JPH06310741A - Solar cell element - Google Patents

Solar cell element

Info

Publication number
JPH06310741A
JPH06310741A JP5100886A JP10088693A JPH06310741A JP H06310741 A JPH06310741 A JP H06310741A JP 5100886 A JP5100886 A JP 5100886A JP 10088693 A JP10088693 A JP 10088693A JP H06310741 A JPH06310741 A JP H06310741A
Authority
JP
Japan
Prior art keywords
light
solar cell
cell element
layer
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5100886A
Other languages
Japanese (ja)
Inventor
Naoki Nakamura
直樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5100886A priority Critical patent/JPH06310741A/en
Publication of JPH06310741A publication Critical patent/JPH06310741A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To enhance the energy conversion efficiency significantly by providing a layer for converting a light in the wavelength region uncontributive to photoelectric conversion into a light contributive to photoelectric conversion on the light receiving face side. CONSTITUTION:The surface of a p-type semiconductor Si substrate 3 is subjected to anode formation and an n<+> semiconductor layer 2 is formed on the surface whereas a p<+> semiconductor layer 4 is formed on the rear. A light receiving face current collecting electrode 1 is provided on the n<+> semiconductor layer 2 and a rear current collecting electrode 5 is provided under the p<+> semiconductor layer 4. Since a layer obtained through anode formation absorbs ultraviolet rays to emit a visible light, the short wavelength components (ultraviolet rays) which had been uncontributive to photoelectric conversion and converted into heat can contribute to photoelectric conversion thus enhancing the energy conversion efficiency of solar cell. Furthermore, the layer obtained through anode formation has porous surface exhibiting antireflection thus enhancing the energy conversion efficiency furthermore.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギ変換効率を向
上させた太陽電池素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell device having improved energy conversion efficiency.

【0002】[0002]

【従来の技術】太陽電池素子は、半導体のpn接合に光
を照射することによって電流が流れる光起電力効果を利
用して太陽光エネルギを電気エネルギに変換する。
2. Description of the Related Art A solar cell element converts solar energy into electric energy by utilizing a photovoltaic effect in which a current flows by irradiating a pn junction of a semiconductor with light.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現状の
太陽電池素子では、太陽光エネルギの変換過程において
種々の損失のために変換効率が低下する。損失には、長
波長光の透過損失15%、短波長光の熱変換による損失
35%、電極抵抗等による電圧因子損失21%、光反射
損失6%、キャリア再結合による損失6%、電極面積の
ための有効受光面積の減少による損失4%等がある。
However, in the current solar cell element, the conversion efficiency is lowered due to various losses in the conversion process of solar energy. The loss includes 15% long wavelength light transmission loss, 35% short wavelength light heat conversion loss, 21% voltage factor loss due to electrode resistance, 6% light reflection loss, 6% loss due to carrier recombination, and electrode area. There is a loss of 4% due to the reduction of the effective light receiving area.

【0004】これらの損失を少なくして変換効率を向上
させるために、従来より、表面ピラミッド構造、多層反
射防止膜、表面電極の微細化等が取り組まれているが、
未だ十分な効果は得られていない。
In order to reduce these losses and improve the conversion efficiency, the surface pyramid structure, the multilayer antireflection film, the miniaturization of the surface electrodes and the like have been conventionally dealt with.
The full effect has not been obtained yet.

【0005】そこで本発明の目的は、エネルギ変換効率
を大幅に向上させることのできる太陽電池素子を提供す
ることにある。
Therefore, an object of the present invention is to provide a solar cell element capable of greatly improving the energy conversion efficiency.

【0006】[0006]

【課題を解決するための手段】本発明の太陽電池素子
は、第1の波長領域の光を光電変換する半導体素子と、
この半導体素子の受光面側に設けられ、第1の波長領域
とは異なる第2の波長領域の光を第1の波長領域の光に
変換する変換層とを備えたものである。
A solar cell element of the present invention comprises a semiconductor element for photoelectrically converting light in a first wavelength region,
A conversion layer is provided on the light-receiving surface side of the semiconductor element, which converts light in a second wavelength region different from the first wavelength region into light in the first wavelength region.

【0007】[0007]

【作用】この太陽電池素子では、本来、半導体素子によ
る光電変換に寄与しない短波長成分等の第2の波長領域
の光が第1の波長領域の光に変換され、光電変換に寄与
することになる。変換層は、半導体ウエハ上に陽極化成
処理を施して得られた層や、蛍光物質による層等であ
る。
In this solar cell element, the light of the second wavelength region such as the short wavelength component which originally does not contribute to the photoelectric conversion by the semiconductor element is converted into the light of the first wavelength region and contributes to the photoelectric conversion. Become. The conversion layer is a layer obtained by anodizing the semiconductor wafer, a layer made of a fluorescent substance, or the like.

【0008】[0008]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0009】図1は本発明の第1実施例の太陽電池素子
の断面図である。この図に示すように、本実施例の太陽
電池素子は、p型半導体Si基板3の表面側にn+ 型半
導体層2を形成し、裏面側にp+ 型半導体層4を形成
し、n+ 型半導体層2の上に受光面集電電極1を設け、
+ 型半導体層4の下に裏面集電電極5を設けて構成さ
れている。
FIG. 1 is a sectional view of a solar cell element according to the first embodiment of the present invention. As shown in this figure, in the solar cell element of the present embodiment, the n + type semiconductor layer 2 is formed on the front surface side of the p type semiconductor Si substrate 3, and the p + type semiconductor layer 4 is formed on the back surface side. The light-receiving surface collecting electrode 1 is provided on the + type semiconductor layer 2,
A back surface collector electrode 5 is provided below the p + type semiconductor layer 4.

【0010】p型半導体Si基板3は、例えば、CZ法
により結晶成長させた厚さ約100μmのSi基板にB
(ホウ素)をドープして形成される。n+ 型半導体層2
は、例えば、拡散法によりp型半導体Si基板3の受光
面側に接合深さ約0.5μmのn+ 層領域を形成したも
のである。p+ 型半導体層4は、例えば、イオン注入法
によりp型半導体Si基板3の裏面側に接合深さ約1.
0μmのp+ 層領域を形成したものである。受光面集電
電極1は、例えば、アルミニウムを真空蒸着、スパッタ
リング、フォトリソグラフィ等の手法で形成する。な
お、線幅、線間は有効受光面積を増すために微細パター
ンの方が良い。裏面集電電極5は、例えばアルミニウム
膜で形成する。
The p-type semiconductor Si substrate 3 is, for example, a Si substrate having a thickness of about 100 μm which is crystal-grown by the CZ method and is B
It is formed by doping (boron). n + type semiconductor layer 2
Is an n + layer region having a junction depth of about 0.5 μm formed on the light-receiving surface side of the p-type semiconductor Si substrate 3 by a diffusion method, for example. The p + type semiconductor layer 4 has a junction depth of about 1.
The p + layer region of 0 μm is formed. The light-receiving surface collecting electrode 1 is formed by, for example, vacuum evaporation, sputtering, photolithography, or the like of aluminum. A fine pattern is preferable for the line width and the line interval in order to increase the effective light receiving area. The back surface collecting electrode 5 is formed of, for example, an aluminum film.

【0011】本実施例の太陽電池素子の特徴は、Si基
板3の表面に陽極化成処理を施し、この処理によって得
られた処理層の表面にn+ 型半導体層2を形成している
点にある。陽極化成処理によって得られた処理層は、紫
外光を吸収し、図2に示すように可視光(500〜70
0nm)を発光する。図3に示すように、太陽電池素子
において変換効率(集電効率)の高い波長領域は500
〜900nmであるため、処理層による可視光発光現象
により、本来、太陽電池素子による光電変換に寄与せず
熱に変換されていた短波長成分(紫外光)が光電変換に
寄与することになり、太陽電池素子のエネルギ変換効率
が向上し、太陽電池素子の性能が向上する。
The solar cell element of the present embodiment is characterized in that the surface of the Si substrate 3 is subjected to anodization treatment, and the n + type semiconductor layer 2 is formed on the surface of the treatment layer obtained by this treatment. is there. The treatment layer obtained by the anodization absorbs ultraviolet light and, as shown in FIG.
0 nm) is emitted. As shown in FIG. 3, the wavelength range of high conversion efficiency (collection efficiency) in the solar cell element is 500.
Since the wavelength is up to 900 nm, the short-wavelength component (ultraviolet light) originally converted into heat without contributing to photoelectric conversion by the solar cell element contributes to photoelectric conversion due to the visible light emission phenomenon due to the treatment layer. The energy conversion efficiency of the solar cell element is improved, and the performance of the solar cell element is improved.

【0012】また、陽極化成処理によって得られた処理
層の表面はポーラス(多孔)であるため、反射防止機能
をも発揮し、これによってもエネルギ変換効率が向上す
る。なお、陽極化成処理によって得られた処理層が可視
光を発光すること、および処理層の表面がポーラスであ
ることは、例えば、1992年7月24日に開催された
応用物理学会結晶工学分科会第9回結晶工学シンポジウ
ムで発表された「陽極化成Siの熱処理による微構造変
化」において述べられている。
Further, since the surface of the treatment layer obtained by the anodizing treatment is porous, it also exhibits an antireflection function, which also improves the energy conversion efficiency. The fact that the treated layer obtained by anodizing treatment emits visible light and that the surface of the treated layer is porous is described in, for example, the Crystal Engineering Subcommittee of the Japan Society of Applied Physics held on July 24, 1992. It is described in "Microstructure change due to heat treatment of anodized Si" presented at the 9th Crystal Engineering Symposium.

【0013】次に、陽極化成処理の方法について、一例
を挙げて説明する。本実施例では、図4に示すように、
Siウェハ11とPt(白金)電極12を、フッ化水素
の49%水溶液と水が1:1の割合の電解液13に浸
し、Siウェハ11とPt電極12間に電流密度80m
A/cm2 で直流電流を、室温下で10分間流して、陽
極化成処理を行い、その後、熱処理を行った。図5は以
上の処理後のSiウェハの表面構造を示すものである。
Next, the method of anodizing treatment will be described with reference to an example. In this embodiment, as shown in FIG.
The Si wafer 11 and the Pt (platinum) electrode 12 are dipped in a 49% aqueous solution of hydrogen fluoride and an electrolyte solution 13 in which water has a ratio of 1: 1, and the current density between the Si wafer 11 and the Pt electrode 12 is 80 m.
A direct current of A / cm 2 was passed for 10 minutes at room temperature to perform anodization treatment, and then heat treatment was performed. FIG. 5 shows the surface structure of the Si wafer after the above processing.

【0014】処理したSi表面を、X線光電子分光(X
PS)、フーリエ変換赤外吸収(FTIR)、透過電子
顕微鏡(TEM)で分析したところ、Si、O、SiH
を確認すると共に、単結晶とアモルファスが混在するこ
とが分かった。さらに、顕微ラマンによる深さ方向粒径
測定によれば、図5に示すように、粒径は表面側21で
小さく(3nm以下)、裏面側22で大きく(3nm以
上)なっていることが明らかとなった。
X-ray photoelectron spectroscopy (X
PS, Fourier transform infrared absorption (FTIR), transmission electron microscope (TEM) analysis, Si, O, SiH
As a result, it was found that single crystal and amorphous were mixed. Furthermore, according to the depth-direction particle size measurement by Raman microscopy, it is clear that the particle size is small on the front surface side 21 (3 nm or less) and large on the back surface side 22 (3 nm or more) as shown in FIG. Became.

【0015】図2は4Wの紫外光ランプを照射したとき
の処理層の発光スペクトルを示すものである。このよう
に、処理層から500〜700nmのブロードなオレン
ジ色の発光が確認された。なお、処理層の発光強度は、
陽極化成処理後の熱処理温度に依存しており、300℃
で最大の発光強度を確認した。また、発光強度のピーク
波長も、熱処理温度によって若干変化する。
FIG. 2 shows the emission spectrum of the treatment layer when irradiated with a 4 W ultraviolet lamp. In this way, broad orange emission of 500 to 700 nm was confirmed from the treatment layer. The emission intensity of the treatment layer is
Depends on the heat treatment temperature after anodizing, 300 ℃
The maximum emission intensity was confirmed by. Also, the peak wavelength of the emission intensity slightly changes depending on the heat treatment temperature.

【0016】図1に示す太陽電池素子を製造する場合、
陽極化成処理を施したSi基板の表面にn+ 型半導体層
2を形成する。このように太陽電池素子の受光面側に陽
極化成処理を施した処理層を形成したことにより、処理
層による可視光発光現象によって短波長成分(紫外光)
が光電変換に寄与し、太陽電池素子の性能が向上した。
When manufacturing the solar cell element shown in FIG.
The n + type semiconductor layer 2 is formed on the surface of the anodized Si substrate. By forming an anodized treatment layer on the light-receiving side of the solar cell element in this way, short wavelength components (ultraviolet light) are generated due to the visible light emission phenomenon of the treatment layer.
Contributed to photoelectric conversion, and the performance of the solar cell element was improved.

【0017】次に、陽極化成処理を施したSi基板の表
面の反射防止機能について説明する。図5に示すように
陽極化成処理を施したSi基板の表面はポーラスな構造
となっているため、表面反射率が低下する。表1は、種
々の表面の構成における反射率を比較した表である。こ
の表に示される構成1〜7のうち、1〜5は陽極化成処
理を施さなかった場合であり、6、7は陽極化成処理を
施した場合である。また、構成5、7における2層反射
防止膜の条件は構成3と同様である。
Next, the antireflection function of the surface of the Si substrate which has been subjected to anodization will be described. As shown in FIG. 5, the surface of the Si substrate that has been subjected to anodization has a porous structure, so the surface reflectance is reduced. Table 1 is a table comparing the reflectances of various surface configurations. Among the constitutions 1 to 7 shown in this table, 1 to 5 are the cases where the anodizing treatment is not applied, and 6 and 7 are the cases where the anodizing treatment is applied. The conditions for the two-layer antireflection film in the structures 5 and 7 are the same as those in the structure 3.

【0018】[0018]

【表1】 また、図6は分光光度計を用いた反射スペクトルを示
し、(a)は表1における構成1、3について示し、
(b)は表1における構成4、5について示し、(c)
は表1における構成6、7について示している。
[Table 1] 6 shows a reflection spectrum using a spectrophotometer, (a) shows the configurations 1 and 3 in Table 1,
(B) shows the configurations 4 and 5 in Table 1, and (c)
Shows the configurations 6 and 7 in Table 1.

【0019】これら表1および図6から、陽極化成処理
によって表面反射率が低下することが分かる。そして、
この表面反射率の低下により、太陽電池素子のエネルギ
変換効率が向上し、性能が向上した。
From Table 1 and FIG. 6, it can be seen that the surface reflectance is lowered by the anodizing treatment. And
Due to this decrease in the surface reflectance, the energy conversion efficiency of the solar cell element is improved and the performance is improved.

【0020】以上説明したように、本実施例によれば、
太陽電池素子の受光面側に、陽極化成処理を施した処理
層を形成したので、処理層による可視光発光現象によ
り、本来、太陽電池素子による光電変換に寄与せず熱に
変換されていた短波長領域の光を光電変換することがで
きること、およびポーラスな処理層表面の反射防止機能
により、太陽電池素子のエネルギ変換効率を向上させ、
太陽電池素子の性能を向上させることができる。
As described above, according to this embodiment,
Since the anodized treatment layer was formed on the light-receiving side of the solar cell element, the visible light emission phenomenon of the treatment layer originally caused a short conversion to heat without contributing to photoelectric conversion by the solar cell element. The ability to photoelectrically convert light in the wavelength region and the antireflection function of the surface of the porous treatment layer improve the energy conversion efficiency of the solar cell element,
The performance of the solar cell element can be improved.

【0021】また、従来、短波長領域の光は熱に変換さ
れると、この熱が太陽電池素子の性能を劣化させる原因
となっていた。これに対し、本実施例では、短波長領域
の光が熱ではなく、光電変換に有効な可視光に変換され
るため、太陽電池素子を長時間連続使用しても性能劣化
が少ない。図7は、本実施例による太陽電池素子と従来
の太陽電池素子の性能を比較したもので、符号31は本
実施例による太陽電池素子の出力の経時変化を示し、3
2は従来の太陽電池素子の出力の経時変化を示してい
る。
Further, conventionally, when the light in the short wavelength region is converted into heat, this heat causes deterioration of the performance of the solar cell element. On the other hand, in the present embodiment, the light in the short wavelength region is not heat but is converted into visible light that is effective for photoelectric conversion, so that performance degradation is small even when the solar cell element is continuously used for a long time. FIG. 7 is a comparison of the performances of the solar cell element according to the present example and the conventional solar cell element. Reference numeral 31 indicates a change over time in the output of the solar cell element according to the present example.
2 shows the change with time of the output of the conventional solar cell element.

【0022】なお、陽極化成処理の条件は実施例中に挙
げた条件に限定されず適宜に設定することができる。
The conditions for the anodizing treatment are not limited to the conditions given in the examples and can be set appropriately.

【0023】図8は本発明の第2実施例の太陽電池素子
の断面図である。本実施例の太陽電池素子は、p型半導
体Si基板44の表面側にn型半導体層43を形成し、
裏面側にp+ 型半導体層45を形成し、n型半導体層4
3の上に受光面集電電極41を設け、p+ 型半導体層4
5の下に裏面集電電極46を設けたものにおいて、n型
半導体層43の上に数10μm程度の透明な蛍光体層4
2を形成したものである。
FIG. 8 is a sectional view of a solar cell element according to the second embodiment of the present invention. In the solar cell element of the present embodiment, the n-type semiconductor layer 43 is formed on the surface side of the p-type semiconductor Si substrate 44,
The p + type semiconductor layer 45 is formed on the back surface side, and the n type semiconductor layer 4 is formed.
The light-receiving surface collecting electrode 41 provided on the 3, p + -type semiconductor layer 4
5, a transparent collector layer 4 having a thickness of several tens of μm is formed on the n-type semiconductor layer 43.
2 is formed.

【0024】蛍光体層42の形成法としては、蛍光物質
を真空蒸着等の蒸着法で成膜したり、蛍光物質をアクリ
ル樹脂のPMMA等高分子に分散した後スピンコート等
の手法で成膜する方法がある。
As the method for forming the phosphor layer 42, a fluorescent substance is formed by a vapor deposition method such as vacuum deposition, or a fluorescent substance is dispersed in a polymer such as PMMA of acrylic resin and then formed by spin coating. There is a way to do it.

【0025】また、蛍光物質としては、ベンゼン、ナフ
タレン、アントラセン、ピレン、ペリレン、9、10−
ジフェニルアントラセン、ベンゾフェノン、ナフトキノ
ン、アントラキノン、ビアセチル、カルバゾール、ナフ
トール等がある。
Further, as the fluorescent substance, benzene, naphthalene, anthracene, pyrene, perylene, 9,10-
Examples include diphenylanthracene, benzophenone, naphthoquinone, anthraquinone, biacetyl, carbazole and naphthol.

【0026】本実施例では、蛍光体層42が、使用する
蛍光物質に固有の波長の光を受けて、可視光領域におけ
る固有の波長の光を発光する。従って、従来、太陽電池
素子による光電変換に寄与していなかった波長領域の光
を光電変換することができ、エネルギ変換効率を向上さ
せて、太陽電池素子の性能を向上させることができる。
In this embodiment, the phosphor layer 42 receives light having a wavelength unique to the fluorescent material used and emits light having a wavelength unique to the visible light region. Therefore, it is possible to photoelectrically convert light in a wavelength region that has not conventionally contributed to photoelectric conversion by the solar cell element, improve energy conversion efficiency, and improve performance of the solar cell element.

【0027】その他の構成および作用は第1実施例と同
様である。
Other configurations and operations are similar to those of the first embodiment.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、受
光面側に、光電変換に寄与しない波長領域の光を光電変
換に寄与する波長領域の光に変換する変換層を設けたの
で、太陽電池素子のエネルギ変換効率を大幅に向上させ
ることができるという効果がある。
As described above, according to the present invention, since the light receiving surface side is provided with the conversion layer for converting the light in the wavelength region not contributing to photoelectric conversion into the light in the wavelength region contributing to photoelectric conversion, There is an effect that the energy conversion efficiency of the solar cell element can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の太陽電池素子の断面図で
ある。
FIG. 1 is a sectional view of a solar cell element according to a first embodiment of the present invention.

【図2】図1の太陽電池素子の処理層の発光スペクトル
を示す特性図である。
FIG. 2 is a characteristic diagram showing an emission spectrum of a treatment layer of the solar cell element of FIG.

【図3】図1の太陽電池素子の集電効率のスペクトルを
示す特性図である。
FIG. 3 is a characteristic diagram showing a spectrum of current collection efficiency of the solar cell element of FIG.

【図4】陽極化成処理の方法を示す説明図である。FIG. 4 is an explanatory diagram showing a method of anodizing treatment.

【図5】陽極化成処理後のSi基板の表面構造を示す説
明図である。
FIG. 5 is an explanatory diagram showing a surface structure of a Si substrate after anodizing treatment.

【図6】種々の表面の構成における反射スペクトルを示
す特性図である。
FIG. 6 is a characteristic diagram showing reflection spectra in various surface configurations.

【図7】本発明の第1実施例の太陽電池素子と従来の太
陽電池素子の出力の経時変化を示す特性図である。
FIG. 7 is a characteristic diagram showing changes over time in the output of the solar cell element of the first embodiment of the present invention and the conventional solar cell element.

【図8】本発明の第2実施例の太陽電池素子の断面図で
ある。
FIG. 8 is a sectional view of a solar cell element according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 受光面集電電極 2 n+ 型半導体層 3 p型半導体Si基板 4 p+ 型半導体層 5 裏面集電電極1 Light-receiving surface collecting electrode 2 n + type semiconductor layer 3 p-type semiconductor Si substrate 4 p + type semiconductor layer 5 Back surface collecting electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の波長領域の光を光電変換する半導
体素子と、 この半導体素子の受光面側に設けられ、前記第1の波長
領域とは異なる第2の波長領域の光を前記第1の波長領
域の光に変換する変換層と、 を具備することを特徴とする太陽電池素子。
1. A semiconductor element for photoelectrically converting light in a first wavelength region, and a light in a second wavelength region different from the first wavelength region, the light being provided on the light-receiving surface side of the semiconductor device. A solar cell element, comprising: a conversion layer for converting light in a wavelength region of 1.
JP5100886A 1993-04-27 1993-04-27 Solar cell element Pending JPH06310741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5100886A JPH06310741A (en) 1993-04-27 1993-04-27 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5100886A JPH06310741A (en) 1993-04-27 1993-04-27 Solar cell element

Publications (1)

Publication Number Publication Date
JPH06310741A true JPH06310741A (en) 1994-11-04

Family

ID=14285815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5100886A Pending JPH06310741A (en) 1993-04-27 1993-04-27 Solar cell element

Country Status (1)

Country Link
JP (1) JPH06310741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117201A (en) * 1997-04-28 1999-01-22 Sharp Corp Solar cell and its manufacture
JP2007281448A (en) * 2006-04-05 2007-10-25 Samsung Sdi Co Ltd Solar cell and manufacturing method thereof
JP2008205398A (en) * 2007-02-22 2008-09-04 Sharp Corp Photoelectric conversion device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117201A (en) * 1997-04-28 1999-01-22 Sharp Corp Solar cell and its manufacture
JP2007281448A (en) * 2006-04-05 2007-10-25 Samsung Sdi Co Ltd Solar cell and manufacturing method thereof
US8227881B2 (en) 2006-04-05 2012-07-24 Samsung Sdi Co., Ltd. Solar cell and its method of manufacture
JP2008205398A (en) * 2007-02-22 2008-09-04 Sharp Corp Photoelectric conversion device and its manufacturing method

Similar Documents

Publication Publication Date Title
Yoo Reactive ion etching (RIE) technique for application in crystalline silicon solar cells
Bhushan et al. Polycrystalline Zn3P2 Schottky barrier solar cells
US20090308441A1 (en) Silicon Nanoparticle Photovoltaic Devices
Turner et al. Photoelectrochemistry with p‐Si electrodes: Effects of inversion
US20100282310A1 (en) Electromagnetic emission converter
US20090050201A1 (en) Solar cell
Rabha et al. Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon
Mohamed et al. Improvement of multicrystalline silicon solar cell performance via chemical vapor etching method-based porous silicon nanostructures
Watanabe et al. Barrier thickness dependence of photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells
Ramizy et al. The effect of porosity on the properties of silicon solar cell
Rajabi et al. Current improvement of porous silicon photovoltaic devices by using double layer porous silicon structure: applicable in porous silicon solar cells
Vivaldo et al. Study of the photon down‐conversion effect produced by thin silicon‐rich oxide films on silicon solar cells
JP2001094129A (en) CdS/CdTe SOLAR CELL
JPH06310741A (en) Solar cell element
JP6411450B2 (en) High efficiency photoelectric conversion device
Martínez‐Duart et al. Photodetectors and solar cells based on porous silicon
JP2011151068A (en) Photoelectric converter
Van Roosmalen Molecular-based concepts in PV towards full spectrum utilization
Ünal et al. Electroluminescence and photovoltaic effects of anodically fabricated metal/porous Si/Si sandwich structures based on n‐type ultraviolet‐porous Si
Kaci et al. Study of the Effect of Luminescence Down-Shifting on Silicon Solar Cells with SiC Based Composite as Optical Windows Layer
Palsule et al. Electrical and optical characterization of crystalline silicon/porous silicon heterojunctions
Ünal et al. Spectral response of porous silicon based photovoltaic devices
Lin et al. Silicon solar cells efficiency enhanced in NIR band by coating plasmonics ITO-and UC phosphors-particles layers on back-side surface using spin-on film deposition
JPH11220147A (en) Amorphous silicon solar cell
Nevin et al. Effect of oxide thickness on the properties of metal-insulator-organic semiconductor photovoltaic cells