JPH06314565A - Manufacture of thin battery - Google Patents

Manufacture of thin battery

Info

Publication number
JPH06314565A
JPH06314565A JP5128253A JP12825393A JPH06314565A JP H06314565 A JPH06314565 A JP H06314565A JP 5128253 A JP5128253 A JP 5128253A JP 12825393 A JP12825393 A JP 12825393A JP H06314565 A JPH06314565 A JP H06314565A
Authority
JP
Japan
Prior art keywords
active material
thin battery
electrode active
current collector
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128253A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Shiro Kato
史朗 加藤
Kazuo Murata
和雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP5128253A priority Critical patent/JPH06314565A/en
Publication of JPH06314565A publication Critical patent/JPH06314565A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture a thin battery in which the drop in capacity and that in utility at low temperature are retarded by installing electrolyte reservoirs in an electrode and by forming a thin battery whose thickness is specified in millimeters or less. CONSTITUTION:Electrolyte reservoirs are installed on a positive active material layer in such a way that a positive active material 2 is pattern-printed in a thickness of 140mu on a strip of positive current collector 1 whose thickness, for example, about 10mu with a metal mask printing process, then blades with lattice cavities are presses onto the positive active material 2 to form the reservoirs. A negative active material 5 whose thickness is, for example, 30mu is arranged on the inside surface of a negative current collector 4, then an about 10mu thick polymer solid electrolyte 6 is screen-printed on the negative active material 5. The polymer solid electrolyte 6 is set, then an adhesive 7 is sticked to the current collector 4. An electrolyte 8 is dropped on the positive active material 2 to fill in the cavities 3. Fabricated batteries are cut from the adhesive coated parts to form each of the thin batteries.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エレクトロニクス機
器、玩具、アクセサリ−などの分野に使われる電池とそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery used in the fields of electronic equipment, toys, accessories and the like, and a method for manufacturing the battery.

【0002】[0002]

【従来の技術】従来の電池は円筒型、角型で、特に薄形
としてコイン型などがあり、電解液フリ−の状態とする
ため、電池容器内に空間部、例えば容器周縁域、中心部
又は上部空間を設け余剰の電解液を貯蔵することができ
た。しかしながら、薄形の電池例えば厚さが1mm以
下、特に0.5mm以下の薄形電池においては上記空間
を設けることができず余剰の電解液をリザ−ブできない
ため下記のような問題を有していた。電池は一般的に使
用中に電解液が電気化学的又は化学的に活物質と反応し
て消耗することが避けられないが、薄形電池においては
リザ−バ−を有しないため電解液の消耗により活物質中
の電解液が枯渇して電池容量低下をもたらす重大欠点を
有していた。
2. Description of the Related Art Conventional batteries include cylindrical type and prismatic type, particularly thin type such as coin type. In order to make them electrolyte-free, a space is provided in the battery container, for example, a peripheral region of the container and a central part. Alternatively, it was possible to store an excess of electrolytic solution by providing an upper space. However, a thin battery, for example, a thin battery having a thickness of 1 mm or less, particularly 0.5 mm or less, has the following problems because the space cannot be provided and an excess electrolyte cannot be reserved. Was there. In general, it is inevitable that the electrolyte will be consumed electrochemically or chemically by reacting with the active material during use, but the thin battery does not have a reservoir and the electrolyte will be consumed. As a result, the electrolyte solution in the active material is depleted, resulting in a decrease in battery capacity.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたものであって、その目的とするところは
厚さが0.5mm以下の薄形電池の保存中及び使用中に
あって、電解液が消耗し電気化学的に活物質が十分利用
されずに残存し、電池容量及び低温下での利用率の低下
を防止すると共に、容易に上記問題を解決する薄形電池
の製造方法を提供することにある。
The present invention has been made in view of the above problems, and its object is to store and use a thin battery having a thickness of 0.5 mm or less. As a result, the electrolyte is consumed and the active material remains electrochemically underutilized, which prevents the decrease in battery capacity and utilization rate at low temperatures, and at the same time facilitates the production of thin batteries. To provide a method.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するもので、正極活物質及び又は負極活物質内に電解液
をリザ−ブする部分を設けたこと、前記活物質層に切れ
目、割れ目又は凹部を設けたこと、前記活物質層内に空
洞部を設け、且つ又は該空洞部の一部が対極の活物質面
と対向する側に開口していること、前記電解液のリザ−
ブを行う切れ目、割れ目、凹部、空洞部の一部が集電体
面に達していること、前記正極活物質と負極活物質の間
のセパレ−タが高分子固体電解質であること、前記電解
液が非水溶液であること及び、正極活物質及び又は負極
活物質内に電解液をリザ−ブする部分を設けた薄形電池
において、集電体面に活物質を保持させた後、トムソン
刃、ロ−ラ−など突起を有する機械的道具にて押圧し該
活物質に切れ目、凹部を設けること、正極活物質及び又
は負極活物質内に電解液をリザ−ブする部分を設けた薄
形電池において、集電体面に活物質をスクリ−ン印刷す
る時にスクリ−ン版のメッシュに相当する凹部を設ける
こと、正極活物質及び又は負極活物質内に電解液をリザ
−ブする部分を設けた薄形電池において、集電体面に活
物質を保持した後に活物質層に割れ目を形成したこと、
前記割れ目を活物質の乾燥により形成することなどを特
徴とし、これにより上述の問題点を解決するものであ
る。
Means for Solving the Problems The present invention achieves the above-mentioned object, wherein a portion for reserving an electrolytic solution is provided in the positive electrode active material and / or the negative electrode active material, and the active material layer has a break, A crack or a recess is provided, a cavity is provided in the active material layer, and / or a part of the cavity is opened on the side facing the active material surface of the counter electrode, and the electrolyte solution reservoir is provided.
The cuts, cracks, recesses, and a part of the cavities for cutting have reached the current collector surface, the separator between the positive electrode active material and the negative electrode active material is a polymer solid electrolyte, and the electrolytic solution Is a non-aqueous solution, and in a thin battery in which a portion for reserving an electrolytic solution is provided in the positive electrode active material and / or the negative electrode active material, after holding the active material on the current collector surface, a Thomson blade, In a thin battery in which a cut or a recess is provided in the active material by pressing with a mechanical tool having a protrusion such as a ladder, and a portion for reserving an electrolyte solution is provided in the positive electrode active material and / or the negative electrode active material. , When a screen printing of the active material is performed on the surface of the current collector, a concave portion corresponding to the mesh of the screen plate is provided, and a portion for reserving the electrolytic solution is provided in the positive electrode active material and / or the negative electrode active material. Type battery, after holding the active material on the collector surface To the formation of the cracks in the active material layer,
The present invention is characterized in that the cracks are formed by drying the active material, thereby solving the above-mentioned problems.

【0005】[0005]

【作用】本発明によれば請求項1により0.5mm以下
の厚さの薄形電池においても電解液をリザ−ブしておく
電解液リザ−バ−を設けたことにより低温下例えば−2
0℃以下での電荷移動速度を約10倍高め、活物質利用
率を従来40%であったものを60%〜70%まで向上
させることができた。さらに保存中及び使用中の電解液
の消耗を電解液リザ−バ−部内の電解液が補充し、初期
の電池容量及びエネルギ−効率を安定化させた。電池容
量については理論値約180mAhのものが60℃、湿
度90%、100日(保存加速試験)後において約17
0mAh(従来では約120mAhとなった。)であっ
た。またエネルギ−効率においては約500wh/lで
あるものが20℃における通電試験後に約493wh/
lとなった。請求項2により電解液リザ−バ−として活
物質層に複数個の切り目、割れ目又は凹部を設け、それ
らの内部に電解液をリザ−ブすることで、活物質全体に
電解液の補充を行うことができた。請求項3により活物
質層内に空洞部を設け、電解液を貯蔵でき、また開口部
を小さくすることでセパレ−タ−と接する面に大きな凹
部を少なくでき、セパレ−タ−をスクリ−ン印刷する場
合など印刷面が平坦になり、セパレ−タ−の厚さが均一
となり両極活物質の短絡が防止できる。対極の活物質面
側に開口させることで、活物質を保持させた後に電解液
を別工程で補填できる。請求項4により集電体の折り曲
げ性を高める。請求項9及び10により活物質を保持さ
せた後、ひび割れさせること、例えば急加熱(乾燥)す
ることで活物質層に切れ目などを容易に設けることがで
きる。また活物質の充填密度を高めることにより加熱な
しでも割れ目を設けることができる。この方法では機械
的には無理な全表面に渡って緻密な切れ目を多数設ける
ことができるため、電解液のリザ−ブ効果、すなわち活
物質のすべての部分への電解液の補充が可能となる。ま
た請求項5及び6により高分子固体電解質とすることで
切れ目、凹部を設けた活物質面に均一に形成できる上、
枯渇した電解液を容易に高分子固体電解質層が吸収でき
る。非水溶液であるため、リチウムなどを負極活物質に
利用できる。電解質が枯渇しないため、活物質が部分的
に不動態化するのを防止し、活物質の利用率の低下を防
ぐ。さらに請求項7及び8により活物質に容易に切れ
目、凹部などの電解液リザ−ブ部を設けることができ
る。さらに各電池間で同一の切れ目、凹部を設けること
ができるため、品質にバラツキのない電池が生産でき
る。また請求項7においては活物質を集電体面に保持さ
せた後に押圧することで、活物質の充填密度を高めるこ
とができる利点を有する。
According to the present invention, an electrolytic solution reservoir for reserving the electrolytic solution is provided even in a thin battery having a thickness of 0.5 mm or less according to the first aspect of the present invention.
The charge transfer rate at 0 ° C. or lower was increased about 10 times, and the utilization ratio of the active material could be increased from 60% to 60% to 70%. Further, the consumption of the electrolyte during storage and use was replenished by the electrolyte in the electrolyte reservoir part, and the initial battery capacity and energy efficiency were stabilized. Regarding the battery capacity, the theoretical capacity of about 180 mAh is about 17 after 60 days at 90 ° C and 90% humidity (accelerated storage test).
It was 0 mAh (it was about 120 mAh in the past). The energy efficiency is about 500 Wh / l, but it is about 493 Wh / l after the energization test at 20 ° C.
It became l. According to claim 2, a plurality of cuts, crevices or recesses are provided in the active material layer as an electrolytic solution reservoir, and the electrolytic solution is reserved inside them to replenish the entire active material with the electrolytic solution. I was able to. According to claim 3, a cavity is provided in the active material layer to store the electrolytic solution, and by making the opening small, it is possible to reduce a large concave portion on the surface in contact with the separator, and to screen the separator. When printing, for example, the printing surface becomes flat, the thickness of the separator becomes uniform, and it is possible to prevent a short circuit between the bipolar active materials. By opening the active material surface side of the counter electrode, the electrolytic solution can be supplemented in another step after the active material is held. According to claim 4, the bendability of the current collector is improved. After holding the active material according to the ninth and tenth aspects, a crack or the like can be easily formed in the active material layer by cracking, for example, rapid heating (drying). Further, by increasing the packing density of the active material, cracks can be provided without heating. With this method, a large number of fine cuts can be provided over the entire surface, which is mechanically impossible, so that the reserve effect of the electrolyte solution, that is, the electrolyte solution can be replenished to all parts of the active material. . Further, by using the polymer solid electrolyte according to claims 5 and 6, it is possible to form uniformly on the surface of the active material provided with cuts and recesses.
The solid electrolyte layer can easily absorb the depleted electrolytic solution. Since it is a non-aqueous solution, lithium or the like can be used as the negative electrode active material. Since the electrolyte is not depleted, the active material is prevented from being partially passivated and the utilization rate of the active material is prevented from decreasing. Further, according to the seventh and eighth aspects, the active material can be easily provided with the electrolyte solution reserve portion such as a cut or a recess. Furthermore, since the same cuts and recesses can be provided between the batteries, it is possible to produce batteries without quality variations. Further, in claim 7, there is an advantage that the packing density of the active material can be increased by pressing the active material after holding it on the surface of the current collector.

【0006】[0006]

【実施例】以下、正極活物質に電解液リザ−バ−を設け
た場合について図面に基づき説明する。図1は約10μ
厚さの一連の正極集電体1(ステンレスなど)にメタル
マスク印刷でパタ−ン状に正極活物質2(例えばMnO
2 合剤,LiCoO3 合剤など)を厚さ約140μに印
刷した場合の平面図を示す。図2は図1のA−A’部の
断面図を示す。3は切れ目で格子状に形成されたトムソ
ン刃を正極活物質2面に押圧することで形成した。図3
は負極集電体(約10μ厚さの一連のステンレス)4の
内側面に厚さ30μの負極活物質5(金属リチウム、他
にリチウム−アルミ合金、カ−ボンなどが利用でき
る。)を配置した後、その上に高分子固体電解質6を厚
さ約10μになるようにスクリ−ン印刷した。高分子固
体電解質6をを効果させた後、接着材7を負極集電体4
に接着した。このようにして作製された正極と、負極を
図4に示すように組み立てた。組み立てる前に正極活物
質2面に電解液8を滴下すると共に切り目3内にも充填
した。このような一連の電池を接着材7の部分(図1に
おいては点線で示す部分に相当する。図4においては矢
印で示す部分に相当する。)で切断することで、個々の
厚さ約0.2mmの電池を作製した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case in which an electrolytic solution reservoir is provided on a positive electrode active material will be described below with reference to the drawings. Figure 1 is about 10μ
The positive electrode active material 2 (for example, MnO 2) is patterned in a pattern by metal mask printing on a positive electrode current collector 1 (stainless steel or the like) having a certain thickness.
2 is a plan view in the case of printing 2 mixture, LiCoO 3 mixture, etc.) to a thickness of about 140 μ. FIG. 2 is a cross-sectional view taken along the line AA 'in FIG. No. 3 was formed by pressing a Thomson blade, which was formed in a grid pattern in a cut, against the positive electrode active material 2 surface. Figure 3
Is disposed on the inner surface of a negative electrode current collector (a series of stainless steel having a thickness of about 10 μm) 4 having a thickness of 30 μm of a negative electrode active material 5 (metal lithium, lithium-aluminum alloy, carbon, etc. can be used). After that, the polymer solid electrolyte 6 was screen-printed thereon to a thickness of about 10 μm. After the solid polymer electrolyte 6 is made effective, the adhesive 7 is attached to the negative electrode current collector 4.
Glued to. The positive electrode thus produced and the negative electrode were assembled as shown in FIG. Before assembling, the electrolytic solution 8 was dropped on the surface of the positive electrode active material 2 and was also filled in the cut lines 3. By cutting such a series of batteries at a portion of the adhesive material 7 (corresponding to a portion indicated by a dotted line in FIG. 1 and corresponding to a portion indicated by an arrow in FIG. 4), each individual thickness is reduced to about 0. A battery of 0.2 mm was prepared.

【0007】このようにして得られた電池は作用の欄に
おいて説明したと同様に約150サイクルの充電及び放
電試験の結果、初期の電池容量に対して約3%の減少が
あっただけで内部抵抗はほとんど変化しなかった。
The battery thus obtained had a decrease of about 3% with respect to the initial battery capacity as a result of a charge and discharge test of about 150 cycles in the same manner as described in the section of operation, and the internal capacity was reduced. The resistance changed little.

【0008】負極活物質層に切り目などを設ける場合
は、リチウムの場合はトムソン刃、ダイロ−ルなどで形
成できるが、カ−ボンを用いる場合はスクリ−ン印刷な
どの版の模様を利用することで形成できる。これは正極
活物質でも同様である。また負極活物質面にセパレ−タ
−を配置した後、その上に正極活物質を配置し該正極活
物質層に切り目を入れ、電解液を補填する。その後正極
集電体を配置することで電池を作製してもよい。この場
合、正極活物質層に設けられた切り目は集電体側に裾広
がりの形状をしている。
When a cut or the like is provided in the negative electrode active material layer, it can be formed with a Thomson blade or a die roll in the case of lithium, but a plate pattern such as screen printing is used in the case of using carbon. It can be formed. This also applies to the positive electrode active material. In addition, after a separator is placed on the surface of the negative electrode active material, the positive electrode active material is placed thereon, and a cut is made in the positive electrode active material layer to supplement the electrolytic solution. After that, a battery may be manufactured by disposing a positive electrode current collector. In this case, the cut line provided in the positive electrode active material layer has a shape that spreads toward the current collector side.

【0009】[0009]

【発明の効果】本発明は次に記載する効果を奏する。 (1)薄形電池において電解液のリザ−ブ部を設けるこ
とで電池特性(保存特性、充放電特性、エネルギ−効率
を高めた。 (2)活物質を印刷などの方法で集電体面に保持させた
後、乾燥などの工程が必要な場合には電解液が揮発し減
少するが、本発明のように後工程で電解液を充填するこ
とで電解液量の制御が容易となり、生産される電池の品
質管理が容易となる。 (3)多数の電池において、品質が安定する。 (4)電池の大きさ、形状に係わらず容易に電解液のリ
ザ−ブ部を設けることができる。 (5)保存後も電解液の枯渇はなかった。 なお本発明においては実施例に示すものに限定されるも
のではなく、電池材料の形状・数・構成材料の厚さ、集
電体の材質・厚さ・形状、切り目・空洞部及び凹部の形
・数・大きさ、スクリ−ン版のメッシュ数など特に限定
するものではなく、用途に応じて種種変更されるもので
ある。また集電体への活物質保持方法として他にコ−テ
ィング、転写などがあげられる。さらに正極、負極活物
質層が複数層から成り立っていてもよい。また乾燥条件
・手段(自然乾燥、強制乾燥等)は特に限定しない。
The present invention has the following effects. (1) In the thin battery, by providing a reserved portion for the electrolytic solution, the battery characteristics (storage characteristics, charge / discharge characteristics, energy efficiency were improved. (2) Active material was printed on the collector surface. After the holding, if a process such as drying is required, the electrolytic solution volatilizes and decreases, but by filling the electrolytic solution in a subsequent step as in the present invention, the control of the electrolytic solution amount becomes easy and the product is produced. (3) The quality is stable in many batteries (4) The electrolyte reservoir can be easily provided regardless of the size and shape of the battery. (5) The electrolyte solution was not depleted even after storage Note that the present invention is not limited to the examples, and the shape and number of battery materials, the thickness of constituent materials, and the material of the current collector.・ Thickness / shape, shape / number / size of notches / cavities and recesses, screen The number of meshes on the plate is not particularly limited, and may be changed depending on the application, and other methods for holding the active material on the current collector include coating and transfer. The negative electrode active material layer may be composed of a plurality of layers, and the drying conditions and means (natural drying, forced drying, etc.) are not particularly limited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に正極集電体面に設けた切り目を有する
正極活物質を配置した場合の平面図を示す。
FIG. 1 is a plan view showing a case where a positive electrode active material having a cut provided on a surface of a positive electrode current collector is arranged in the present invention.

【図2】図1のA−A’部の断面図を示す。2 is a cross-sectional view taken along the line A-A 'in FIG.

【図3】本発明の電池に用いた負極集電体の要部断面図
を示す。
FIG. 3 shows a cross-sectional view of a main part of a negative electrode current collector used in the battery of the present invention.

【図4】本発明による一連の薄形電池の要部拡大断面図
を示す。
FIG. 4 shows an enlarged cross-sectional view of a main part of a series of thin batteries according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極集電体 2 正極活物質 3 切り目(凹部) 4 負極集電体 5 負極活物質 6 セパレ−タ−(高分子固体電解質) 7 接着材 8 電解液 1 Positive Electrode Current Collector 2 Positive Electrode Active Material 3 Cut (Concave) 4 Negative Electrode Current Collector 5 Negative Electrode Active Material 6 Separator (Polymer Solid Electrolyte) 7 Adhesive 8 Electrolyte

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質及び/又は負極活物質内に電
解液をリザ−ブする部分を設け、且つ厚さが0.5mm
以下であることを特徴とする薄形電池。
1. A positive electrode active material and / or a negative electrode active material is provided with a portion for reserving an electrolytic solution and has a thickness of 0.5 mm.
A thin battery characterized in that:
【請求項2】 前記活物質層に切れ目、割れ目又は凹部
を設けたことを特徴とする請求項1記載の薄形電池。
2. The thin battery according to claim 1, wherein the active material layer is provided with cuts, cracks or recesses.
【請求項3】 前記活物質層内に空洞部を設け、且つ/
又は該空洞部の一部が対極の活物質面と対向する側に開
口していることを特徴とする請求項1記載の薄形電池。
3. A cavity is provided in the active material layer, and
Alternatively, the thin battery according to claim 1, wherein a part of the cavity is opened on the side facing the active material surface of the counter electrode.
【請求項4】 前記電解液のリザ−ブを行う切れ目、割
れ目、凹部、空洞部の一部が集電体面に達していること
を特徴とする請求項1乃至3記載の薄形電池。
4. The thin battery according to claim 1, wherein cuts, crevices, recesses, and a part of the cavity for reserving the electrolytic solution reach the current collector surface.
【請求項5】 前記正極活物質と負極活物質の間のセパ
レ−タが高分子固体電解質であることを特徴とする請求
項1乃至4記載の薄形電池。
5. The thin battery according to claim 1, wherein the separator between the positive electrode active material and the negative electrode active material is a polymer solid electrolyte.
【請求項6】 前記電解液が非水溶液であることを特徴
とする請求項1乃至5記載の薄形電池。
6. The thin battery according to claim 1, wherein the electrolytic solution is a non-aqueous solution.
【請求項7】 正極活物質及び/又は負極活物質内に電
解液をリザ−ブする部分を設けた薄形電池において、集
電体面に活物質を保持させた後、突起を有する機械的道
具にて押圧し、該活物質に切れ目、凹部を設けることを
特徴とする薄形電池の製造方法。
7. A thin battery comprising a positive electrode active material and / or a negative electrode active material provided with a portion for reserving an electrolytic solution, and a mechanical tool having protrusions after holding the active material on a current collector surface. A method for manufacturing a thin battery, characterized in that the active material is pressed to form cuts and recesses.
【請求項8】 正極活物質及び/又は負極活物質内に電
解液をリザ−ブする部分を設けた薄形電池において、集
電体面に活物質をスクリ−ン印刷する時にスクリ−ン版
のメッシュに相当する凹部を設けることを特徴とする薄
形電池の製造方法。
8. A thin battery having a positive electrode active material and / or a negative electrode active material provided with a portion for reserving an electrolytic solution, wherein a screen printing plate is used when the active material is screen printed on a current collector surface. A method for manufacturing a thin battery, comprising providing a recess corresponding to a mesh.
【請求項9】 正極活物質及び/又は負極活物質内に電
解液をリザ−ブする部分を設けた薄形電池において、集
電体面に活物質を保持した後に活物質層に割れ目を形成
したことを特徴とする薄形電池の製造方法。
9. A thin battery having a positive electrode active material and / or a negative electrode active material provided with a portion for reserving an electrolytic solution, wherein cracks are formed in the active material layer after the active material is held on the current collector surface. A method of manufacturing a thin battery, comprising:
【請求項10】 前記割れ目を活物質の乾燥により形成
することを特徴とする請求項9記載の薄形電池の製造方
法。
10. The method of manufacturing a thin battery according to claim 9, wherein the crack is formed by drying an active material.
JP5128253A 1993-04-30 1993-04-30 Manufacture of thin battery Pending JPH06314565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128253A JPH06314565A (en) 1993-04-30 1993-04-30 Manufacture of thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128253A JPH06314565A (en) 1993-04-30 1993-04-30 Manufacture of thin battery

Publications (1)

Publication Number Publication Date
JPH06314565A true JPH06314565A (en) 1994-11-08

Family

ID=14980285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128253A Pending JPH06314565A (en) 1993-04-30 1993-04-30 Manufacture of thin battery

Country Status (1)

Country Link
JP (1) JPH06314565A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030376A2 (en) * 1997-12-05 1999-06-17 Mi Rae Battery Co., Ltd. Battery-included pcb
WO1999038222A1 (en) * 1998-01-26 1999-07-29 Air Products And Chemicals, Inc. Method and device for forming a pattern on a thin metal foil
WO2002058182A1 (en) * 2001-01-18 2002-07-25 Sanyo Electric Co., Ltd. Lithium secondary battery
KR100362279B1 (en) * 2000-04-10 2002-11-23 삼성에스디아이 주식회사 Lithium ion polymer cell and collector therefor
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
JP2007250510A (en) * 2006-02-15 2007-09-27 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
KR20150043055A (en) * 2013-10-14 2015-04-22 주식회사 엘지화학 Flexible Electrode Assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030376A2 (en) * 1997-12-05 1999-06-17 Mi Rae Battery Co., Ltd. Battery-included pcb
WO1999030376A3 (en) * 1997-12-05 1999-12-09 Mi Rae Battery Co Ltd Battery-included pcb
WO1999038222A1 (en) * 1998-01-26 1999-07-29 Air Products And Chemicals, Inc. Method and device for forming a pattern on a thin metal foil
KR100362279B1 (en) * 2000-04-10 2002-11-23 삼성에스디아이 주식회사 Lithium ion polymer cell and collector therefor
WO2002058182A1 (en) * 2001-01-18 2002-07-25 Sanyo Electric Co., Ltd. Lithium secondary battery
US7476469B2 (en) 2001-01-18 2009-01-13 Santo Electric Co., Ltd. Lithium secondary battery
JP2005285607A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and manufacturing method thereof
JP2007250510A (en) * 2006-02-15 2007-09-27 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
KR20150043055A (en) * 2013-10-14 2015-04-22 주식회사 엘지화학 Flexible Electrode Assembly

Similar Documents

Publication Publication Date Title
EP0651451B1 (en) Electrode for storage battery and method for producing the same
CN108539124B (en) Secondary battery with lithium-supplement electrode and preparation method thereof
US6979517B2 (en) Electrode plate for cell and method for manufacturing the same
US6949313B2 (en) Battery with a microcorrugated, microthin sheet of highly porous corroded metal
JP3482443B2 (en) Electrode for non-aqueous electrolyte secondary battery and method for producing the same
JPS6146947B2 (en)
EP0140693A2 (en) Electrodes made with disordered active material and methods of making the same
CN113555525B (en) Positive electrode, secondary battery including the positive electrode, and method of preparing the positive electrode
EP0860518B1 (en) Process for preparing porous electrolytic metal foil
JP4514265B2 (en) Electrode and non-aqueous electrolyte secondary battery
JPH06314565A (en) Manufacture of thin battery
US7432016B2 (en) Electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
US5229228A (en) Current collector/support for a lead/lead oxide battery
CN115440987A (en) Current collector and preparation method thereof, negative electrode and electrochemical energy storage device
US3873367A (en) Zinc-container electrode
JP2000106213A (en) Lithium secondary battery and manufacture of positive electrode plate for use therein
JP3774980B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP2014146475A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2002184411A (en) Negative electrode collector for nonaqueous battery and its manufacturing method and negative electrode for nonaqueous battery
CN110556532A (en) reticular lithium material and preparation method and application thereof
KR20180001891A (en) Cathode of lithium primary battery for enhancing ampere hour and manufacturing method therefor
WO2005083817A1 (en) Grids for batteries
JPS6342819B2 (en)
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
US20050069776A1 (en) Method of producing a rechargeable electrochemical element , and an element made therefrom