JPH11220147A - Amorphous silicon solar cell - Google Patents

Amorphous silicon solar cell

Info

Publication number
JPH11220147A
JPH11220147A JP10018909A JP1890998A JPH11220147A JP H11220147 A JPH11220147 A JP H11220147A JP 10018909 A JP10018909 A JP 10018909A JP 1890998 A JP1890998 A JP 1890998A JP H11220147 A JPH11220147 A JP H11220147A
Authority
JP
Japan
Prior art keywords
solar cell
light
amorphous silicon
fluorescent
silicon solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10018909A
Other languages
Japanese (ja)
Inventor
Takeshi Nagasawa
健 永沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP10018909A priority Critical patent/JPH11220147A/en
Publication of JPH11220147A publication Critical patent/JPH11220147A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize a short-wavelength light by forming a fluorescent film on a light incident surface. SOLUTION: A fluorescent film 1 is formed on a light incident surface of an amorphous Si solar cell 7. For forming the fluorescent film 1, the deposition method of a fluorescent material or method of dispersing it in a polymer binder and coating it may be used. For dispersing in a polymer binder and coating, the bar coat, spin coat, dip coat method or the light may be used. For the constitution of the amorphous solar cell, one formed on a transparent substrate 2 such as glass or opaque substrate may suffice, and it may suffice to from the fluorescent film 1 on its light incident surface. The fluorescent film 1 is of a fluorescent material having a fluorescent emission spectrum with an absorption spectrum image-inverted to a long wavelength and the long wavelength transform is made so that short wavelength lights can be effectively utilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光電変換効率の高い
「アモルファスシリコン太陽電池」、さらに詳しくは光
入射面側に蛍光性薄膜を設け光の利用効率を向上させた
「アモルファスシリコン太陽電池」に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an "amorphous silicon solar cell" having a high photoelectric conversion efficiency, and more particularly to an "amorphous silicon solar cell" in which a fluorescent thin film is provided on a light incident surface side to improve light use efficiency. Things.

【0002】[0002]

【従来の技術】従来から、高効率のアモルファスシリコ
ン太陽電池を得るために、入射光の利用効率を高める試
みは多くあり、実際に利用されているものもある。その
例としては、ガラス基板の上に凸凹の大きな透明電極を
形成しこの上に、p型a-Si、i型a-Si、n型a-Si層から
なる光電変換層であるアモルファスシリコン層、さらに
裏面電極を順次形成した構造がある。さらにガラス基板
表面での光反射を低減するために、MgF2等の反射防止
コート層を設けたものもある。
2. Description of the Related Art Conventionally, there have been many attempts to increase the use efficiency of incident light in order to obtain highly efficient amorphous silicon solar cells, and some of them are actually used. As an example, an amorphous silicon layer which is a photoelectric conversion layer composed of a p-type a-Si, an i-type a-Si, and an n-type a-Si layer is formed on a transparent electrode having large irregularities on a glass substrate. Further, there is a structure in which a back electrode is sequentially formed. Further, there is also a device provided with an antireflection coating layer such as MgF2 in order to reduce light reflection on the surface of the glass substrate.

【0003】[0003]

【発明が解決しようとする課題】ガラス基板の上に凸凹
の大きな透明電極を形成しこの上に光電変換層であるア
モルファスシリコン層および裏面電極を形成したアモル
ファスシリコン太陽電池は、光電変換層内で入射光の光
閉じ込めがおこるため光の利用効率がよく、有効に光電
変換を行うことができる。また、ガラス基板表面の反射
防止コートは古くから手法が確立されており、また光電
変換層への光の入射量を増加させるため太陽電池の高効
率化に有効である。
An amorphous silicon solar cell in which a transparent electrode having large irregularities is formed on a glass substrate and an amorphous silicon layer serving as a photoelectric conversion layer and a back electrode are formed on the transparent electrode is formed in the photoelectric conversion layer. Since light confinement of incident light occurs, light utilization efficiency is high, and photoelectric conversion can be performed effectively. The antireflection coating on the glass substrate surface has been established for a long time, and is effective in increasing the efficiency of a solar cell because it increases the amount of light incident on the photoelectric conversion layer.

【0004】しかしながら、上記構造においては、400
nm以下の短波長光にたいして、ガラス基板や透明電極
による吸収や干渉により光電変換層への光の入射量が減
少する問題がある。また、アモルファスシリコン太陽電
池の収集効率は500nmから600nmの波長光において最
も高く、それより短波長側の光については変換効率が低
下する問題がある。つまり、従来のアモルファスシリコ
ン太陽電池において、400nm以下の波長光は有効に利
用されていない。
However, in the above structure, 400
For short-wavelength light of nm or less, there is a problem that the amount of light incident on the photoelectric conversion layer decreases due to absorption or interference by the glass substrate or the transparent electrode. In addition, the collection efficiency of an amorphous silicon solar cell is highest for light having a wavelength of 500 nm to 600 nm, and there is a problem that conversion efficiency decreases for light having a shorter wavelength. That is, in the conventional amorphous silicon solar cell, light having a wavelength of 400 nm or less is not effectively used.

【0005】そこで本発明は短波長光を有効に利用する
ことにより、より高効率のアモルファスシリコン太陽電
池を提供することを目的としたものである。
Accordingly, an object of the present invention is to provide a more efficient amorphous silicon solar cell by effectively utilizing short-wavelength light.

【0006】[0006]

【課題を解決するための手段】前途した目的を達成する
ために、本発明はアモルファスシリコン太陽電池の光入
射面に蛍光性薄膜を形成することにより、利用効率の低
い短波長光をより利用効率の高い長波長光に変換し光の
利用効率を向上させ、しいてはより高効率のアモルファ
スシリコン太陽電池を得ることを特徴としたものであ
る。
SUMMARY OF THE INVENTION In order to achieve the foregoing object, the present invention forms a fluorescent thin film on a light incident surface of an amorphous silicon solar cell, thereby making it possible to use short-wavelength light having low utilization efficiency more efficiently. This is characterized in that the efficiency of light utilization is improved by converting the light into long-wavelength light, and that an amorphous silicon solar cell with higher efficiency is obtained.

【0007】蛍光性材料は一般にその吸収スペクトルを
長波長側に鏡像反転させた蛍光発光スペクトルを有し光
の長波長変換を行うには非常に有効な材料である。ま
た、蛍光増白剤を含めその種類は多種多様であり市販さ
れている材料も多く選択の範囲は広い。また、材料の選
択により近紫外光から可視光についてはほぼ任意の発光
スペクトルを得ることが出来る。さらには、成膜の手段
についても、蒸着法や高分子バインダーに分散しコーテ
ィングする方法などその選択肢は広い。これらのことか
ら太陽電池に使用する際にもその構造、用途に応じて簡
便、安価に形成することが可能である。
A fluorescent material generally has a fluorescence emission spectrum in which the absorption spectrum is mirror-inverted to the longer wavelength side, and is a very effective material for performing long wavelength conversion of light. In addition, there are a wide variety of types including fluorescent whitening agents, and there are many commercially available materials, and the range of selection is wide. In addition, an almost arbitrary emission spectrum can be obtained from near ultraviolet light to visible light by selecting a material. Further, there are a wide variety of film forming means, such as a vapor deposition method and a method of coating by dispersing in a polymer binder. From these facts, even when used for a solar cell, it can be formed simply and inexpensively according to its structure and use.

【0008】[0008]

【発明の実施の形態】以上説明したように本発明は、ア
モルファスシリコン太陽電池の光入射面に蛍光性薄膜を
形成させたことを特徴とするものである。蛍光性薄膜の
形成には蛍光性材料の蒸着法など様々な方法を利用する
ことが出来る。また、蛍光性材料を高分子バインダーに
分散しコーティングする方法も安価で容易である。高分
子バインダーに分散しコーティングするには、バーコー
ト法、スピンコート法、ディップコート法などが使用で
き、太陽電池の構造、生産工程などにあわせて選択する
ことが可能である。アモルファスシリコン太陽電池の構
成としては、ガラス等の透明基板上に形成したもので
も、不透明基板状に形成したものでも良く、その光入射
面に蛍光性薄膜を形成すれば良い。以下本発明の実施例
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present invention is characterized in that a fluorescent thin film is formed on a light incident surface of an amorphous silicon solar cell. Various methods such as a vapor deposition method of a fluorescent material can be used for forming the fluorescent thin film. Also, a method of dispersing a fluorescent material in a polymer binder and coating it is inexpensive and easy. Bar coating, spin coating, dip coating, and the like can be used to disperse and coat the polymer binder, and can be selected according to the structure of the solar cell, the production process, and the like. The structure of the amorphous silicon solar cell may be one formed on a transparent substrate such as glass or one formed in an opaque substrate, and a fluorescent thin film may be formed on the light incident surface. Hereinafter, embodiments of the present invention will be described.

【0009】[0009]

【実施例】図1に示したアモルファス太陽電池を形成し
た。ガラス基板、透明電極として凸凹を有する酸化錫膜
を用いた。光電変換層は、p型a-SiC:H、i型a-Si:H、
n型a-Si:H の順に形成し、さらに裏面電極としてTi
膜を形成した。蛍光性薄膜用材料として1,1,4,4-テトラ
フェニル1,3-ブタジエンを40wt% 分散したポリカーボ
ネートのジクロロメタン溶液を調整した。,1,4,4-テト
ラフェニル1,3-ブタジエンは約430nmに蛍光の発光ピ
ークを有する材料であり、ポリカーボネートなどの透明
樹脂にたいする分散性も優れている。この溶液を用い上
記アモルファスシリコン太陽電池のガラス面上にバーコ
ート法により約20μmの蛍光性薄膜を形成した。蛍光性
薄膜内の溶媒除去のため80℃12時間の加熱乾燥を行い測
定用試料とした。また、比較例1として蛍光性薄膜を有
さないアモルファスシリコン太陽電池を、比較例2とし
て蛍光性薄膜の代わりにテトラフェニルブタジエンを含
まないポリカーボネートを約20μmコートしたアモルフ
ァスシリコン太陽電池を用意した。比較例に用いたアモ
ルファスシリコン太陽電池は実施例と同条件で作製し
た。
EXAMPLE An amorphous solar cell shown in FIG. 1 was formed. A glass substrate and a tin oxide film having irregularities were used as transparent electrodes. The photoelectric conversion layer includes p-type a-SiC: H, i-type a-Si: H,
Formed in the order of n-type a-Si: H, and Ti
A film was formed. As a material for a fluorescent thin film, a dichloromethane solution of polycarbonate in which 1,1,4,4-tetraphenyl-1,3-butadiene was dispersed at 40 wt% was prepared. 1,1,4,4-Tetraphenyl 1,3-butadiene is a material having a fluorescence emission peak at about 430 nm, and has excellent dispersibility in transparent resins such as polycarbonate. Using this solution, a fluorescent thin film of about 20 μm was formed on the glass surface of the amorphous silicon solar cell by a bar coating method. The sample was dried by heating at 80 ° C. for 12 hours to remove the solvent in the fluorescent thin film. Further, as Comparative Example 1, an amorphous silicon solar cell having no fluorescent thin film was prepared, and as Comparative Example 2, an amorphous silicon solar cell coated with about 20 μm of polycarbonate containing no tetraphenylbutadiene instead of the fluorescent thin film was prepared. The amorphous silicon solar cell used in the comparative example was manufactured under the same conditions as in the example.

【0010】これらの試料をAM1(100mW/cm
2)の照射光下において光電変換特性の測定を行った。
その際の短絡電流(Jsc:μA/cm2)、開放電圧(Vo
c:V)、曲線因子(f.f.)、変換効率(eff.:%)を以
下に示す。なお太陽電池素子の面積は全て0.5cm2であ
る。 比較例1 比較例2 本発明 Jsc(mA/cm2): 12.3 12.0 12.9 Voc(V): 0.86 0.86 0.87 f.f.: 0.62 0.62 0.62 eff.(%): 6.56 6.40 6.96
These samples were prepared using AM1 (100 mW / cm
Under the irradiation light of 2), the photoelectric conversion characteristics were measured.
At that time, the short-circuit current (Jsc: μA / cm2) and the open-circuit voltage (Vo
c: V), fill factor (ff), and conversion efficiency (eff .:%) are shown below. The area of all the solar cell elements is 0.5 cm2. Comparative Example 1 Comparative Example 2 Present invention Jsc (mA / cm 2): 12.3 12.0 12.9 Voc (V): 0.86 0.86 0.87 ff: 0.62 0.62 0.62 eff. (%): 6.56 6.40 6.96

【0011】[0011]

【発明の効果】この結果から、本発明により安価かつ簡
便にアモルファスシリコン太陽電池の光電変換効率を向
上させ得ることが解る。またこの効果は単にポリカーボ
ネート薄膜によるものではなく、蛍光性を有することに
よって発現していることが解る。
From the results, it is understood that the present invention can improve the photoelectric conversion efficiency of the amorphous silicon solar cell inexpensively and easily. Further, it can be understood that this effect is exhibited not only by the polycarbonate thin film but also by having fluorescence.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるアモルファスシリコン太陽電池
の断面図である。
FIG. 1 is a sectional view of an amorphous silicon solar cell according to the present invention.

【符号の説明】[Explanation of symbols]

1 蛍光性薄膜 2 ガラス基板 3 透明電極 4 光電変換層 5 裏面電極 DESCRIPTION OF SYMBOLS 1 Fluorescent thin film 2 Glass substrate 3 Transparent electrode 4 Photoelectric conversion layer 5 Back electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光入射面に蛍光性薄膜を形成することを
特徴としたアモルファスシリコン太陽電池。
1. An amorphous silicon solar cell, wherein a fluorescent thin film is formed on a light incident surface.
JP10018909A 1998-01-30 1998-01-30 Amorphous silicon solar cell Pending JPH11220147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10018909A JPH11220147A (en) 1998-01-30 1998-01-30 Amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10018909A JPH11220147A (en) 1998-01-30 1998-01-30 Amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPH11220147A true JPH11220147A (en) 1999-08-10

Family

ID=11984740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10018909A Pending JPH11220147A (en) 1998-01-30 1998-01-30 Amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPH11220147A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110329A3 (en) * 2010-03-08 2012-05-03 Calyxo Gmbh Photovoltaic element with optically functional conversion layer for improving the conversion of the incident light and method for producing said photovoltaic element
WO2013116569A1 (en) * 2012-02-01 2013-08-08 Nitto Denko Corporation Wavelength conversion layer on a glass plate to enhance solar harvesting efficiency
US9287419B2 (en) 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
US9382424B2 (en) 2011-09-26 2016-07-05 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
US9394479B2 (en) 2011-10-05 2016-07-19 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency
US9399730B2 (en) 2011-12-06 2016-07-26 Nitto Denko Corporation Wavelength conversion material as encapsulate for solar module systems to enhance solar harvesting efficiency

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110329A3 (en) * 2010-03-08 2012-05-03 Calyxo Gmbh Photovoltaic element with optically functional conversion layer for improving the conversion of the incident light and method for producing said photovoltaic element
US9287419B2 (en) 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
US9382424B2 (en) 2011-09-26 2016-07-05 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
US9394479B2 (en) 2011-10-05 2016-07-19 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency
US9399730B2 (en) 2011-12-06 2016-07-26 Nitto Denko Corporation Wavelength conversion material as encapsulate for solar module systems to enhance solar harvesting efficiency
WO2013116569A1 (en) * 2012-02-01 2013-08-08 Nitto Denko Corporation Wavelength conversion layer on a glass plate to enhance solar harvesting efficiency
CN105985661A (en) * 2012-02-01 2016-10-05 日东电工株式会社 Wavelength conversion layer on a glass plate to enhance solar harvesting efficiency

Similar Documents

Publication Publication Date Title
CA1096022A (en) Photovoltaic cell
AU779449B2 (en) Solid state heterojunction and solid state sensitized photovoltaic cell
Gregg Bilayer molecular solar cells on spin-coated TiO2 substrates
AU2008290641B2 (en) Solar cell construction
Chawla et al. Photovoltaic review of all generations: environmental impact and its market potential
US20040251508A1 (en) Sensitizing dye solar cell
AU2005225062A1 (en) Tandem thin film solar cell
JP2001148491A (en) Photoelectric conversion element
GB2024513A (en) Organic photovoltaic devices
CN106784040A (en) A kind of CIGS based thin film solar cells and preparation method thereof
JPH05335614A (en) Photoelectric conversion element
CN110718634A (en) Solar cell with electronic transmission layer of grating array structure and preparation method thereof
CN110611030A (en) Perovskite solar cell with array structure electron transport layer and preparation method thereof
JPH11220147A (en) Amorphous silicon solar cell
CN111029466B (en) Perovskite solar cell without carrier transport layer and preparation method thereof
Meier et al. High-efficiency amorphous and" micromorph" silicon solar cells
Mahesh et al. TiO2 microstructure, fabrication of thin film solar cells and introduction to dye sensitized solar cells
CN113394343B (en) Back-incident p-i-n structure perovskite solar cell and preparation method thereof
Fang et al. CdSe/TiO2 nanocrystalline solar cells
CN210668422U (en) Solar cell with electronic transmission layer of grating array structure
CN210379115U (en) Perovskite solar cell with array structure electron transport layer
US20170084763A1 (en) Semiconductor device
Tracey et al. Sol-gel derived TiO2/lead phthalocyanine photovoltaic cells
CN101651166A (en) Semiconductor structure and thin-film photovoltaic device having same
KR102634851B1 (en) Transparent solar cells with adjusted thickness of light transmission layer and their manufacturing methods