JPH06314606A - Manufacture of rare earth bonded magnet - Google Patents

Manufacture of rare earth bonded magnet

Info

Publication number
JPH06314606A
JPH06314606A JP5103361A JP10336193A JPH06314606A JP H06314606 A JPH06314606 A JP H06314606A JP 5103361 A JP5103361 A JP 5103361A JP 10336193 A JP10336193 A JP 10336193A JP H06314606 A JPH06314606 A JP H06314606A
Authority
JP
Japan
Prior art keywords
resin
rare earth
molded
molded body
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5103361A
Other languages
Japanese (ja)
Inventor
Masakuni Kamiya
昌邦 神谷
Masataka Kusumoto
雅孝 楠本
Tomoyuki Hayashi
智幸 林
Haruhiro Yukimura
治洋 幸村
Hirofumi Nakano
廣文 中野
Fumio Hashimoto
文男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP5103361A priority Critical patent/JPH06314606A/en
Publication of JPH06314606A publication Critical patent/JPH06314606A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a permanent magnet of high density and high rust resistance, by performing resin impregnation after rare earth magnet powder and resin of a specific ratio are kneaded and compression molded. CONSTITUTION:In a kneading process 1, kneaded material is formed by kneading magnetic powder and 0.5-1.5wt.% of resin. In a compression molding process 3, a molded object is formed by compression molding the kneaded object. In an impregnation process 5, the molded object is impregnated with resin. In a curing process, the compression molded object is cured, the resin is hardened, and a solvent is vaporized. In an impregnation process 5, the molded object is impregnated with resin. Thereby coating or the like for increasing rust resistance is made unnecessary, and a rare earth bonded magnet having high density, high magnetic characteristics, high strength and high rust resistance can be manufactured at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類ボンド磁石を製
造する希土類ボンド磁石の製造方法に関するものであ
る。最近、モータなどに使用する永久磁石として、希土
類磁石粉体を樹脂で結合したボンド磁石を高密度でかつ
防錆力を高めることが望まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth bonded magnet manufacturing method for manufacturing a rare earth bonded magnet. Recently, as a permanent magnet used for a motor or the like, it has been desired to increase the density of a bonded magnet obtained by binding a rare earth magnet powder with a resin and to improve the rust preventive power.

【0002】[0002]

【従来の技術】従来、希土類ボンド磁石のなかで一般的
に用いられているNd−Fe系ボンド磁石は、Nd−F
e系急冷磁石粉体と2〜3wt%の樹脂を混合した混合
物(ペレット)を圧縮成形して成形体とする。そして、
この成形体の防錆力を実用に耐えるように向上させるた
めに、当該成形体の表面に塗装したり、メッキしたりし
ていた。
2. Description of the Related Art Conventionally, Nd-Fe based bonded magnets which are generally used among rare earth bonded magnets are Nd-F.
A mixture (pellet) obtained by mixing the e-based quenched magnet powder and a resin of 2 to 3 wt% is compression-molded to obtain a molded body. And
In order to improve the rust preventive power of this molded product so that it can be used practically, the surface of the molded product has been coated or plated.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の希土類
ボンド磁石の製造方法により、磁石の高磁気特性化を図
る場合、成形体の高密度化が必要であり、そのために成
形圧力を増したり、液状樹脂を使用したりするなどが考
えられる。
In order to improve the magnetic characteristics of the magnet by the above-mentioned conventional method for producing a rare earth bonded magnet, it is necessary to increase the density of the molded body, which increases the molding pressure, For example, a liquid resin may be used.

【0004】成形圧力を増大した場合、金型が壊れ易く
なると共に、磁石粉体が成形時に割れるために成形体の
強度が低下したり、防錆力が低下してしまう問題があ
る。液状樹脂を使用した場合、ペレットを金型に充填し
難かったり、充填できないという問題がある。これを避
けるために液状樹脂をカプセル化して磁石粉体と混合し
てペレットの金型充填性を向上させることが考えられる
が、液状樹脂の使用により成形体の強度が弱くなってし
まったり、成形体が金型にはりつき取り出し難くなって
しまい、成形サイクルが長くなってしまうという問題が
ある。
When the molding pressure is increased, there is a problem that the mold is easily broken and the magnet powder is broken during molding, so that the strength of the molded body is lowered and the anticorrosive force is lowered. When a liquid resin is used, there is a problem that it is difficult or impossible to fill the pellets in the mold. In order to avoid this, it is possible to encapsulate liquid resin and mix it with magnet powder to improve the mold filling property of pellets, but the use of liquid resin weakens the strength of the molded body, There is a problem that the body sticks to the mold and it becomes difficult to take it out, which lengthens the molding cycle.

【0005】本発明は、これらの問題を解決するため、
希土類磁石粉体に0.5〜1.5wt%の樹脂を混練し
て圧縮成形した後、樹脂含浸を行い、高密度かつ高防錆
力の永久磁石を製造することを目的としている。
The present invention solves these problems.
The purpose of the present invention is to manufacture a permanent magnet having a high density and a high rust preventive force by kneading a rare earth magnet powder with 0.5 to 1.5 wt% of a resin, compression-molding the resin, and then impregnating the resin.

【0006】[0006]

【課題を解決するための手段】図1を参照して課題を解
決するための手段を説明する。図1において、混練工程
1は、磁石粉体に0.5から1.5wt%の樹脂を混練
した混練物を生成する工程である。
[Means for Solving the Problems] Means for solving the problems will be described with reference to FIG. In FIG. 1, a kneading step 1 is a step of producing a kneaded product by kneading 0.5 to 1.5 wt% of resin into magnet powder.

【0007】圧縮成形工程3は、混練物を圧縮成形して
成形体を成形する工程である。キュア工程4は、圧縮成
形した成形体をキュア(例えば加熱処理して樹脂を硬化
などする処理)する工程である。
The compression molding step 3 is a step of compression molding the kneaded material to form a molded body. The curing step 4 is a step of curing the compression-molded compact (for example, heat treatment to cure the resin).

【0008】含浸工程5は、成形体に樹脂を含浸する工
程である。
The impregnation step 5 is a step of impregnating the molded body with a resin.

【0009】[0009]

【作用】本発明は、図1に示すように、混練工程1によ
って磁石粉体に0.5から1.5wt%の樹脂を混練し
た混練物を生成し、圧縮成形工程3によって混練物を圧
縮成形して成形体を成形し、含浸工程5によって成形体
に樹脂を含浸するようにしている。
According to the present invention, as shown in FIG. 1, the kneading step 1 produces a kneaded material in which 0.5 to 1.5 wt% of resin is kneaded with the magnet powder, and the compression molding step 3 compresses the kneaded material. By molding, the molded body is molded, and in the impregnation step 5, the molded body is impregnated with the resin.

【0010】この際、キュア工程4によって圧縮成形し
た成形体をキュアして、樹脂を硬化させたり、溶媒を蒸
発させたりした後、含浸工程5によって成形体に樹脂を
含浸するようにしている。
At this time, the molded body compression-molded in the curing step 4 is cured to cure the resin and evaporate the solvent, and then the impregnating step 5 impregnates the molded body with the resin.

【0011】従って、希土類磁石粉体に0.5〜1.5
wt%の樹脂を混練して圧縮成形した後、樹脂含浸を行
うことにより、高密度かつ高防錆力の永久磁石を製造す
ることが可能となる。
Therefore, 0.5 to 1.5 is added to the rare earth magnet powder.
By carrying out resin impregnation after kneading and compression molding of wt% resin, it becomes possible to manufacture a permanent magnet having a high density and a high rust preventive force.

【0012】[0012]

【実施例】次に、図1から図3を用いて本発明の実施例
の構成および動作を順次詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the construction and operation of an embodiment of the present invention will be described in detail with reference to FIGS.

【0013】図1は、本発明の1実施例構成図を示す。
図1において、混練工程1は、磁石粉体に樹脂及び溶剤
を混練し、ペレットを作成する工程である。ここで、磁
石粉体として、Nd−Fe−B系の急冷磁石粉体を用
い、粒径が最大300μm程度のものを用いる。樹脂と
しては、右側に記載したように、エポキシ樹脂を用い、
0.5〜1.5wt%を混ぜる。これらNd−Fe−B
系の急冷磁石粉体に対して、0.5〜1.5wt%のエ
ポキシ樹脂および溶媒を入れて混練する。この混練中な
どに溶媒は徐々に蒸発する。
FIG. 1 shows a block diagram of an embodiment of the present invention.
In FIG. 1, a kneading step 1 is a step of kneading a resin and a solvent with magnet powder to form pellets. Here, as the magnet powder, Nd—Fe—B system quenched magnet powder is used, and the maximum particle size is about 300 μm. As the resin, as described on the right side, an epoxy resin is used,
Mix 0.5-1.5 wt%. These Nd-Fe-B
0.5-1.5 wt% of an epoxy resin and a solvent are added to the quenched magnetic powder of the system and kneaded. During this kneading, the solvent gradually evaporates.

【0014】篩別工程2は、混練工程1で混練した後、
大きな固まりなどを除去するために篩別を行う工程であ
る。この篩別工程2で用いる篩の目開きとして例えば3
00μmを用いてこれよりも大きい固まりを除去する。
In the sieving step 2, after kneading in the kneading step 1,
This is a step of sieving to remove large lumps and the like. As an opening of the sieve used in this sieving step 2, for example, 3
Use 00 μm to remove larger lumps.

【0015】圧縮成形工程3は、篩別工程2によって篩
別した後の混合物のペレットを、金型に入れて圧縮し、
成形体を成形する。ここでは、例えば6000Kg/c
2位の圧力で圧縮成形する。
In the compression molding step 3, pellets of the mixture after sieving in the sieving step 2 are put into a mold and compressed,
A molded body is molded. Here, for example, 6000 Kg / c
It is compression molded at a pressure of m 2 .

【0016】キュア工程4は、圧縮成形工程3によって
成形された成形体(例えばリング状の成形体)を加熱し
て樹脂を硬化および含まれている溶剤を完全に蒸発させ
たりする。ここで、キュアによる加熱時間は、樹脂を硬
化させるのに十分な温度および時間であって、エポキシ
樹脂の場合には例えば200°C、1時間である。この
キュアした後の成形体は、従来に比して樹脂量が大幅に
少なく、磁石粉体の高密度な成形体を得ることができ
る。この成形体は、高密度であるが、強度が弱いため、
これに続く工程で樹脂含浸を行い、強度を高めると共に
防錆力を高める必要がある。
In the curing step 4, the molded body (for example, a ring-shaped molded body) molded in the compression molding step 3 is heated to cure the resin and completely evaporate the contained solvent. Here, the heating time by curing is a temperature and time sufficient to cure the resin, and in the case of an epoxy resin, for example, 200 ° C. and 1 hour. The molded body after this curing has a significantly smaller amount of resin than the conventional one, and a molded body of magnet powder with a high density can be obtained. This molded product has high density, but weak strength,
In the subsequent step, it is necessary to impregnate the resin to increase the strength and rust prevention.

【0017】含浸工程5は、キュアした後の成形体に樹
脂を含浸する。これは、成形体に混練した樹脂量が少な
く強度が弱いと共に十分な防錆力を得られないため、エ
ポキシ樹脂中に漬けて樹脂含浸を行い、成形体の磁石粉
体相互を強く固着すると共に表面を被って防錆力を高め
るようにする。
In the impregnation step 5, the resin is impregnated into the molded body after curing. This is because the amount of resin kneaded into the molded body is small and the strength is weak and sufficient rust prevention can not be obtained, so it is soaked in epoxy resin for resin impregnation to firmly bond the magnet powder particles of the molded body together. Cover the surface to increase rust prevention.

【0018】キュア工程6は、含浸工程5によって成形
体をエポキシ樹脂に漬け、余分な樹脂を取り去った後、
加熱して硬化させる工程である。これにより、樹脂量が
少ない成形体に樹脂を含浸して硬化し、強度を高めると
共に表面を被って防錆力を高めることができる(図2お
よび図3の実測例参照)。
In the curing step 6, the molded body is dipped in the epoxy resin in the impregnation step 5 to remove excess resin, and then
It is a step of heating and curing. As a result, it is possible to impregnate a resin having a small amount of resin with the resin and cure the resin, thereby enhancing the strength and covering the surface to enhance the rust preventive power (see the actual measurement examples in FIGS. 2 and 3).

【0019】次に、図1のS1からS6の順序に従い、
磁石を製造する過程を説明する。図1において、S1
は、Nd−Fe−B系の急冷磁石粉体(例えば300μ
m以下の粉体)にエポキシ樹脂を0.5〜1.5wt%
と溶剤を一緒にして良く混練する。この混練過程で溶剤
が徐々に揮発する。
Next, according to the order of S1 to S6 in FIG.
The process of manufacturing the magnet will be described. In FIG. 1, S1
Is a Nd-Fe-B system quenched magnet powder (for example, 300 μm).
0.5 ~ 1.5wt% of epoxy resin
Knead well with the solvent. The solvent gradually evaporates during this kneading process.

【0020】S2は、S1で良く混練した混合物を篩別
する。これは、混練した混合物を、例えば目開きが約3
00μmの篩で篩別し、固まった大きな粒径を除去す
る。S3は、圧縮成形する。これは、S2で篩別した後
の混合物(あるいはペレットにしたもの)を金型に入
れ、圧縮成形する。例えば混合物のペレットを製品の金
型に入れ、6000Kg/cm2 の圧力によって圧縮成
形し、成形体を生成する。
In S2, the mixture well kneaded in S1 is sieved. This is a kneaded mixture, for example, with an opening of about 3
Sift through a 00 μm sieve to remove the solidified large particle size. In S3, compression molding is performed. In this process, the mixture (or pelletized product) after screening in S2 is put into a mold and compression molded. For example, pellets of the mixture are placed in a product mold and compression-molded by a pressure of 6000 Kg / cm 2 to produce a molded body.

【0021】S4は、S3で圧縮成形した成形体を加熱
して硬化すると共に含まれている溶剤を完全に揮発させ
る。例えば成形体を200°C、1時間加熱して硬化お
よび溶剤を揮発させる。
In step S4, the molded body compression-molded in step S3 is heated and cured, and the solvent contained therein is completely volatilized. For example, the molded body is heated at 200 ° C. for 1 hour to cure and volatilize the solvent.

【0022】S5は、S4でキュアした後の成形体に樹
脂を含浸する。これは、S4までで成形された成形体
は、樹脂量が従来の2.5wt%よりも大幅に少ない
0.5〜1.5wt%であったために、磁石粉体の高密
度な成形体を成形できるが、強度が弱いと共に、表面の
磁石粉体が樹脂で被われていない部分が発生して防錆力
が劣るので、これら強度および防錆力の向上のために、
エポキシ樹脂を含浸する。
In S5, the molded body after being cured in S4 is impregnated with resin. This is because the molded product molded up to S4 had a resin amount of 0.5 to 1.5 wt%, which is much smaller than the conventional 2.5 wt%, and therefore a high-density molded product of magnet powder was obtained. Although it can be molded, its strength is weak and the surface magnetic powder is not covered with resin, resulting in poor rust prevention, so in order to improve these strength and rust prevention,
Impregnate with epoxy resin.

【0023】S6は、キュアする。これは、S5でエポ
キシ樹脂を含浸した成形体を、加熱して硬化し、強度お
よび防錆力を向上させる(図2、図3の実測例参照)。
以上によって、磁石粉体に可及的に少ない樹脂量(0.
5〜1.5wt%)を入れて混練してペレットを作成
し、このペレットを金型に入れて圧縮成形して高密度の
磁石粉体を持つ成形体を生成し、この成形体をキュアし
た後、樹脂を含浸してキュアし、強度および防錆力を向
上させる。これらの製造工程により、高密度、高強度か
つ高防錆力の希土類ボンド磁石を製造することが可能と
なる。
S6 is cured. This heats and cures the molded body impregnated with the epoxy resin in S5 to improve the strength and the rust preventive power (see the actual measurement examples in FIGS. 2 and 3).
By the above, the resin amount (0.
5 to 1.5 wt%) and kneaded to prepare pellets, and the pellets were put into a mold and compression-molded to produce a compact having high-density magnetic powder, and the compact was cured. After that, the resin is impregnated and cured to improve strength and rust prevention. By these manufacturing steps, it is possible to manufacture a rare earth bonded magnet having high density, high strength, and high rust preventive power.

【0024】図2は、本発明の実測例(樹脂量)を示
す。この実測例は、Nd−Fe−B系の急冷磁石粉体と
エポキシ樹脂ワニスを混練、乾燥してペレットを生成
し、このペレートを金型に入れて圧力6000Kg/c
2でリング状に圧縮成形し、200°Cで1時間加熱
固化して成形体を成形する。強度は比較例(従来の樹脂
量2.5wt%の成形体)を100として圧環強度の相
対値を求めた。密度は、浮力法によって測定した。図示
の数値を下記に記載する。
FIG. 2 shows an actual measurement example (resin amount) of the present invention. In this measurement example, a Nd-Fe-B-based quenched magnet powder and an epoxy resin varnish are kneaded and dried to form pellets, and the pellets are put into a mold and the pressure is 6000 Kg / c.
It is compression-molded into a ring shape with m 2 and heated and solidified at 200 ° C. for 1 hour to mold a molded body. Regarding the strength, a relative value of radial crushing strength was determined with the comparative example (conventional molded product having a resin amount of 2.5 wt%) as 100. The density was measured by the buoyancy method. The numerical values shown are listed below.

【0025】 樹脂量(wt%) 密度(g/cm2) 圧環強度(%) 本発明 0.5 6.05 51 本発明 1.0 6.02 63 本発明 1.5 5.90 75 比較例 2.5 5.70 100 この実測例から、例えば樹脂量が0.5wt%の場合に
は、密度が比較例に比して6.05/5.70=1.0
6となり、6%の密度が向上したこととなる。一方、圧
環強度は51%に低下したので、後述する図3に示すよ
うに、樹脂を含浸して向上させるようにしている。
Resin amount (wt%) Density (g / cm 2 ) Radial crushing strength (%) Invention 0.5 6.05 51 Invention 1.0 6.02 63 Invention 1.5 5.90 75 Comparative Example 2.5 5.70 100 From this actual measurement example, when the resin amount is 0.5 wt%, the density is 6.05 / 5.70 = 1.0 as compared with the comparative example.
6, which means that the density is improved by 6%. On the other hand, since the radial crushing strength has dropped to 51%, the radial crushing strength is improved by impregnating the resin, as shown in FIG. 3 described later.

【0026】図3は、本発明の実測例(含浸回数)を示
す。この実測例は、図2の測定した成形体について、エ
ポキシ樹脂ワニスの含浸を行ったときの、含浸回数(浸
漬回数)と圧環強度および防錆力の関係の実測例であ
る。圧環強度は、寸法φ18/φ16/h4のリングを
径方向に圧縮破壊するために必要な力であって、比較例
を100としたときの相対値である。実測値は比較例で
約2Kgfである。防錆力は、高温高湿試験60°C、
95%RH、240時間にて、比較例にわずかに錆びが
見られ、本発明の成形体との比較は同程度の外観となる
のに要した時間で行った。図示の数値を下記に記載す
る。
FIG. 3 shows an actual measurement example (impregnation frequency) of the present invention. This measurement example is a measurement example of the relationship between the number of times of impregnation (the number of times of immersion) and the radial crushing strength and the anticorrosive force when the epoxy resin varnish was impregnated in the measured molded body of FIG. The radial crushing strength is a force required to compressively fracture a ring having a size of φ18 / φ16 / h4 in the radial direction, and is a relative value when the comparative example is 100. The measured value is about 2 Kgf in the comparative example. Corrosion resistance is high temperature and high humidity test 60 ° C,
A slight rust was observed in the comparative example at 95% RH for 240 hours, and the comparison with the molded product of the present invention was carried out for the time required to obtain the same appearance. The numerical values shown are listed below.

【0027】 含浸回数 圧環強度(%) 防錆力(%) 本発明 0 63 70 本発明 1 110 280 本発明 2 130 470 比較例 100 100 この実測例から、例えば含浸回数0のときは圧環強度が
63%、防錆力が70%であったものが、含浸回数1の
ときに圧環強度が110%、防錆力が280%となり、
樹脂の含浸により大幅に圧環強度および防錆力が向上す
ることが判明した。
Number of impregnations Radial crushing strength (%) Rust preventive power (%) Present invention 0 63 70 Present invention 1 110 280 Present invention 2 130 470 Comparative example 100 100 From this measured example, for example, when the number of impregnations is 0, the radial crushing strength is When the impregnation number was 1, the radial crushing strength was 110% and the rust preventive power was 280%.
It has been found that impregnation with resin significantly improves radial crushing strength and rust prevention.

【0028】従って、比較例の従来の樹脂量2.5%に
比し、高密度で、かつ圧環強度および防錆力を大きくし
た希土類ボンド磁石が製造できた。
Therefore, it was possible to manufacture a rare earth bonded magnet having a high density and a large radial crushing strength and rust preventive power as compared with the conventional resin amount of 2.5% in the comparative example.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
希土類磁石粉体に0.5〜1.5wt%の樹脂を混練し
て圧縮成形した後、樹脂含浸を行って希土類ボンド磁石
を製造する構成を採用しているため、高密度かつ、高強
度で高防錆力の永久磁石を製造できる。これらにより、
従来の防錆力を高めるための塗装などをなくし、かつ高
密度の高磁気特性、かつ高強度、高防錆力の希土類ボン
ド磁石を低コストで製造することが可能となった。
As described above, according to the present invention,
Since the rare earth magnet powder is kneaded with 0.5 to 1.5 wt% of resin and compression-molded, the resin is impregnated to produce the rare earth bonded magnet, which results in high density and high strength. It is possible to manufacture permanent magnets with high corrosion resistance. With these,
It has become possible to manufacture a rare earth bonded magnet with high density, high magnetic properties, high strength, and high rust preventive power at a low cost by eliminating the conventional coating for enhancing the rust preventive power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の実測例(樹脂量)である。FIG. 2 is a measurement example (resin amount) of the present invention.

【図3】本発明の実測例(含浸回数)である。FIG. 3 is an actual measurement example (impregnation frequency) of the present invention.

【符号の説明】[Explanation of symbols]

1:混練工程 2:篩別工程 3:圧縮成形工程 4、6:キュア工程 5:含浸工程 1: Kneading process 2: Screening process 3: Compression molding process 4, 6: Cure process 5: Impregnation process

───────────────────────────────────────────────────── フロントページの続き (72)発明者 幸村 治洋 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 中野 廣文 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 橋本 文男 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Haruhiro Yukimura 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (72) Hirofumi Nakano 5-36-11 Shinbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (72) Fumio Hashimoto 5 36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】希土類ボンド磁石を製造する希土類ボンド
磁石の製造方法において、 磁石粉体に0.5から1.5wt%の樹脂を混練した混
練物を生成し、この混練物を圧縮成形して成形体を成形
した後、樹脂を含浸し、高密度かつ高防錆力の希土類ボ
ンド磁石を製造するように構成したことを特徴とする希
土類ボンド磁石の製造方法。
1. A method for producing a rare earth bonded magnet for producing a rare earth bonded magnet, wherein a kneaded material is produced by kneading 0.5 to 1.5 wt% of resin into magnet powder, and the kneaded material is compression molded. A method for producing a rare earth bonded magnet, characterized in that a molded article is molded and then impregnated with a resin to produce a high density and high rust preventive rare earth bonded magnet.
【請求項2】上記成形体を成形した後、この成形体をキ
ュアしてから樹脂を含浸するように構成したことを特徴
とする請求項1記載の希土類ボンド磁石の製造方法。
2. The method for producing a rare earth bonded magnet according to claim 1, wherein after the molded body is molded, the molded body is cured and then impregnated with a resin.
JP5103361A 1993-04-30 1993-04-30 Manufacture of rare earth bonded magnet Pending JPH06314606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103361A JPH06314606A (en) 1993-04-30 1993-04-30 Manufacture of rare earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103361A JPH06314606A (en) 1993-04-30 1993-04-30 Manufacture of rare earth bonded magnet

Publications (1)

Publication Number Publication Date
JPH06314606A true JPH06314606A (en) 1994-11-08

Family

ID=14351995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103361A Pending JPH06314606A (en) 1993-04-30 1993-04-30 Manufacture of rare earth bonded magnet

Country Status (1)

Country Link
JP (1) JPH06314606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251816A1 (en) * 2010-02-27 2014-09-11 Stanley Byron Musselman Method for making a magnet rotor assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251816A1 (en) * 2010-02-27 2014-09-11 Stanley Byron Musselman Method for making a magnet rotor assembly

Similar Documents

Publication Publication Date Title
JP2003534656A (en) Induction components and their manufacturing method
CN110415964A (en) Anisotropy neodymium iron boron multi-pole magnet-ring preparation method
CN106890999B (en) A kind of preparation method of amorphous or nano-crystal soft-magnetic powder core
JPH06314606A (en) Manufacture of rare earth bonded magnet
JP2692834B2 (en) Dust core
KR101936094B1 (en) Manufacturing method of power inductor
KR101094839B1 (en) Non-ageing permanent magnet made from an alloy powder and method for the production thereof
JPH03201508A (en) Manufacture of resin-bonded magnet
EP0289979A1 (en) Plastic magnets
KR20050040717A (en) A magnetostrictive element
JPH0645167A (en) Manufacture of isotropic bond magnet
JPH06314605A (en) Manufacture of rare earth bonded magnet
JP2013258169A (en) Bond magnet, method of manufacturing the same, and motor
JP4140778B2 (en) Resin-bonded magnet and manufacturing method thereof
JPS61263208A (en) Manufacture of magnetic molded unit
JP7252768B2 (en) Method for manufacturing rare earth bonded magnet
JPH02163906A (en) Manufacture of bond magnet
JPS589566A (en) Forming member for magnetic path for stepping motor
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JP2709068B2 (en) Dust core
JPH06318511A (en) High rust-proof rare earth metal bond magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH08293411A (en) Bond magnet
JPH02116104A (en) Manufacture of resin-bonded permanent magnet
JP2024043466A (en) Bond rare earth permanent magnet having high space packing rate, and manufacturing method of the same