化合物半導体はp型ドーパントがド
ープされた状態で通常は高抵抗なi型を示す。さらに、
この高抵抗な窒化ガリウム系化合物半導体を400℃以
上でアニーリングすることにより、窒化ガリウム系化合
物半導体は低抵抗化して、p型特性を示すようになる。
我々は特願平3−357046号でこのi型窒化ガリウ
ム系化合物半導体層に保護膜としてのキャップ層を設
け、アニーリングすることにより、窒化ガリウム系化合
物半導体の分解を防止すると共に、低抵抗なp型とする
技術を開示したが、この保護膜をi層均一に設けるので
はなく、選択的に形成することにより、また違ったp型
特性が得られることを見いだした。つまり、i層が一部
露出するように保護膜を選択的に形成すると、その露出
した部分のi層が特に低抵抗なp型となり、保護膜を形
成した部分の窒化ガリウム系化合物半導体の抵抗率と、
露出した部分の窒化ガリウム系化合物半導体の抵抗率と
に差を設けることができる。
In the p-type conversion method of the present invention, the gallium nitride compound semiconductor doped with a p-type dopant is, for example, a general formula InXAlYGa1-X doped with a known p-type dopant such as Zn, Cd, Be, Mg and Ca. -YN (0≤X
A gallium nitride-based compound semiconductor represented by ≦ 1).
This gallium nitride-based compound semiconductor usually exhibits a high resistance i-type when it is doped with a p-type dopant. further,
By annealing this high-resistance gallium nitride-based compound semiconductor at 400 ° C. or higher, the resistance of the gallium nitride-based compound semiconductor is lowered and the p-type characteristics are exhibited.
In Japanese Patent Application No. 3-357046, we provide a cap layer as a protective film on this i-type gallium nitride compound semiconductor layer and anneal it to prevent decomposition of the gallium nitride compound semiconductor and to reduce p-resistance. Although a technique for forming a mold has been disclosed, it has been found that a different p-type characteristic can be obtained by selectively forming the protective film instead of uniformly forming the i-layer. That is, when the protective film is selectively formed so that the i layer is partially exposed, the exposed i layer becomes a p-type having a particularly low resistance, and the resistance of the gallium nitride-based compound semiconductor in the protective film formed portion is increased. Rate and
A difference can be provided between the exposed portion and the resistivity of the gallium nitride-based compound semiconductor.

【0007】保護膜の種類は400℃以上で分解する材
料でなければ特に問うものではないが、蒸着、スパッタ
等のCVD技術により窒化ガリウム系化合物半導体の上
に形成しやすく、後にエッチングにより保護膜を剥しや
すく、かつ400℃以上に耐える材料として、シリカ、
窒化ケイ素のいずれかを好ましく用いることができる。
The protective film is not particularly limited as long as it is a material that decomposes at 400 ° C. or higher, but it is easy to form it on the gallium nitride-based compound semiconductor by a CVD technique such as vapor deposition or sputtering, and the protective film is later etched. As a material that is easy to peel off and withstands temperatures of 400 ° C or higher, silica,
Any of silicon nitride can be preferably used.

【0008】保護膜の形状は、電流を集中させようとす
る窒化ガリウム系化合物半導体の位置、形状等によって
自由に変えることができる。ただ、保護膜の大きさは窒
化ガリウム系化合物半導体に少なくとも20μm以上の
幅で形成することが好ましい。20μmより少ない幅で
形成しても同一窒化ガリウム系化合物半導体に抵抗率の
差を設けることはできるが、形成した部分と形成してい
ない部分との抵抗率の差が小さくなるため、発光素子に
した場合、低抵抗部分に電流を集中させて流すという目
的では、その目的を達成するには不十分となる傾向にあ
る。
The shape of the protective film can be freely changed depending on the position, shape, etc. of the gallium nitride-based compound semiconductor on which the current is to be concentrated. However, it is preferable that the protective film is formed on the gallium nitride-based compound semiconductor to have a width of at least 20 μm or more. Even if the width is less than 20 μm, the same gallium nitride-based compound semiconductor can be provided with a difference in resistivity, but the difference in resistivity between a formed portion and a non-formed portion is small. In this case, the purpose of concentrating and flowing the current in the low resistance portion tends to be insufficient for achieving the purpose.

【0009】アニーリング時間はアニーリング温度によ
る窒化ガリウム系化合物半導体の分解を考慮して適宜変
更する。保護膜を設けることによりある程度の分解を抑
制することはできるが、高温で長時間行うと保護膜を設
けた部分の抵抗率と、設けていない部分の抵抗率とが接
近しやすくなり、同じく前記目的を達成するには不十分
となる傾向にある。
The annealing time is appropriately changed in consideration of decomposition of the gallium nitride-based compound semiconductor due to the annealing temperature. Although it is possible to suppress decomposition to a certain extent by providing a protective film, if the protective film is provided at a high temperature for a long time, the resistivity of the portion provided with the protective film and the resistivity of the non-provided portion are likely to approach each other. It tends to be insufficient to achieve the purpose.

【0010】[0010]

【作用】ZnドープGaN層の上にSiO2よりなる保
護膜を選択的に形成し、そのZnドープGaN層をアニ
ーリングした後、SiO2膜を取り除き、保護膜を形成
した部分と、保護膜を形成していない部分とにそれぞれ
2つの電極を付着して、アニーリング温度によるZnド
ープGaN層の抵抗率を測定した結果を図1に示す。こ
の図において(a)は保護膜を形成していない部分、
(b)は保護膜を形成した部分のZnドープGaN層の
抵抗率を示している。この図に示すように400℃以上
でアニーリングすることにより、ZnドープGaN層の
抵抗率は急激に減少するが、保護膜を形成した部分と保
護膜を形成していない部分とでは、同一ZnドープGa
N層中で抵抗率の差が現れていることがわかる。従っ
て、アニーリングによって低抵抗になったこのp型Ga
N層に電極を形成して通電すると、電流はより低抵抗な
(a)の領域に集中して流れるため、例えばレーザー素
子を実現した場合に、ここで電流狭窄層を形成すること
ができる。
[Function] A protective film made of SiO 2 is selectively formed on the Zn-doped GaN layer, the Zn-doped GaN layer is annealed, and then the SiO 2 film is removed to form the protective film and the protective film. FIG. 1 shows the results of measuring the resistivity of the Zn-doped GaN layer depending on the annealing temperature by attaching two electrodes to the non-formed portion and each electrode. In this figure, (a) is a portion where a protective film is not formed,
(B) shows the resistivity of the Zn-doped GaN layer in the portion where the protective film is formed. As shown in this figure, the resistivity of the Zn-doped GaN layer sharply decreases by annealing at 400 ° C. or higher, but the Zn-doped GaN layer has the same Zn-doping in the portion where the protective film is formed and the portion where the protective film is not formed. Ga
It can be seen that a difference in resistivity appears in the N layer. Therefore, this p-type Ga has a low resistance due to annealing.
When an electrode is formed on the N layer and electricity is applied, the current concentrates in the region (a) having a lower resistance. Therefore, for example, when a laser element is realized, the current confinement layer can be formed here.

【0011】アニーリングにより低抵抗なp型窒化ガリ
ウム系化合物半導体層が得られるようになる理由は次の
とおりである。気相成長法により窒化ガリウム系化合物
半導体を成長させる場合、N源としてアンモニア、キャ
リアガスとして水素等の水素または水素を含む化合物が
使用される。この水素がp型ドーパント(M)をドープ
した窒化ガリウム系化合物半導体の中でp型ドーパント
とM−Hの形で結合して正常なp型ドーパントとして作
用するのを妨げていると考えられる。そこでアニーリン
グによりM−Hの形で結合したp型ドーパントからHを
熱的に解離することによりp型ドーパントが正常にアク
セプターとして作用して抵抗率が減少する。本発明のよ
うに保護膜を選択的に形成した場合、保護膜の下の窒化
ガリウム系化合物半導体は加熱による分解が防止される
とともに、水素が出ていき抵抗率が減少する。一方、保
護膜のない方の窒化ガリウム系化合物半導体表面は多少
分解するが、外部に露出されているため、水素が抜ける
量が圧倒的に多くなり、抵抗率に差が現れると考えられ
る。しかし、保護膜の幅を狭くすると、保護膜の下の水
素が多少移動して抜けるため、保護膜を形成した部分と
形成していない部分との抵抗率の差が小さくなると考え
られる。
The reason why the p-type gallium nitride-based compound semiconductor layer having a low resistance can be obtained by annealing is as follows. When a gallium nitride-based compound semiconductor is grown by a vapor phase growth method, ammonia is used as an N source, hydrogen such as hydrogen or a compound containing hydrogen is used as a carrier gas. It is considered that this hydrogen binds with the p-type dopant in the form of MH in the gallium nitride-based compound semiconductor doped with the p-type dopant (M) and prevents it from functioning as a normal p-type dopant. Therefore, by thermally dissociating H from the p-type dopant bonded in the form of MH by annealing, the p-type dopant normally acts as an acceptor and the resistivity is reduced. When the protective film is selectively formed as in the present invention, the gallium nitride compound semiconductor under the protective film is prevented from being decomposed by heating, and hydrogen is released to reduce the resistivity. On the other hand, the surface of the gallium nitride-based compound semiconductor without the protective film is decomposed to some extent, but since it is exposed to the outside, the amount of hydrogen released is predominantly large, and it is considered that a difference in resistivity appears. However, when the width of the protective film is narrowed, hydrogen under the protective film moves to some extent and escapes, so that it is considered that the difference in resistivity between the portion where the protective film is formed and the portion where the protective film is not formed becomes small.

【0012】[0012]

【実施例】【Example】

[実施例1]サファイア基板上に成長された500μm
角のMgドープGaAlN層2の両側に、図2、および
図3に示すように240μmの幅のSiO2よりなる保
護膜1を蒸着により、厚さ2μmで形成する。
[Example 1] 500 μm grown on a sapphire substrate
On both sides of the Mg-doped GaAlN layer 2 at the corners, a protective film 1 made of SiO 2 having a width of 240 μm is formed by vapor deposition to have a thickness of 2 μm as shown in FIGS.

【0013】保護膜を形成した後、アニーリング装置で
窒素雰囲気中、700℃、2分間のアニーリングを行
う。アニーリング後、フッ酸でSiO2膜を除去し、保
護膜を形成した部分と、形成していない部分とにそれぞ
れ2つずつ電極を形成し、その抵抗率を測定したとこ
ろ、保護膜を形成した部分は100Ω・cmであったのに
対し、保護膜を形成していない部分は2Ω・cmであっ
た。
After forming the protective film, annealing is performed at 700 ° C. for 2 minutes in a nitrogen atmosphere with an annealing device. After annealing, the SiO 2 film was removed with hydrofluoric acid, and two electrodes were formed in each of the portion where the protective film was formed and the portion where the protective film was not formed, and the resistivity was measured. As a result, the protective film was formed. The area was 100 Ω · cm, whereas the area without the protective film was 2 Ω · cm.

【0014】[実施例2]MOCVD法により、サファ
イア基板上にGaNバッファ層と、Siドープn型Ga
N層と、Siドープn型InGaN層と、MgドープG
aN層とを順に積層し、発光素子の構造としたウエハー
を用意する。
[Example 2] A GaN buffer layer and a Si-doped n-type Ga are formed on a sapphire substrate by MOCVD.
N layer, Si-doped n-type InGaN layer, Mg-doped G
A wafer having a light emitting element structure is prepared by sequentially laminating an aN layer.

【0015】次にそのウエハーの最上層であるMgドー
プGaN層上に、実施例1と同様に500μm角のチッ
プに、窒化ケイ素よりなる保護膜を形成した後、アニー
リング時間を5分とする他は実施例1と同様にしてアニ
ーリングを行った。
Next, on the Mg-doped GaN layer which is the uppermost layer of the wafer, a protective film made of silicon nitride was formed on a chip of 500 μm square as in Example 1, and then the annealing time was set to 5 minutes. Was annealed in the same manner as in Example 1.

【0016】その後、常法に従いウエハーをチップ上に
カットし、n型GaN層、p型GaN層に電極を形成し
て発光ダイオードとして発光させたところ、保護膜を形
成せずに全面p型化したものに比して、順方向電圧は1
/3以下に減少し、発光出力は2倍以上向上した。
After that, the wafer was cut on a chip according to a conventional method, electrodes were formed on the n-type GaN layer and the p-type GaN layer to emit light as a light emitting diode, and the entire surface was made p-type without forming a protective film. The forward voltage is 1 compared to
It was reduced to / 3 or less, and the light emission output was more than doubled.

【0017】[0017]

【発明の効果】以上説明したように、本発明の方法によ
るとp型ドーパントをドープした高抵抗な窒化ガリウム
系化合物半導体を低抵抗にすると共に、同一窒化ガリウ
ム系化合物半導体層内で抵抗率の差を設けることができ
る。そのため、実施例2に示すように本発明の方法を用
いて発光素子のp型層内で特に低抵抗部分を設けると、
電流はこの低抵抗な部分を集中して流れ、電流密度が増
大して、注入キャリアが集中する。その結果、発光素子
の順方向電圧が下がり、発光出力を増大させることがで
きる。
As described above, according to the method of the present invention, a high resistance gallium nitride compound semiconductor doped with a p-type dopant is made to have a low resistance, and the resistivity of the same gallium nitride compound semiconductor layer is increased. A difference can be made. Therefore, when a particularly low resistance portion is provided in the p-type layer of the light emitting device using the method of the present invention as shown in Example 2,
The current concentrates in this low resistance portion, the current density increases, and the injected carriers concentrate. As a result, the forward voltage of the light emitting element is lowered, and the light emission output can be increased.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】 p型ドーパントがドープされた窒化ガリウム
系化合物半導体のアニーリング温度と抵抗率との関係を
示す図。
FIG. 1 is a diagram showing a relationship between an annealing temperature and a resistivity of a gallium nitride-based compound semiconductor doped with a p-type dopant.

【図2】 本発明の一実施例による保護膜が形成された
窒化ガリウム系化合物半導体の構造を示す模式断面図。
FIG. 2 is a schematic cross-sectional view showing the structure of a gallium nitride-based compound semiconductor having a protective film according to an embodiment of the present invention.

【図3】 図2の窒化ガリウム系化合物半導体の構造を
示す斜視図。
3 is a perspective view showing the structure of the gallium nitride-based compound semiconductor of FIG.

【符号の説明】[Explanation of symbols]

1・・・・・保護膜 2・・・・・p型ドーパントがドープされた窒化ガリウ
ム系化合物半導体
1 ... Protective film 2 ... Gallium nitride-based compound semiconductor doped with p-type dopant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 p型ドーパントをドープした窒化ガリウ
ム系化合物半導体層表面に選択的に保護膜を形成した
後、その窒化ガリウム系化合物半導体層を400℃以上
でアニーリングすることにより低抵抗にすると共に、同
一窒化ガリウム系化合物半導体層に抵抗率の差を設ける
ことを特徴とする窒化ガリウム系化合物半導体のp型化
方法。
1. A low resistance is obtained by selectively forming a protective film on the surface of a gallium nitride-based compound semiconductor layer doped with a p-type dopant and then annealing the gallium nitride-based compound semiconductor layer at 400 ° C. or higher. A method for making a gallium nitride-based compound semiconductor p-type, wherein the same gallium nitride-based compound semiconductor layer is provided with a difference in resistivity.
【請求項2】 前記保護膜はシリカまたは窒化ケイ素の
いずれかであることを特徴とする請求項1に記載の窒化
ガリウム系化合物半導体のp型化方法。
2. The method for converting a gallium nitride-based compound semiconductor to a p-type according to claim 1, wherein the protective film is made of silica or silicon nitride.
【請求項3】 前記保護膜の幅は少なくとも20μm以
上であることを特徴とする請求項1に記載の窒化ガリウ
ム系化合物半導体のp型化方法。
3. The method for converting a gallium nitride-based compound semiconductor to a p-type according to claim 1, wherein the protective film has a width of at least 20 μm or more.
JP12488993A 1993-04-28 1993-04-28 Method for forming p-type gallium nitride-based compound semiconductor Expired - Lifetime JP2790235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12488993A JP2790235B2 (en) 1993-04-28 1993-04-28 Method for forming p-type gallium nitride-based compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12488993A JP2790235B2 (en) 1993-04-28 1993-04-28 Method for forming p-type gallium nitride-based compound semiconductor

Publications (2)

Publication Number Publication Date
JPH06314821A true JPH06314821A (en) 1994-11-08
JP2790235B2 JP2790235B2 (en) 1998-08-27

Family

ID=14896611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12488993A Expired - Lifetime JP2790235B2 (en) 1993-04-28 1993-04-28 Method for forming p-type gallium nitride-based compound semiconductor

Country Status (1)

Country Link
JP (1) JP2790235B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115880A (en) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd Manufacture of p-type gan semiconductor
WO1997003834A1 (en) 1995-07-14 1997-02-06 Seiko Epson Corporation Laminated head for ink jet recording, production method thereof, and printer equipped with the recording head
JPH09129924A (en) * 1995-10-27 1997-05-16 Toyoda Gosei Co Ltd Iii group nitride semiconductor etching method and light emitting element manufacturing method
JP2002057161A (en) * 2000-08-10 2002-02-22 Sony Corp Heat-treating method of nitride compound semiconductor layer and manufacturing method of semiconductor element
KR100499117B1 (en) * 1998-05-08 2005-07-04 삼성전자주식회사 Method for activating compound semiconductor layer
JP2007173854A (en) * 2007-01-29 2007-07-05 Sony Corp Method of heat treating nitride compound semiconductor layer, and method of manufacturing semiconductor element
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPH08115880A (en) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd Manufacture of p-type gan semiconductor
WO1997003834A1 (en) 1995-07-14 1997-02-06 Seiko Epson Corporation Laminated head for ink jet recording, production method thereof, and printer equipped with the recording head
US6158847A (en) * 1995-07-14 2000-12-12 Seiko Epson Corporation Laminated ink-jet recording head, a process for production thereof and a printer equipped with the recording head
US6332254B1 (en) 1995-07-14 2001-12-25 Seiko Epson Corporation Process for producing a laminated ink-jet recording head
US6836940B2 (en) 1995-07-14 2005-01-04 Seiko Epson Corporation Process for producing a laminated ink-jet recording head
JPH09129924A (en) * 1995-10-27 1997-05-16 Toyoda Gosei Co Ltd Iii group nitride semiconductor etching method and light emitting element manufacturing method
KR100499117B1 (en) * 1998-05-08 2005-07-04 삼성전자주식회사 Method for activating compound semiconductor layer
JP2002057161A (en) * 2000-08-10 2002-02-22 Sony Corp Heat-treating method of nitride compound semiconductor layer and manufacturing method of semiconductor element
JP4581198B2 (en) * 2000-08-10 2010-11-17 ソニー株式会社 Heat treatment method for nitride compound semiconductor layer and method for manufacturing semiconductor device
JP2007173854A (en) * 2007-01-29 2007-07-05 Sony Corp Method of heat treating nitride compound semiconductor layer, and method of manufacturing semiconductor element

Also Published As

Publication number Publication date
JP2790235B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
JP3304787B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2540791B2 (en) A method for manufacturing a p-type gallium nitride-based compound semiconductor.
JP3209096B2 (en) Group III nitride compound semiconductor light emitting device
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
JP3461074B2 (en) Method of manufacturing group III nitride semiconductor light emitting device
JP2790235B2 (en) Method for forming p-type gallium nitride-based compound semiconductor
JPH10144962A (en) Semiconductor light-emitting element and its manufacture
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH11186174A (en) Semiconductor device and its manufacture
JP3209233B2 (en) Blue light emitting diode and method of manufacturing the same
JPH05243613A (en) Light-emitting device and its manufacture
JP2785253B2 (en) Method for forming p-type gallium nitride-based compound semiconductor
JPH09298311A (en) Gallium nitride compd. semiconductor light emitting element
JP3180710B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JPH05198841A (en) Forming method for p-type of gallium nitride compound semiconductor
JP3301345B2 (en) Method for forming p-type gallium nitride-based compound semiconductor layer
JP4285337B2 (en) Method for producing gallium nitride compound semiconductor wafer
JP3630881B2 (en) Method for manufacturing group 3 nitride semiconductor light emitting device
JPH08213656A (en) Gallium nitride based compound semiconductor light emitting element
JP2912781B2 (en) Semiconductor light emitting device
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3038806U (en) Gallium nitride based compound semiconductor light emitting device
JP2912782B2 (en) Semiconductor light emitting device
JPH10178213A (en) Gallium nitride compound semiconductor light emitting device
JP3884717B2 (en) Method for producing gallium nitride compound semiconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 15

EXPY Cancellation because of completion of term