JPH06312200A - Injection control of polymeric flocculant - Google Patents

Injection control of polymeric flocculant

Info

Publication number
JPH06312200A
JPH06312200A JP5123145A JP12314593A JPH06312200A JP H06312200 A JPH06312200 A JP H06312200A JP 5123145 A JP5123145 A JP 5123145A JP 12314593 A JP12314593 A JP 12314593A JP H06312200 A JPH06312200 A JP H06312200A
Authority
JP
Japan
Prior art keywords
polymer
value
injection amount
current value
polymer injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5123145A
Other languages
Japanese (ja)
Other versions
JP2554591B2 (en
Inventor
Katsuo Saito
克夫 斎藤
Noritsugu Shimizu
紀嗣 清水
Chiaki Igarashi
千秋 五十嵐
Kazunari Tanaka
一成 田中
Kazuo Fujita
和雄 藤田
Takeshi Yosamoto
毅 与三本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GESUIDOU JIGYODAN
Ebara Corp
Original Assignee
NIPPON GESUIDOU JIGYODAN
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GESUIDOU JIGYODAN, Ebara Infilco Co Ltd filed Critical NIPPON GESUIDOU JIGYODAN
Priority to JP5123145A priority Critical patent/JP2554591B2/en
Publication of JPH06312200A publication Critical patent/JPH06312200A/en
Application granted granted Critical
Publication of JP2554591B2 publication Critical patent/JP2554591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To develop a rapid polymer injection control method enabling the optimum injection of an ionic polymeric flocculant (polymer) in a process injecting the polymer in sludge to flocculate and dehydrate sludge. CONSTITUTION:In a polymer injection control method, the flow current value corresponding to either one of the bending point A (1) present in the relation between a polymer injection amt. and a flow current meter measured value, the bent point B (2) present in the relation between the polymer injection amt. and the change quantity of a flow current value and the max. value (3) present in the relation between the polymer injection amt. and the change quantity of the flow current value is set to the control objective value of a flow current meter so as to hold the flow current meter measured value of a sludge dehydrated separation soln. to a predetermined value to inject a polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン性高分子凝集剤
を用いる汚泥の脱水工程における、イオン性高分子凝集
剤の注入量を制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the injection amount of an ionic polymer coagulant in a sludge dewatering process using an ionic polymer coagulant.

【0002】[0002]

【従来の技術】汚水処理などで生ずる汚泥を処理する際
には、汚泥の脱水が行われるが、汚泥は非常に脱水しに
くいものであるため、その脱水を容易にするため通常凝
集剤を添加する手段が採用されている。そして、その凝
集剤の中でも、凝集性に優れているという点からイオン
性高分子凝集剤が広く使用されている。
2. Description of the Related Art Sludge is dehydrated when treating sludge generated by wastewater treatment, etc. However, since sludge is extremely difficult to dehydrate, a flocculant is usually added to facilitate the dehydration. The means to do is adopted. Among the aggregating agents, ionic polymer aggregating agents are widely used because of their excellent aggregating properties.

【0003】ところで、このイオン性高分子凝集剤(以
下ポリマ)を使用する際には、その注入量を多くすれば
するほど効果が良くなるというわけではなく注入量には
最適値がある。すなわち、過少注入量では脱水できず、
過大注入量では却って脱水性が低下して、脱水ケーキ水
分の上昇、処理速度の低下などの現象が発生し、その上
凝集剤消費量が増大する。したがって、ポリマ注入量を
適正に制御する必要がある。汚泥脱水を好適に行えるよ
うポリマ注入量を決定するため、従来は脱水機の運転状
態を観察して、ポリマ注入量を適宜調節するフィードバ
ック方式が用いられている。調節にはベルトプレスで
は、重力ろ過部の液面位置や脱水部のケーキはみ出しあ
るいはケーキの剥離性等を観察し指標として用いる。遠
心脱水機では、分離液の濁度あるいはモータトルク等を
指標にしていた。しかしながら、いずれの指標も、良好
な脱水状態とするための目標値が汚泥性状によって変化
し、必ずしも明確でなかった。
By the way, when this ionic polymer flocculant (hereinafter referred to as polymer) is used, the effect is not improved as the injection amount is increased, and the injection amount has an optimum value. In other words, it is impossible to dehydrate with an under injection amount,
On the contrary, if the injection amount is too large, the dewatering property is deteriorated, and phenomena such as an increase in the water content of the dehydrated cake and a decrease in the processing speed occur, and moreover the coagulant consumption increases. Therefore, it is necessary to properly control the polymer injection amount. In order to determine the amount of polymer injection so that sludge dewatering can be performed appropriately, conventionally, a feedback method has been used in which the operating state of the dehydrator is observed and the amount of polymer injection is adjusted appropriately. For the adjustment, a belt press is used as an index by observing the liquid surface position of the gravity filtration section, the cake protrusion in the dehydration section, and the peelability of the cake. In the centrifugal dehydrator, the turbidity of the separated liquid or the motor torque was used as an index. However, all the indicators were not always clear because the target value for achieving a good dehydration state changed depending on the sludge properties.

【0004】汚泥脱水工程におけるポリマ注入量の最適
制御方法として、汚泥の脱水分離液の流動電流計測定値
(以下流動電流値)を指標とし、その値がゼロ近傍とな
るように注入量を制御する方法が提案されている。(特
開平4−83600号公報)この方法は、流動電流値が
ゼロ近傍となるポリマ注入量において、脱水ケーキの含
水率が低下したり固形物回収率が増大するなど、汚泥の
脱水性が最良となる現象が認められたことから発明され
た制御方法である。この制御方法は、これまで広く用い
られてきた固形物比例制御法と比較すると、ポリマ注入
量を汚泥性状に最適な量に制御できるから、脱水機の運
転状況を常に良好に維持し、ポリマ消費量の浪費を防ぐ
などの効果を持つ優れた方法である。
As an optimal control method of the polymer injection amount in the sludge dewatering process, the injection amount is controlled so that the value measured by the flow ammeter of the dehydrated separated liquid of sludge (hereinafter referred to as the flow current value) is used as an index. A method has been proposed. (Japanese Patent Application Laid-Open No. 4-83600) This method has the best dehydration property of sludge, such as a decrease in water content of the dehydrated cake and an increase in solids recovery rate at a polymer injection amount at which the streaming current value is close to zero. The control method was invented because the phenomenon that Compared with the solids proportional control method that has been widely used so far, this control method can control the polymer injection amount to the optimum amount for the sludge property, so that the operating condition of the dehydrator is always maintained in good condition and the polymer consumption is controlled. This is an excellent method that has the effect of preventing waste of quantity.

【0005】しかしながら、この方法には以下の2つの
問題点が存在することが最近明らかになった。その一つ
は、汚泥性状の変動による制御不安定化の問題である。
すなわち、上記制御方法は、汚泥性状に変動があっても
常に流動電流値をゼロ近傍に維持できることを前提にし
て上記効果が得られるが、実際の汚泥処理工程で汚泥性
状に大きな変動が生じると、流動電流値をゼロ近傍に維
持できなくなって、流動電流値が極めて激しく変動する
と共に、ポリマ注入量が大きく変動するハンチング現象
を起こし、脱水機の運転が不安定となってポリマ消費量
が増大し、著しい場合には運転不能に陥る。
However, it has recently become clear that this method has the following two problems. One of them is the problem of control destabilization due to fluctuations in sludge properties.
That is, the above control method can obtain the above effect on the assumption that the flow current value can always be maintained near zero even if there is a change in the sludge property, but a large change occurs in the sludge property in the actual sludge treatment process. , The flowing current value cannot be maintained near zero, the flowing current value fluctuates extremely, and the hunting phenomenon that the amount of polymer injection fluctuates greatly occurs, the operation of the dehydrator becomes unstable and the amount of polymer consumption increases. However, in extreme cases, it will be inoperable.

【0006】第2の問題点は、流動電流計のゼロ点およ
び感度の経時的移動による制御不調の問題である。すな
わち、流動電流計を長時間継続して使用すると、プロー
ブ部分の磨耗や汚染によって流動電流計のゼロ点が経時
的に移動し、あるいは感度が経時的に変化し、例えば流
動電流計の制御目標値を「ゼロ」としてポリマ注入量を
管理しても必ずしも脱水ケーキを良好な脱水状態に維持
できない現象が生じた。この場合には、脱水機の運転状
況を観察しながら、制御目標値を変更する必要がある。
この目標値変更の頻度は場合によってさまざまである
が、著しい場合には一日一回程度となってかなり煩わし
いことから目標値を変更する必要のない制御方法が望ま
れている。
The second problem is the problem of control failure due to the zero point of the flow ammeter and the shift of the sensitivity over time. That is, if the flow ammeter is continuously used for a long time, the zero point of the flow ammeter moves with time due to wear or contamination of the probe portion, or the sensitivity changes with time. Even if the polymer injection amount was controlled by setting the value to "zero", the dehydrated cake could not always be maintained in a good dehydrated state. In this case, it is necessary to change the control target value while observing the operation status of the dehydrator.
The frequency of changing the target value varies depending on the case, but when it is remarkable, it is once a day and considerably troublesome. Therefore, a control method that does not require changing the target value is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来方式の
問題点を完全に解決して、汚泥脱水工程におけるポリマ
の最適注入を可能にする、安定性に優れ、かつ迅速な注
入制御方法を開発することにある。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional method, and provides a highly stable and rapid injection control method that enables optimal injection of polymer in the sludge dewatering process. To develop.

【0008】[0008]

【課題を解決するための手段】上記課題は本発明の高分
子凝集剤の注入制御方法によって達成される。すなわ
ち、 1)汚泥脱水分離液の流動電流値が所定の値を保つよう
に、ポリマ注入量を制御する汚泥脱水方法において、ポ
リマ注入量と流動電流値との関係に存在する屈曲点Aに
対応する流動電流値を流動電流計の制御目標値とするこ
とを特徴とするイオン性高分子凝集剤の注入制御方法。 2)汚泥脱水分離液の流動電流値が所定の値を保つよう
に、ポリマ注入量を制御する汚泥脱水方法において、ポ
リマ注入量と流動電流値の変化量との関係に存在する屈
曲点Bに対応する流動電流計測定値を流動電流計の制御
目標値とすることを特徴とする高分子凝集剤の注入制御
方法。 3)汚泥脱水分離液の流動電流計測定値が所定の値を保
つように、イオン性高分子凝集剤の注入量を制御する汚
泥脱水方法において、イオン性高分子凝集剤の注入量と
流動電流計測定値の変化量との関係に存在する極大点に
対応する流動電流計測定値を該流動電流計の制御目標値
とすることを特徴とする高分子凝集剤の注入制御方法。 である。
The above objects can be achieved by the method for controlling the injection of a polymer flocculant according to the present invention. That is, 1) In the sludge dewatering method in which the polymer injection amount is controlled so that the flowing current value of the sludge dewatering separated liquid maintains a predetermined value, it corresponds to the inflection point A existing in the relationship between the polymer injection amount and the flowing current value. A method for controlling injection of an ionic polymer flocculant, characterized in that the flowing current value to be set is set as a control target value of the flowing ammeter. 2) In the sludge dewatering method in which the polymer injection amount is controlled so that the flowing current value of the sludge dewatering separated liquid maintains a predetermined value, at the bending point B existing in the relationship between the polymer injection amount and the changing amount of the flowing current value. A method for controlling injection of a polymer flocculant, characterized in that a corresponding flow ammeter measurement value is used as a control target value of the flow ammeter. 3) In the sludge dewatering method of controlling the injection amount of the ionic polymer coagulant so that the measured value of the sludge dewatering separated liquid flow current meter maintains a predetermined value, the injection amount and the streaming current of the ionic polymer coagulant are measured. A method for controlling injection of a polymer flocculant, wherein a flow ammeter measurement value corresponding to a maximum point existing in a relationship with a change amount of a constant value is set as a control target value of the flow ammeter. Is.

【0009】本発明の上記1)に記載したポリマ注入制
御方法は、汚泥にポリマを添加して脱水する工程におい
て、ポリマ注入量と流動電流値との関係に存在する屈曲
点Aに対応する流動電流値を流動電流計の制御目標値と
し、ポリマ注入量を制御しようとするものである。ここ
で、ポリマ注入量と流動電流値との関係に存在する屈曲
点Aとはポリマ注入量が増加した時流動電流計の値の増
加の仕方が急激に少なくなる点で、図1のグラフに記入
した屈曲点Aであり、この点に対応する流動電流値を流
動電流計の制御目標値としてポリマを注入するとポリマ
注入量は図1のグラフに記入したa点となる。
In the polymer injection control method described in the above 1) of the present invention, in the step of adding the polymer to the sludge and dehydrating it, the flow corresponding to the bending point A existing in the relationship between the polymer injection amount and the flowing current value. The current value is used as the control target value of the flow ammeter to control the polymer injection amount. Here, the inflection point A that exists in the relationship between the polymer injection amount and the streaming current value is shown in the graph of FIG. 1 in that when the polymer injection amount increases, the method of increasing the value of the streaming current meter sharply decreases. It is the inflection point A entered, and when the polymer is injected with the flowing current value corresponding to this point as the control target value of the flowing ammeter, the polymer injection amount becomes the point a entered in the graph of FIG.

【0010】また本発明の上記2)および3)項に記載
したポリマ注入制御方法において流動電流値の変化量と
あるのは、ポリマ注入による汚泥の凝集脱水工程におい
て、あるポリマ注入量を中心として、近接した一定間隔
の、前後二点のポリマ注入量に応答する汚泥脱水分離液
の流動電流値を観測し、それらの流動電流値の差を上記
中心ポリマ注入量における流動電流値の変化量とし、か
くして得たポリマ注入量と流動電流値の変化量との関係
(この関係はポリマ注入量と流動電流計の測定値との関
数関係のポリマ注入量に関する微分関数関係である)の
中に見出される極大値や屈曲点Bに対する流動電流値を
流動電流計の制御目標値とし、ポリマ注入量を制御しよ
うとするものである。
Further, in the polymer injection control method described in the above 2) and 3) of the present invention, the amount of change in the flowing current value is mainly a certain polymer injection amount in the coagulation and dehydration step of sludge by polymer injection. , The flow current value of the sludge dewatering separated liquid in response to the polymer injection amount at two points before and after the close fixed interval is observed, and the difference between the flow current values is taken as the change amount of the flow current value in the central polymer injection amount. , Found in the relationship between the polymer injection amount and the change amount of the streaming current value (this relationship is a differential function relationship of the polymer injection amount of the polymer injection amount and the measurement value of the streaming ammeter). It is intended to control the polymer injection amount by setting the maximum value or the flowing current value for the bending point B as the control target value of the flowing ammeter.

【0011】ここで、ポリマ注入量と流動電流値の変化
量との関係に存在する屈曲点Bとはポリマ注入量が増加
した時流動電流計値の変化量が非常に小さくなる点で、
図2のグラフに記入した屈曲点Bであり、この点に対応
するポリマ注入量における流動電流値を流動電流計の制
御目標値としてポリマを注入すると汚泥性状が変化して
もポリマ注入量を図2のグラフに記入したa点に維持で
きる。(このa点は図1のa点と合致する。) この制御により流動電流値の変動差分を制御目標値の決
定に用いるので、流動電流計のゼロ点もしくは感度に変
化が起こってもそれに影響されずに継続的に汚泥の脱水
を適正に行うことができる。なお、実際の汚泥脱水にお
いては、制御目標値として求めた屈曲点A、Bにおける
ポリマ注入量より若干、好ましくは求めたポリマ注入量
の2〜5%程度多く注入するのがよい。
Here, the inflection point B existing in the relationship between the polymer injection amount and the change amount of the streaming current value is that the change amount of the streaming current meter value becomes very small when the polymer injection amount increases,
It is the inflection point B entered in the graph of FIG. 2, and when the polymer is injected with the flowing current value at the polymer injection amount corresponding to this point as the control target value of the flowing ammeter, the amount of polymer injection is plotted even if the sludge property changes. It can be maintained at point a entered in the graph of 2. (This point a coincides with point a in FIG. 1.) Since the difference in the fluctuation of the streaming current value is used to determine the control target value by this control, even if the zero point or sensitivity of the streaming ammeter changes, it is affected by it. The sludge can be properly dehydrated continuously without being subjected to the above. In actual sludge dewatering, it is preferable to inject a little more than the polymer injection amount at the bending points A and B obtained as the control target value, preferably about 2 to 5% of the obtained polymer injection amount.

【0012】本発明に使用する凝集剤には、いずれのイ
オン性高分子凝集剤も適用できる。その一例をあげる
と、まずカチオン性有機高分子凝集剤としてはN,N´
−ジメチルアミノアルキルアクリレートあるいはメタク
リレートの酸塩、ビニルベンジルトリメチルアンモニウ
ムの酸塩、アクリルアミドのカチオン変性物の酸塩、ビ
ニルピリジンおよびその置換誘導体、アクリルアミンお
よびその置換誘導体のようなカチオン性単量体の単一重
合体および共重合体などがある。また上記のようなカチ
オン性単量体とアクリルアミド、アクリロニトリル、ア
クリル酸アルキルエステルのような単量体との共重合
物、さらにポリビニルイミダゾリンの酸塩、キトサンの
酸塩、澱粉のカチオン化物なども使用できる。
Any ionic polymer flocculant can be applied to the flocculant used in the present invention. As an example, first, as the cationic organic polymer flocculant, N, N '
Of cations such as dimethylaminoalkyl acrylate or methacrylate acid salts, vinylbenzyltrimethylammonium acid salts, acrylamide cation modified acid salts, vinylpyridine and its substituted derivatives, acrylamine and its substituted derivatives. Examples include homopolymers and copolymers. In addition, copolymers of the above cationic monomers with monomers such as acrylamide, acrylonitrile, and alkyl acrylate, as well as polyvinyl imidazoline acid salts, chitosan acid salts, and starch cationization products are also used. it can.

【0013】またアニオン性有機高分子凝集剤としては
アクリル酸、メタクリル酸およびそれらのアルカリ金属
塩、アクリルアミドのスルホメチル化物およびそのアル
カリ金属塩、ビニルベンゼンスルフォン酸、スチレンス
ルホン酸およびそのアルカリ金属塩、ビニルスルフォン
酸およびそのアルカリ金属塩、無水マレイン酸などの単
一重合体および共重合体などを使用する。また上記のよ
うなアニオン性単量体とアクリルアミド、アクリロニト
リル、アクリル酸アルキルエステルのように単量体との
共重合物、さらにアルギン酸ソーダ、キチンのアニオン
変性物なども使用できる。なお場合によってはこれらの
両有機高分子凝集剤と共にPAC、硫酸バンド、塩化第
2鉄、硫酸第1鉄、あるいは石灰のような無機系の凝集
剤を使用しても差し支えない。さらに、ポリアクリルア
ミド系ポリマのマンニッヒ変性物とアニオンポリマの組
合せ;カチオンポリマ、アニオンポリマ、酸または酸性
ナトリウム塩との組合せ(粉末);カチオンポリマ、ア
ニオンポリマ、アルカリ剤との組合せ;カチオンモノ
マ、アニオンモノマ、ノニオンモノマの共重合物などの
両性高分子凝集剤を単独もしくはPAC、硫酸バン土、
塩化鉄などの無機塩と併用することもできる。
As the anionic organic polymer flocculant, acrylic acid, methacrylic acid and alkali metal salts thereof, sulfomethylated acrylamide and alkali metal salts thereof, vinylbenzenesulfonic acid, styrenesulfonic acid and alkali metal salts thereof, vinyl Sulfonic acid and its alkali metal salts, and homopolymers and copolymers such as maleic anhydride are used. Further, copolymers of the above anionic monomers with monomers such as acrylamide, acrylonitrile and alkyl acrylate, as well as sodium alginate and anion-modified chitin can be used. In some cases, an inorganic flocculant such as PAC, sulfuric acid band, ferric chloride, ferrous sulfate, or lime may be used together with these organic polymer flocculants. Furthermore, a combination of a Mannich modified product of a polyacrylamide polymer and an anion polymer; a combination with a cationic polymer, an anionic polymer, an acid or an acidic sodium salt (powder); a combination with a cationic polymer, an anionic polymer, an alkaline agent; a cationic monomer, an anion An amphoteric polymer flocculant such as a copolymer of a monomer or a nonionic monomer alone or PAC, van sulphate,
It can also be used in combination with an inorganic salt such as iron chloride.

【0014】[0014]

【作用】最近の研究で、ポリマ注入量に応答する汚泥脱
水分離液の流動電流値の変化は図1に示すような傾向を
示すことが明らかとなった。すなわち、図示したポリマ
注入量の範囲において、ポリマ注入量を変えても、それ
に応答して汚泥脱水分離液の流動電流値が大きく変化を
示す領域とほとんど変化を示さない領域が存在し、その
境界に上記屈曲点A(図中A点で示す)が存在する。
In recent research, it has been clarified that the change of the streaming current value of the sludge dewatering separated liquid in response to the polymer injection amount has a tendency as shown in FIG. That is, in the illustrated range of the polymer injection amount, there is a region where the flowing current value of the sludge dewatered separation liquid shows a large change and a region where the flow current value of the sludge dehydrated separation liquid shows little change in response to the change of the polymer injection amount, and there is a boundary between them. Has the above-mentioned bending point A (indicated by point A in the figure).

【0015】流動電流計の制御目標値をゼロとして運転
している状態で、例えば汚泥の性状により(図1に示し
た状態はそうであるが)、流動電流計の電流値ゼロの前
後の(流動電流値/ポリマ注入量)勾配が大きく、その
ためポリマ注入量が僅かに多くなっただけで流動電流値
が極めて大きく変化してしまい、流動電流値をゼロの状
態に一定に保つようにポリマ注入量を制御することが困
難となる。
In a state where the flow ammeter is operated with the control target value being zero, for example, due to the property of sludge (as in the state shown in FIG. 1), the current value before and after the current value of the flow ammeter is zero ( The flow current value / polymer injection amount) gradient is large, so even if the polymer injection amount is slightly increased, the flow current value changes significantly, and polymer injection is performed to keep the flow current value constant at zero. It becomes difficult to control the quantity.

【0016】一方、流動電流計の制御目標値を図1中で
示す屈曲点(A点)以降の(流動電流値/ポリマ注入
量)勾配が小さい領域に決めると、ポリマ注入量の変化
に対する流動電流値の変化が極めて小さくなるから、僅
かの流動電流値の変化でもポリマ注入量の調節量が多く
なり制御し難い。もし(流動電流値/ポリマ注入量)勾
配の大きい領域から勾配の非常に小さくなる領域へ急激
に変わるならばこの領域(これが図1中で示す屈曲点A
である)を流動電流計の制御目標値としてポリマ注入量
を制御するとポリマ注入量の制御がし易くなることがわ
かる。
On the other hand, when the control target value of the flow ammeter is set to a region having a small (flow current value / polymer injection amount) gradient after the inflection point (point A) shown in FIG. 1, the flow with respect to changes in the polymer injection amount is determined. Since the change in the current value is extremely small, even a slight change in the flowing current value increases the adjustment amount of the polymer injection amount and is difficult to control. If (flow current value / polymer injection amount) rapidly changes from a large gradient region to a very small gradient region, this region (this is the bending point A shown in FIG. 1).
It is understood that it becomes easy to control the polymer injection amount by controlling the polymer injection amount by setting the control target value of the streaming ammeter to (4).

【0017】次に、この屈曲点Aに対応する流動電流値
の求め方について述べる。図3は下水汚泥の例につい
て、流動電流計をセンサーとし、汚泥脱水分離液の流動
電流値をセンサーからのシグナルとしてコントローラに
送り、コントローラによりポリマ注入量を制御する本発
明の制御システムのフローシートを示した図である。こ
の本発明の制御システムによりポリマーの注入量を制御
する仕方はコントローラの機能に依存するが、 (1)図3における本発明の制御システムのコントロー
ラが少なくとも、 特定の流動電流値を入力することにより制御目標値
が設定できる機能。(設定機能) 制御目標値によりポンプなど外部機器を制御する機
能。(制御機能) を有しておれば、下水汚泥について予めポリマ注入量を
変えそれぞれの注入量に対応する流動電流値を測定し、
流動電流値とポリマ注入量の関係曲線を求めその関係曲
線より屈曲点Aを決定して、コントローラに制御目標値
として屈曲点Aに対応する流動電流値を入力し、以降現
行の下水汚泥については該制御目標値によりポリマ注入
ポンプを制御することができる。
Next, how to obtain the flowing current value corresponding to the bending point A will be described. FIG. 3 is a flow sheet of a control system of the present invention in which a flowing ammeter is used as a sensor and a flowing current value of a sludge dewatered separated liquid is sent to a controller as a signal from the sensor, and the controller controls the polymer injection amount, for an example of sewage sludge. It is the figure which showed. How to control the polymer injection amount by the control system of the present invention depends on the function of the controller. (1) The controller of the control system of the present invention in FIG. 3 inputs at least a specific flowing current value. A function to set the control target value. (Setting function) A function to control an external device such as a pump according to the control target value. If it has (control function), change the polymer injection amount in advance for sewage sludge and measure the flowing current value corresponding to each injection amount,
The relationship curve between the flowing current value and the polymer injection amount is obtained, the bending point A is determined from the relationship curve, and the flowing current value corresponding to the bending point A is input to the controller as the control target value. The polymer injection pump can be controlled by the control target value.

【0018】(2)さらに、図3における本発明の制御
システムのコントローラの機能として、 センサーの測定値を記憶する機能。(記憶機能) 記憶した前回の測定値と新しい測定値を比較し、演
算により同種の特定値を指定する機能。(比較・演算機
能) 特定の測定値を制御目標値に設定する機能。(設定
機能) 制御目標値によりポンプなど外部機器を制御する機
能。(制御機能) を有しておれば、前回の下水汚泥について流動電流値と
ポリマ注入量の関係曲線を記憶し、現行の下水汚泥につ
いての関係曲線と比較し、両関係の比較から現行関係曲
線における屈曲点Aを演算により決定してそれに対応す
る流動電流値を制御目標値として自動的に入力し、以降
現行の下水汚泥について該制御目標値によりポリマ注入
ポンプを制御する方法により、全く自動的にポリマ注入
量を制御することができる。なお、記憶、比較機能は必
要により省略することもできる。
(2) Furthermore, as a function of the controller of the control system of the present invention in FIG. 3, a function of storing the measured value of the sensor. (Memory function) Function to compare the stored previous measurement value with the new measurement value and specify the same type of specific value by calculation. (Comparison / calculation function) A function to set a specific measured value as a control target value. (Setting function) A function to control an external device such as a pump according to the control target value. If it has a (control function), it stores the relationship curve between the flow current value and the polymer injection amount for the previous sewage sludge, compares it with the relationship curve for the current sewage sludge, and compares the two relationships with the current relationship curve. The bending point A at is determined by calculation, and the corresponding flowing current value is automatically input as the control target value, and thereafter the method for controlling the polymer injection pump according to the control target value for the current sewage sludge is completely automatic. It is possible to control the polymer injection amount. The storage and comparison functions can be omitted if necessary.

【0019】次に、流動電流値の変化量を用いて自動的
にポリマ注入量を制御する方法を提案する。既に上記し
た通り、例えば図1に示されるポリマ注入量と流動電流
値関係曲線の代わりに縦軸に流動電流値の変化量をとる
とポリマ注入量に関する流動電流値の微分関係曲線とな
り、この関係曲線は図2のようになる。この図2には、
極大値と屈曲点Bが存在する。ここで、屈曲点Bとは流
動電流値の変化率(減少率)が急激に変化する点であ
る。図2に示したようなポリマ注入量に関する流動電流
値の微分関係曲線を計測するためには、前記図3に示し
た本発明の制御システムのフローシートにおいて、セン
サとコントローラとの間に微分回路を挿入して計測でき
る。
Next, a method for automatically controlling the polymer injection amount by using the amount of change in the flowing current value is proposed. As already described above, for example, when the variation amount of the streaming current value is taken on the vertical axis instead of the relationship curve of the polymer injection amount and the streaming current value shown in FIG. 1, a differential relation curve of the streaming current value with respect to the polymer injection amount is obtained. The curve is as shown in FIG. In this Figure 2,
There are local maxima and inflection points B. Here, the bending point B is a point at which the rate of change (decrease rate) of the flowing current value changes rapidly. In order to measure the differential relation curve of the flowing current value with respect to the polymer injection amount as shown in FIG. 2, in the flow sheet of the control system of the present invention shown in FIG. 3, a differential circuit is provided between the sensor and the controller. You can insert and measure.

【0020】図2における極大点に対応するポリマ注入
量は図1の流動電流値がゼロとなるポリマ注入量(b)
に相当し、図2の屈曲点Bに対応するポリマ注入量は図
1の流動電流値が屈曲するポリマ注入量(a)に相当す
る。従って前記本発明の制御システムのセンサとコント
ローラとの間に微分回路を挿入してセンサーの計測値を
微分変換し、極大値あるいは屈曲点Bに相当する制御目
標値を自動的に決定できる。このように流動電流値の変
化量を用いて制御目標値を求めることは、言い替えると
流動電流値の絶対値ではなく相対値すなわち流動電流値
の変動差分を制御に用いることに相当し、流動電流計の
ゼロ点もしくは感度に変化が起こってもそれに影響され
ずにポリマ注入量を決定できることになる。
The polymer injection amount corresponding to the maximum point in FIG. 2 is the polymer injection amount (b) where the flowing current value in FIG. 1 is zero.
2 corresponds to the polymer injection amount (a) at which the flowing current value in FIG. 1 bends. Therefore, a differential circuit is inserted between the sensor and the controller of the control system of the present invention to differentially transform the measured value of the sensor, and the control target value corresponding to the maximum value or the bending point B can be automatically determined. In this way, obtaining the control target value using the amount of change in the flowing current value is equivalent to using the relative value, that is, the difference in fluctuation of the flowing current value, for control, rather than the absolute value of the flowing current value. Even if the zero point or sensitivity of the meter changes, the polymer injection amount can be determined without being affected by it.

【0021】なお図4に本発明の制御システムのセンサ
である流動電流計1の構造を示す。ピストン2とシリン
ダ3の間隙に存在する試料4に、ピストンの上下運動に
よってせん断を与えると、試料の持つ電荷に偏りが生じ
る。その微細な電荷の偏りを、外部にもうけた電気回路
により電圧もしくは電流として検知し、適宜増幅して表
示する。電荷の偏りを表す物理化学的な指標はないの
で、通常、その大きさを流動電流計の出力値を用いて判
断する。ただし、流動電流計のメーカや測定レンジによ
って、電気回路や表示方法が異なるので、出力値には単
位がなく、絶対的な意味を持たないことに注意する必要
がある。ただし、通常は、流動電流計出力の持つゼロお
よびその符号が、実際の試料の持つ電荷と一致するよう
に、測定回路等を設定する。その場合は、絶対値は別と
して、少なくともゼロおよび符号は物理的意味を持つこ
とになる。
FIG. 4 shows the structure of the flow ammeter 1 which is the sensor of the control system of the present invention. When the sample 4 existing in the gap between the piston 2 and the cylinder 3 is sheared by the vertical movement of the piston, the electric charge of the sample is biased. The minute bias of the electric charge is detected as a voltage or a current by an electric circuit provided outside, and appropriately amplified and displayed. Since there is no physicochemical index that indicates the bias of electric charge, its magnitude is usually determined using the output value of a streaming ammeter. However, it should be noted that the output value does not have a unit and has no absolute meaning, because the electric circuit and the display method differ depending on the manufacturer of the flow ammeter and the measurement range. However, normally, the measurement circuit and the like are set so that zero and its sign of the output of the flow ammeter match the electric charge of the actual sample. In that case, apart from the absolute value, at least zero and the sign will have a physical meaning.

【0022】なお、図4において、試料は、試料入口5
より導入し、試料出口6より排出する。電極7により流
動電流値を測定するが、この電極7にはピストンの上下
運動にともなって試料のもつ電荷に応じた電流が交流状
態で発生する。この電流を適当な増幅器(図示せず)を
用いて増幅し表示する。ピストン2は、モータ9の回転
によりガイド10を介して上下動するように構成されて
いる。
In FIG. 4, the sample is the sample inlet 5
It is further introduced and discharged from the sample outlet 6. The flowing current value is measured by the electrode 7, and a current corresponding to the electric charge of the sample is generated in the AC state in the electrode 7 as the piston moves up and down. This current is amplified and displayed using a suitable amplifier (not shown). The piston 2 is configured to move up and down via the guide 10 by the rotation of the motor 9.

【0023】[0023]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこの実施例のみに限定されるもの
ではない。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to this embodiment.

【0024】(実施例1)都市下水処理場から排出され
る混合生汚泥に、カチオン性ポリマ(荏原インフィルコ
(株)製、エバグロースC104G)を添加して、ベル
トプレスで脱水した。混合生汚泥の性状は、余剰汚泥と
初沈汚泥の発生量が変化するため、SSで1.5〜3.
5%(平均2.5%)、VSSで60〜85%(平均7
5%)と変動した。流動電流計の制御目標値をゼロとし
て運転した場合(従来法 特開平4−83600号公
報)と、本発明により制御目標値を屈曲点Aとして運転
した場合(本発明法1)および流動電流値の変化量の極
大点に相当する測定値を制御目標値として運転した場合
(本発明法2)を比較して、表1の結果を得た。従来法
では、流動電流計の測定値が変動する結果、いわゆるハ
ンチング状態となってポリマ流量が大きく変動し、その
変動幅はポリマ注入率で0.8〜1.25%程度とな
り、平均値で0.95%となった。また、一時的にベル
トプレスのろ過部ではみ出しが生じたり、ケーキ出口で
の剥離性が不良となるなど運転状態が不安定であった。
本発明法1では、若干ポリマ注入率が多いもののその変
動幅は小さく、極めて安定した制御性と良好な脱水性を
持つことがわかる。また本発明法2でも変動幅は小さ
く、安定した制御が可能であった。なお、表1中ポリマ
注入率は、汚泥に注入したポリマ溶液(通常は0.2%
のポリマ濃度に溶解した水溶液)の固形物量を注入対象
汚泥の固形物量で除したものを百分率で表したものであ
る。
Example 1 A cationic polymer (Ebara Gloss C104G, manufactured by Ebara Infilco Co., Ltd.) was added to mixed raw sludge discharged from an urban sewage treatment plant, and dehydrated by a belt press. The properties of the mixed raw sludge are 1.5 to 3 in SS because the amounts of surplus sludge and initial settled sludge change.
5% (2.5% on average), 60-85% on VSS (7 on average)
5%). When the control target value of the flowing ammeter is operated at zero (conventional method JP-A-4-83600), when the control target value is operated at the inflection point A according to the present invention (invention method 1), and the flowing current value The results shown in Table 1 were obtained by comparing the case where the measured value corresponding to the maximum point of the change amount of 1 was used as the control target value (invention method 2). In the conventional method, the measured value of the streaming ammeter fluctuates, resulting in a so-called hunting state, in which the polymer flow rate fluctuates greatly, and the fluctuation range is about 0.8 to 1.25% in the polymer injection rate, and the average value is It became 0.95%. In addition, the operating state was unstable, such as temporary protrusion in the filtration section of the belt press and poor peelability at the cake outlet.
In the method 1 of the present invention, although the polymer injection rate is slightly high, the fluctuation range is small, and it is clear that the method has extremely stable controllability and good dehydration property. Further, in the method 2 of the present invention, the fluctuation range was small and stable control was possible. The polymer injection rate in Table 1 is the polymer solution injected into the sludge (usually 0.2%).
The amount of solids of the aqueous solution dissolved in the polymer concentration of 1) divided by the amount of solids of the sludge to be injected is expressed as a percentage.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明によれば汚泥の性状の変化に対
し、常に安定した脱水機の運転が可能となるため、ポリ
マ節約効果が大きい。また、流動電流計の測定値の絶対
値を用いず流動電流値の変動差分によって制御運転が可
能となるので流動電流値は相対値で良く、ゼロ点の変動
による妨害をキャンセルできるから、流動電流計のゼロ
・スパン調節が不要となってセンサの維持管理が容易と
なる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to always operate the dehydrator stably with respect to changes in the properties of sludge, so that the polymer saving effect is great. Also, since the control operation can be performed by the difference in the fluctuation of the flowing current value without using the absolute value of the flowing current meter, the flowing current value can be a relative value and the disturbance due to the fluctuation of the zero point can be canceled. The maintenance of the sensor is easy because the zero / span adjustment of the meter is unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のポリマ注入率と流動電流計の測定値の
関係を表すグラフ。
FIG. 1 is a graph showing the relationship between the polymer injection rate of the present invention and the measurement value of a streaming ammeter.

【図2】本発明のポリマ注入率と流動電流計の測定値の
微分値の関係を表すグラフ。
FIG. 2 is a graph showing a relationship between a polymer injection rate of the present invention and a differential value of a measurement value of a streaming ammeter.

【図3】本発明の制御システムのフローシートを示した
図。
FIG. 3 is a diagram showing a flow sheet of the control system of the present invention.

【図4】本発明の流動電流計の概略構造図。FIG. 4 is a schematic structural diagram of a streaming ammeter of the present invention.

【符号の説明】[Explanation of symbols]

1 流動電流計 2 ピストン 3 シリンダ 4 試料 5 試料入口 6 試料出口 7 電極 8 電源 9 モータ 10 ガイド A 屈曲点A B 屈曲点B a 屈曲点Aおよび屈曲点Bにおけるポリマ注入量 b ゼロ点および極大点におけるポリマ注入量 1 Flow ammeter 2 Piston 3 Cylinder 4 Sample 5 Sample inlet 6 Sample outlet 7 Electrode 8 Power supply 9 Motor 10 Guide A Bending point A B Bending point B a Polymer injection amount at bending points A and B b Zero point and maximum point Polymer injection amount in

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 紀嗣 東京都港区虎ノ門2丁目3番13号 日本下 水道事業団内 (72)発明者 五十嵐 千秋 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 (72)発明者 田中 一成 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 (72)発明者 藤田 和雄 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 (72)発明者 与三本 毅 東京都港区港南1丁目6番27号 荏原イン フィルコ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kiyoshi Shimizu, Toranomon, 2-3-13, Minato-ku, Tokyo Within the Japan Sewer Works (72) Inventor, Chiaki Igarashi, 1-127, Konan, Minato-ku, Tokyo EBARA IN FILCO Co., Ltd. (72) Inventor Issei Tanaka 1-6-27 Konan, Minato-ku, Tokyo Ebara-IN Filco Co., Ltd. (72) Inventor Kazuo Fujita 1-6-27 Konan, Minato-ku, Tokyo EBARA In Infilco Co., Ltd. (72) Inventor Takeshi Yozomoto 1-6-27 Konan, Minato-ku, Tokyo Ebara Infilco Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 汚泥脱水分離液の流動電流計測定値が所
定の値を保つように、イオン性高分子凝集剤の注入量を
制御する汚泥脱水方法において、イオン性高分子凝集剤
の注入量と流動電流計測定値との関係に存在する屈曲点
Aに対応する流動電流計測定値を該流動電流計の制御目
標値とすることを特徴とする高分子凝集剤の注入制御方
法。
1. A sludge dewatering method for controlling an injection amount of an ionic polymer coagulant so that a flow ammeter measurement value of a sludge dewatering separated liquid maintains a predetermined value. A method for controlling injection of a polymer flocculant, wherein a flow ammeter measurement value corresponding to a bending point A existing in a relationship with a flow ammeter measurement value is set as a control target value of the flow ammeter.
【請求項2】 汚泥脱水分離液の流動電流計測定値が所
定の値を保つように、イオン性高分子凝集剤の注入量を
制御する汚泥脱水方法において、イオン性高分子凝集剤
の注入量と流動電流計測定値の変化量との関係に存在す
る屈曲点Bに対応する流動電流計測定値を該流動電流計
の制御目標値とすることを特徴とする高分子凝集剤の注
入制御方法。
2. A sludge dewatering method for controlling an injection amount of an ionic polymer coagulant so that a flow ammeter measurement value of a sludge dewatering separated liquid maintains a predetermined value. A method for controlling injection of a polymer flocculant, characterized in that a flow ammeter measurement value corresponding to a bending point B existing in a relationship with a change amount of a flow ammeter measurement value is used as a control target value of the flow ammeter.
【請求項3】 汚泥脱水分離液の流動電流計測定値が所
定の値を保つように、イオン性高分子凝集剤の注入量を
制御する汚泥脱水方法において、イオン性高分子凝集剤
の注入量と流動電流計測定値の変化量との関係に存在す
る極大点に対応する流動電流計測定値を該流動電流計の
制御目標値とすることを特徴とする高分子凝集剤の注入
制御方法。
3. A sludge dewatering method for controlling an injection amount of an ionic polymer coagulant so that a flow ammeter measurement value of a sludge dewatering separated liquid maintains a predetermined value. A method for controlling injection of a polymer flocculant, wherein a flow ammeter measurement value corresponding to a maximum point existing in a relationship with a change amount of a flow ammeter measurement value is set as a control target value of the flow ammeter.
JP5123145A 1993-04-28 1993-04-28 Polymer flocculant injection control method Expired - Fee Related JP2554591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123145A JP2554591B2 (en) 1993-04-28 1993-04-28 Polymer flocculant injection control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123145A JP2554591B2 (en) 1993-04-28 1993-04-28 Polymer flocculant injection control method

Publications (2)

Publication Number Publication Date
JPH06312200A true JPH06312200A (en) 1994-11-08
JP2554591B2 JP2554591B2 (en) 1996-11-13

Family

ID=14853311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123145A Expired - Fee Related JP2554591B2 (en) 1993-04-28 1993-04-28 Polymer flocculant injection control method

Country Status (1)

Country Link
JP (1) JP2554591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19621142A1 (en) * 1996-05-15 1997-11-20 Berliner Wasser Betriebe Sludge de-watering using computer-controlled process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022999A (en) * 1983-07-18 1985-02-05 Ebara Infilco Co Ltd Process for controlling amount of organic high molecular flocculant to be added
JPH0483600A (en) * 1990-07-24 1992-03-17 Nippon Gesuidou Jigyodan Dehydration of sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022999A (en) * 1983-07-18 1985-02-05 Ebara Infilco Co Ltd Process for controlling amount of organic high molecular flocculant to be added
JPH0483600A (en) * 1990-07-24 1992-03-17 Nippon Gesuidou Jigyodan Dehydration of sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19621142A1 (en) * 1996-05-15 1997-11-20 Berliner Wasser Betriebe Sludge de-watering using computer-controlled process

Also Published As

Publication number Publication date
JP2554591B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US20090255876A1 (en) Feedback control scheme for optimizing dewatering processes
WO2016063852A1 (en) Water treatment method and water treatment device
JP5256261B2 (en) Method and apparatus for dewatering organic sludge
JP2554591B2 (en) Polymer flocculant injection control method
JP3731454B2 (en) Method for determining amount of coagulant injection and control device for drug injection
JPH0483600A (en) Dehydration of sludge
JP3168608B2 (en) Sludge treatment equipment
JPS625040B2 (en)
JP7335160B2 (en) Sludge coagulation dewatering device and its control method
JP2006272228A (en) Dewatering method and apparatus for sludge
JP2006263506A (en) Dehydration method and device of sludge
CN111712467A (en) Method for optimizing chemical precipitation processes in water and wastewater treatment plants
JPH034987A (en) Defluorination of flue gas desulfurizing waste water
JPH0368500A (en) Method for controlling rate of addition of polymer flocculant
JPH11347599A (en) Flocculant injection amount determining apparatus
JPH04305206A (en) Flocculating and filtration tank for water treatment
JPH01139109A (en) Flocculant injection controller in water purifying plant
JP2003117598A (en) Control method and controller for solid-liquid separation system
JPS6023000A (en) Process for controlling amount of organic high molecular flocculant to be added
JPS6022999A (en) Process for controlling amount of organic high molecular flocculant to be added
JPH0334400B2 (en)
JP2017148712A (en) METHOD FOR CONTROLLING pH IN TANK
JP2021121440A (en) Back-pressure control method in screw press
JP3937826B2 (en) Aggregation processing equipment
SU808098A1 (en) Method of automatic control of coagulation process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees