JPH06310897A - Ferromagnetic magnetic shield body - Google Patents

Ferromagnetic magnetic shield body

Info

Publication number
JPH06310897A
JPH06310897A JP5119039A JP11903993A JPH06310897A JP H06310897 A JPH06310897 A JP H06310897A JP 5119039 A JP5119039 A JP 5119039A JP 11903993 A JP11903993 A JP 11903993A JP H06310897 A JPH06310897 A JP H06310897A
Authority
JP
Japan
Prior art keywords
magnetic shield
ferromagnetic
magnetic field
vessel
aperture end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5119039A
Other languages
Japanese (ja)
Inventor
Akihito Satou
哲仁 佐藤
Kazutomo Hoshino
和友 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5119039A priority Critical patent/JPH06310897A/en
Publication of JPH06310897A publication Critical patent/JPH06310897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To prevent generation of trap magnetic field without hindering mea surement, by folding ferromagnetic magnetic shield body over a vessel aperture end portion and inside the aperture end portion, so as to cover the aperture end surface and the cylindrical side surface of a superconducting magnetic shield vessel and to wrap the aperture end top part of the magnetic shield vessel. CONSTITUTION:A ferromagnetic magnetic shield body 1 has an external form somewhat larger than a superconducting magnetic shield vessel 2 in order to cover the closed aperture end surface and the cylindrical side surface of the vessel 2, and is folded over the aperture end top part and the aperture end inside upper part. The shield body is constituted as one body member. The length L and the inner diameter D of a folded part 3 are larger than or equal to one-half of the inner diameter W of the vessel 2. Thereby the trap of earth magnetism at the time of cooling the superconducting magnetic shield vessel can be completely prevented by a comparatively small-sized ferromagnetic body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導現象(磁束を排除
する)を利用した超電導磁気シールド容器の強磁性磁気
シールド体に関し、特に超電導磁気シールド容器をその
臨界温度Tc以下まで冷却する際に、磁気ノイズの原因
となる環境磁場(特に地磁気)の超電導体内におけるト
ラップを防止し得る強磁性磁気シールド体に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic magnetic shield body of a superconducting magnetic shield container utilizing a superconducting phenomenon (excluding magnetic flux), and particularly when cooling the superconducting magnetic shield container to a temperature below its critical temperature Tc. The present invention relates to a ferromagnetic magnetic shield that can prevent an environmental magnetic field (especially geomagnetism) that causes magnetic noise from being trapped in a superconductor.

【0002】[0002]

【従来の技術およびその問題点】最近、酸化物超電導体
をその磁束を排除する超電導現象を利用し、磁気シール
ド容器に応用する研究が盛んに行われている。この場
合、酸化物超電導体からなる磁気シールド容器を冷却し
て超電導状態にする場合、超電導体はその置かれている
環境磁場(通常の環境では地磁気)を保存するように磁
束を捕獲(トラップ)してしまう。このような超電導磁
気シールド容器内でSQUID(超電導量子干渉素子)
磁束計を作動させて極微弱磁場を検出する際、トラップ
した磁束が揺らいだり、SQUID磁束計とシールド容
器の間の相対振動が起きると、SQUID磁束計はこれ
を磁気の変動として検出してしまい、これが磁気ノイズ
源となる。
2. Description of the Related Art Recently, much research has been conducted on applying an oxide superconductor to a magnetic shield container by utilizing the superconducting phenomenon of eliminating the magnetic flux. In this case, when the magnetic shield container made of oxide superconductor is cooled to be in a superconducting state, the superconductor traps magnetic flux so as to preserve the environmental magnetic field (earth magnetism in normal environment) in which it is placed. Resulting in. In such a superconducting magnetic shield container, SQUID (superconducting quantum interference device)
If the trapped magnetic flux fluctuates or relative vibration occurs between the SQUID magnetometer and the shield container when operating the magnetometer to detect an extremely weak magnetic field, the SQUID magnetometer detects this as a magnetic fluctuation. , This becomes the source of magnetic noise.

【0003】そのため、超電導体を冷却する際、強磁性
体内で環境磁場をできるだけ減らすために、超電導体の
外側を強磁性体で覆うことが特開平3−242134に
開示されている。この強磁性体は被測定物のシールド体
への搬入が容易で測定に速やかに移行できるが、開口端
部からの漏れ磁場により開口端部付近における環境磁場
の低減が不完全になるという欠点を有しており、トラッ
プ磁場が開口端部で強くなり、不均一となる。このこと
は開口端部から離れた容器の深い部分へトラップ磁束の
移動を来し問題となり得る。そのため強磁性体を超電導
体の開口端部において超電導体よりも十分長くする必要
が有り、装置自体が大型化するという問題点を有するも
のである。また、超電導体の開口端部を強磁性体の蓋で
覆うことが特開平3−218695に開示されている。
しかし、環境磁場の低減は一様で十分であるものの、冷
却後測定に移行する際に蓋を取り外すのに手間がかか
り、特にシールド容器の大型化に伴い非常に煩雑になる
という問題点を有するものであった。
Therefore, in cooling the superconductor, it is disclosed in JP-A-3-242134 that the outside of the superconductor is covered with a ferromagnetic material in order to reduce the environmental magnetic field in the ferromagnetic body as much as possible. Although this ferromagnetic material makes it easy to carry the DUT into the shield and allows quick transition to measurement, it has the drawback of incomplete reduction of the environmental magnetic field near the opening end due to the leakage magnetic field from the opening end. In addition, the trap magnetic field becomes strong at the opening end and becomes nonuniform. This can lead to migration of the trap flux to a deeper part of the container away from the open end, which can be problematic. Therefore, it is necessary to make the ferromagnetic material sufficiently longer than the superconductor at the opening end of the superconductor, which causes a problem that the device itself becomes large. Further, JP-A-3-218695 discloses that an opening end of a superconductor is covered with a ferromagnetic lid.
However, although the reduction of the environmental magnetic field is uniform and sufficient, it takes a lot of time to remove the lid when shifting to the measurement after cooling, and there is a problem that it becomes very complicated especially with the increase in size of the shield container. It was a thing.

【0004】本発明は、酸化物超電導体磁気シールド容
器を冷却する場合の地磁気のトラップの発生を測定に支
障を来さず十分に防止し得る強磁性磁気シールド体を提
供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a ferromagnetic magnetic shield which can sufficiently prevent the occurrence of a geomagnetic trap when the oxide superconductor magnetic shield container is cooled without hindering the measurement. It is a thing.

【0005】[0005]

【問題点を解決するための手段】本発明の強磁性磁気シ
ールド体は、一端閉口/一端開口の円筒型若しくは角筒
体型の超電導体からなる磁気シールド容器を冷却する際
のトラップ磁場防止用の強磁性磁気シールド体であっ
て、前記超電導磁気シールド容器の閉口端面及び筒状側
面を覆いかつ磁気シールド容器の開口端頂部を包むよう
に該容器開口端部及び開口端部内側に折り込まれてなる
ものである。
The ferromagnetic magnetic shield of the present invention is used for preventing a trap magnetic field when cooling a magnetic shield container made of a cylindrical or rectangular tube type superconductor with one end closed / one end open. A ferromagnetic magnetic shield, which is folded into the container opening end and the inside of the opening end so as to cover the closed end surface and the tubular side surface of the superconducting magnetic shield container and wrap around the opening end top of the magnetic shield container. Is.

【0006】図1は、本発明に係る強磁性磁気シールド
体を示すものであり、強磁性磁気シールド体1は超電導
磁気シールド容器2の閉口端面及び筒状側面を覆うよう
に容器2よりも多少大きい外形を有し、容器2の開口端
頂部及び開口端内側上部を包むように折り込まれてな
り、これらが一体物で構成されている。折り込み部3の
長さL及び内径Dは、容器2の内径Wの少なくとも1/
2以上とすることが外部磁場の減衰率と開口端部からの
被測定物を挿入する点から好ましい。
FIG. 1 shows a ferromagnetic magnetic shield body according to the present invention. The ferromagnetic magnetic shield body 1 covers the closed end surface and the cylindrical side surface of the superconducting magnetic shield container 2 more or less than the container 2. It has a large outer shape and is folded so as to wrap around the top of the open end of the container 2 and the upper inside of the open end, and these are integrally formed. The length L and the inner diameter D of the folded portion 3 are at least 1 / the inner diameter W of the container 2.
It is preferable that the number is 2 or more from the viewpoint of the attenuation factor of the external magnetic field and insertion of the object to be measured from the opening end.

【0007】本発明は以上のように構成されるため、超
電導磁気シールド容器の閉口端面及び筒状側面のすべて
が強磁性磁気シールド体で覆われ、しかも超電導磁気シ
ールド容器の開口端部は容器上部内側に強磁性体の折り
込み部で覆われているため、超電導磁気シールド容器を
冷却する際の地磁気のトラップが比較的小型の強磁性体
で完全に防止される。
Since the present invention is configured as described above, the closed end surface and the cylindrical side surface of the superconducting magnetic shield container are all covered with the ferromagnetic magnetic shield body, and the opening end portion of the superconducting magnetic shield container is at the top of the container. Since the inside is covered with the folded portion of the ferromagnetic material, the trap of the geomagnetism at the time of cooling the superconducting magnetic shield container is completely prevented by the relatively small ferromagnetic material.

【0008】[0008]

【発明の効果】以上のような本発明によれば、次に示す
ような効果を得ることができる。 (1)一端開口/一端閉口の強磁性磁気シールド体の開
口部に折り込み部を設けた一体物とすることにより蓋を
することなく開口端部付近の環境磁場を減らし、超電導
磁気シールド容器全体のトラップ磁場を防止することが
できる。 (2)冷却中、開口端部に蓋を付ける必要がないため、
冷却後の蓋の取外しが不要で速やかに測定に取りかかる
ことができる。 (3)超電導体と強磁性体とが一体構造となっているた
め、超電導体が冷却後に超電導状態になり、磁気シール
ドとして有効に磁場を遮蔽するようになった場合でも、
外部磁場はまず周りの強磁性体シールドで磁界が遮蔽さ
れ、さらに超電導体で磁界が減衰するため、極微弱磁場
空間を創出できる。
According to the present invention as described above, the following effects can be obtained. (1) The magnetic field shield near the open end can be reduced without a lid by using a one-piece open / one-closed ferromagnetic magnetic shield with a folded part in the opening to reduce the environmental magnetic field of the entire superconducting magnetic shield container. The trap magnetic field can be prevented. (2) Since it is not necessary to attach a lid to the opening end during cooling,
It is not necessary to remove the lid after cooling, and the measurement can be started immediately. (3) Since the superconductor and the ferromagnetic body are integrated, even when the superconductor becomes superconducting after cooling and effectively shields the magnetic field as a magnetic shield,
The external magnetic field is first shielded by the surrounding ferromagnetic shield, and the magnetic field is attenuated by the superconductor, so that an extremely weak magnetic field space can be created.

【0009】[0009]

【実施例1】図2に示すような本発明に係る厚さ1mm
の円筒状μ−メタルの円筒軸方向に約400ミリガウス
の一様な外部磁場をヘルムホルツコイルにより印加した
時の強磁性体内の磁場分布をフラックスゲートメータ4
で図2に示すz軸上において測定し、シールド効果(s
=外部磁場/内部磁場の比で定義)を求めると、図3に
示すようになった。この結果から、開口端部付近の折り
込み部3内の磁場は環境磁場の1/10〜1/100に
減衰し、この部位よりさらに深い位置と同等のレベルに
なり、本発明の効果が確認できた。
Example 1 A thickness of 1 mm according to the present invention as shown in FIG.
The magnetic field distribution in the ferromagnet when a uniform external magnetic field of about 400 milligauss is applied by the Helmholtz coil in the cylindrical μ-metal cylinder axial direction of the fluxgate meter 4
At the z-axis shown in FIG.
= Defined by the ratio of external magnetic field / internal magnetic field), the result is as shown in FIG. From this result, the magnetic field in the folding part 3 near the opening end is attenuated to 1/10 to 1/100 of the environmental magnetic field, reaching a level equivalent to a position deeper than this part, and the effect of the present invention can be confirmed. It was

【0010】[0010]

【比較例1】図4に示すような実施例1の強磁性体より
折り込み部を無くした一端開口/一端閉口の強磁性円筒
に実施例1と同様の方法で軸方向に外部磁場を印加した
時の強磁性円筒内の磁場を実施例1と同じくz軸上にお
いて同様に測定し、シールド効果を求めた結果を図5に
示す。この結果から、開口端部付近は漏れ磁場の影響を
受け、環境磁場の減衰は実施例1に比べて著しく悪くな
ることがわかる。
COMPARATIVE EXAMPLE 1 An external magnetic field was applied in the axial direction to a ferromagnetic cylinder having one opening / one closing as shown in FIG. The magnetic field in the ferromagnetic cylinder at that time was measured on the z axis in the same manner as in Example 1, and the result of obtaining the shield effect is shown in FIG. From this result, it is understood that the vicinity of the opening end is affected by the leakage magnetic field, and the attenuation of the environmental magnetic field is significantly worse than that of the first embodiment.

【0011】[0011]

【実施例2】図6に示すように、実施例1と同様の強磁
性体に実施例1と同様な方法で円筒軸に垂直なy方向に
約400ミリガウスの外部磁場を印加した時の強磁性円
筒内の磁場を同図に示すz軸上において実施例1と同様
な方法で測定し、シールド効果を求めた。その結果を図
7に示す。この結果より、開口端部付近の折り込み部内
の磁場は環境磁場の約40分の1に減衰し、実施例1と
同様、この部位よりさらに深い位置における円筒内磁場
と同等のレベルになり、本発明の効果が確認できた。
[Embodiment 2] As shown in FIG. 6, a strong magnetic substance was applied to a ferromagnetic material similar to that of Embodiment 1 in the same manner as in Embodiment 1 in the case of applying an external magnetic field of about 400 milligauss in the y direction perpendicular to the cylindrical axis. The magnetic field in the magnetic cylinder was measured on the z-axis shown in the figure by the same method as in Example 1 to obtain the shield effect. The result is shown in FIG. 7. From this result, the magnetic field in the folded portion near the opening end is attenuated to about 1/40 of the environmental magnetic field, and becomes the same level as the in-cylinder magnetic field at a position deeper than this portion, as in the first embodiment. The effect of the invention was confirmed.

【0012】[0012]

【比較例2】図4に示したものと同一の強磁性体内に図
8に示すように円筒軸に垂直なy方向に外部磁場を印加
し、同図のz軸上における円筒内磁場を実施例2と同様
に測定してシールド効果を求めた結果を図9に示す。こ
の結果より、比較例1の場合と同じく開口端部付近は漏
れ磁場の影響を受け、環境磁場の減衰は実施例2に比べ
て著しく悪くなることがわかる。
[Comparative Example 2] An external magnetic field is applied to the same ferromagnetic body as that shown in FIG. 4 in the y direction perpendicular to the cylinder axis as shown in FIG. FIG. 9 shows the result of measuring the shield effect in the same manner as in Example 2. From this result, it can be seen that the vicinity of the opening end is affected by the leakage magnetic field as in the case of Comparative Example 1, and the attenuation of the environmental magnetic field is significantly worse than that of Example 2.

【0013】[0013]

【実施例3】図10に示すように、一端開口/一端閉口
の超電導磁気シールド容器(内径100mm、長さ25
0mm)を本発明の図2に示した強磁性体内に設置し、
これを地球磁場環境下で冷却した。この場合、強磁性体
シールドにより地球磁場が有効に遮蔽され、トラップ磁
界が著しく減少した。磁界の測定は超電導体磁気シール
ド容器の中心軸上で開口端部から150mm内部に入っ
た位置で軸方向及び径方向について測定した。表1にト
ラップ磁界の実測値を示す。
[Embodiment 3] As shown in FIG. 10, a superconducting magnetic shield container with one end open / one end closed (inner diameter 100 mm, length 25)
0 mm) in the ferromagnetic body shown in FIG. 2 of the present invention,
This was cooled in the earth's magnetic field environment. In this case, the magnetic shield effectively shielded the earth's magnetic field, and the trap field was significantly reduced. The magnetic field was measured in the axial direction and the radial direction at a position 150 mm inside from the opening end on the central axis of the superconductor magnetic shield container. Table 1 shows the measured values of the trap magnetic field.

【0014】[0014]

【比較例3】図11は超電導体単独で、地球磁場環境下
において冷却しトラップ磁界の強さを調べた。この場
合、軸方向、径方向とも超電導体はほぼ完全に地磁気
(300〜400ミリガウス)をトラップしてしまうこ
とがわかる(表1)。
Comparative Example 3 In FIG. 11, the superconductor alone was cooled in an earth magnetic field environment and the strength of the trap magnetic field was examined. In this case, it can be seen that the superconductor traps geomagnetism (300 to 400 milligauss) almost completely in both the axial and radial directions (Table 1).

【0015】[0015]

【比較例4】図12に示した一端開口/一端閉口の強磁
性体内に超電導磁気シールド容器を設置し、同様に冷却
した。この時は開口端部を除いて全体が強磁性体で覆わ
れているため、地磁気のトラップは比較的少ないが、表
1に示したように実施例3に比較してトラップした磁場
の強さは10倍も強い。
[Comparative Example 4] A superconducting magnetic shield container was installed in a ferromagnetic body having one end opening / one end closing shown in FIG. 12 and cooled in the same manner. At this time, since the whole body is covered with the ferromagnetic material except for the opening end, the number of traps of geomagnetism is relatively small, but as shown in Table 1, the strength of the trapped magnetic field is larger than that of the third embodiment. Is ten times stronger.

【0016】[0016]

【比較例5】図13に示したように直径162mm、長
さ90mmの強磁性体リング(特開平3−242134
と同様の方法)を超電導体の開口端部に配置し、上述の
ように冷却し、トラップ磁界を測定した。
Comparative Example 5 As shown in FIG. 13, a ferromagnetic ring having a diameter of 162 mm and a length of 90 mm (Japanese Patent Laid-Open No. 3-242134).
The same method) was placed at the open end of the superconductor, cooled as described above, and the trap field was measured.

【0017】[0017]

【比較例6】比較例5のリングに加えて、直径90m
m、長さ90mmの強磁性体リングを図14に示したよ
うに一部分が超電導体の内部に入るように配置し、冷却
後トラップ磁界を測定した。比較例5、6では、表1に
示したように地磁気は完全に超電導体にトラップしてし
まうことがわかる。
Comparative Example 6 In addition to the ring of Comparative Example 5, the diameter is 90 m.
A ferromagnetic ring having a length of m and a length of 90 mm was arranged so that a part thereof was inside the superconductor as shown in FIG. 14, and the trap magnetic field was measured after cooling. In Comparative Examples 5 and 6, it can be seen that the geomagnetism is completely trapped in the superconductor as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】このように、本発明の強磁性磁気シールド
体を用いれば、比較例に比べて10〜100倍もトラッ
プ磁界を減らすことが可能であり、極微弱磁場空間を容
易に作ることができる。
As described above, when the ferromagnetic magnetic shield of the present invention is used, the trap magnetic field can be reduced 10 to 100 times as much as that of the comparative example, and an extremely weak magnetic field space can be easily created. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の強磁性磁気シールド体を超電導磁気シ
ールド容器を収納した状態で示した概略説明図である。
FIG. 1 is a schematic explanatory view showing a ferromagnetic magnetic shield of the present invention with a superconducting magnetic shield container housed therein.

【図2】実施例1の円筒軸方向シールド効果の測定方法
の概略説明図である。
FIG. 2 is a schematic explanatory diagram of a method of measuring the cylindrical axial shield effect of the first embodiment.

【図3】実施例1の円筒軸方向のシールド効果を示す結
果図である。
FIG. 3 is a result diagram showing a shield effect in the cylinder axis direction of Example 1.

【図4】比較例1の円筒軸方向シールド効果の測定方法
の概略説明図である。
FIG. 4 is a schematic explanatory diagram of a method of measuring a cylindrical axial shield effect of Comparative Example 1.

【図5】比較例1の円筒軸方向のシールド効果を示す結
果図である。
FIG. 5 is a result diagram showing a shield effect in a cylinder axis direction of Comparative Example 1.

【図6】実施例2の円筒径方向シールド効果の測定方法
の概略説明図である。
FIG. 6 is a schematic explanatory diagram of a method for measuring the cylindrical radial shield effect of the second embodiment.

【図7】実施例2の円筒径方向のシールド効果を示す結
果図である。
FIG. 7 is a result diagram showing the shielding effect in the radial direction of the cylinder in Example 2;

【図8】比較例2の円筒径方向シールド効果の測定方法
の概略説明図である。
FIG. 8 is a schematic explanatory diagram of a method of measuring the cylindrical radial shield effect of Comparative Example 2.

【図9】比較例2の円筒径方向のシールド効果を示す結
果図である。
9 is a result diagram showing a shielding effect in a radial direction of a cylinder of Comparative Example 2. FIG.

【図10】実施例3の折り込みを有する強磁性体内に設
置した酸化物高温超電導容器を示す説明図である。
FIG. 10 is an explanatory view showing an oxide high temperature superconducting container installed in a ferromagnetic body having folds of Example 3.

【図11】比較例3の酸化物高温超電導容器を示す説明
図である。
11 is an explanatory view showing an oxide high temperature superconducting container of Comparative Example 3. FIG.

【図12】比較例4の一端開口/一端閉口の強磁性体内
に設置した酸化物高温超電導容器を示す説明図である。
FIG. 12 is an explanatory diagram showing an oxide high temperature superconducting container installed in a one-end open / one-end closed ferromagnetic body of Comparative Example 4.

【図13】比較例5の開口端部外側に強磁性円筒を配置
した酸化物高温超電導容器を示す説明図である。
13 is an explanatory diagram showing an oxide high temperature superconducting container in which a ferromagnetic cylinder is arranged outside the open end of Comparative Example 5. FIG.

【図14】比較例6の開口端部内側及び外側に強磁性円
筒を配置した酸化物高温超電導容器を示す説明図であ
る。
FIG. 14 is an explanatory view showing an oxide high temperature superconducting container of Comparative Example 6 in which ferromagnetic cylinders are arranged inside and outside an open end.

【符号の説明】[Explanation of symbols]

1 強磁性磁気シールド体 2 超電導磁気シールド容器 3 折り込み部 4 フラックスゲートメータ 1 Ferromagnetic Magnetic Shield 2 Superconducting Magnetic Shield Container 3 Folding Part 4 Fluxgate Meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一端閉口/一端開口の円筒型若しくは角
筒体型の超電導体からなる磁気シールド容器を冷却する
際のトラップ磁場防止用の強磁性磁気シールド体であっ
て、前記超電導磁気シールド容器の閉口端面及び筒状側
面を覆いかつ磁気シールド容器の開口端頂部を包むよう
に該容器開口端部及び開口端部内側に折り込まれてなる
強磁性磁気シールド体。
1. A ferromagnetic magnetic shield body for preventing a trap magnetic field when cooling a magnetic shield container made of a cylindrical or prismatic type superconductor with one end closed / one end opening, the superconducting magnetic shield container comprising: A ferromagnetic magnetic shield body which is folded inside the opening end and inside the opening end of the magnetic shield container so as to cover the closing end surface and the cylindrical side surface and wrap around the opening end top of the magnetic shield container.
【請求項2】 強磁性磁気シールド体の開口端部におけ
る内側折り込み長さ及びその径が超電導磁気シールド容
器内径の少なくとも1/2以上である請求項1記載の強
磁性磁気シールド体。
2. The ferromagnetic magnetic shield according to claim 1, wherein the inner fold length and the diameter of the ferromagnetic magnetic shield at the open end are at least ½ or more of the inner diameter of the superconducting magnetic shield container.
JP5119039A 1993-04-22 1993-04-22 Ferromagnetic magnetic shield body Pending JPH06310897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5119039A JPH06310897A (en) 1993-04-22 1993-04-22 Ferromagnetic magnetic shield body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5119039A JPH06310897A (en) 1993-04-22 1993-04-22 Ferromagnetic magnetic shield body

Publications (1)

Publication Number Publication Date
JPH06310897A true JPH06310897A (en) 1994-11-04

Family

ID=14751441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5119039A Pending JPH06310897A (en) 1993-04-22 1993-04-22 Ferromagnetic magnetic shield body

Country Status (1)

Country Link
JP (1) JPH06310897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203286B2 (en) 2011-10-03 2015-12-01 Rolls-Royce Plc Magnetic shield

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203286B2 (en) 2011-10-03 2015-12-01 Rolls-Royce Plc Magnetic shield

Similar Documents

Publication Publication Date Title
US5936498A (en) Superconducting magnet apparatus and magnetic resonance imaging system using the same
US20130229181A1 (en) Magnetic Resonance Facility Having a Cylindrical Patient Receiving Unit and Patient Capsule
JP4421079B2 (en) MRI gradient coil
JPH10179552A (en) Gradient coil device for nuclear spin tomography device
US7005953B2 (en) Magnet system with shielded regenerator material
JPH06310897A (en) Ferromagnetic magnetic shield body
US20030076100A1 (en) Magnetic field gradient coil assembly and method of designing same
JP2002158109A (en) Dimensioning method of additional current path to optimize disturbance behavior of superconducting magnet device
CN114675224A (en) Testing device and testing method for superconducting quantum interference device
JPH03248069A (en) Squid probe
EP3496167B1 (en) Charged particle beam current measurement apparatus
JP4551522B2 (en) MRI equipment
WO2014016073A1 (en) Device for concentrating or amplifying a magnetic flux, a method for concentrating or amplifying a magnetic flux, a magnetic operating apparatus, and use of a device for concentrating or amplifying a magnetic flux
US6765381B2 (en) Extended maxwell pair gradient coils
JPH03139328A (en) Superconductive magnet for mri apparatus
Wu et al. Magnetic foils for SRF cryomodule
Dinale Magnetic Test Facility-Sensor and Coil Calibrations.
Mori et al. Magnetic shielding of the superposition of a hybrid ferromagnetic cylinder over a BPSCCO cylinder
JPH0241591Y2 (en)
JPH07193392A (en) Magnetic shield capsule
JPS62169311A (en) Superconductive magnet device for nmar imaging
CN114504312A (en) Magnetic resonance imaging apparatus
JPH03242134A (en) Magnetic shielding body for measuring living body magnetism
JPH10323337A (en) Magnetic resonance imaging device
JPH03218695A (en) Magnetic shielding device using superconductor