JP2001094129A - CdS/CdTe SOLAR CELL - Google Patents

CdS/CdTe SOLAR CELL

Info

Publication number
JP2001094129A
JP2001094129A JP27081299A JP27081299A JP2001094129A JP 2001094129 A JP2001094129 A JP 2001094129A JP 27081299 A JP27081299 A JP 27081299A JP 27081299 A JP27081299 A JP 27081299A JP 2001094129 A JP2001094129 A JP 2001094129A
Authority
JP
Japan
Prior art keywords
film
cds
solar cell
cdte
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27081299A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ogawa
泰弘 小川
Toshiro Maruyama
敏朗 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27081299A priority Critical patent/JP2001094129A/en
Publication of JP2001094129A publication Critical patent/JP2001094129A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance CdS/CdTe solar cell by enlarging the photoelectrically convertible wavelength range. SOLUTION: A CdS film 3 and a CdTe film 4 are formed sequentially on one side of a transparent glass substrate 2, an AgIn film 7 is formed on the CdS film, while a current collector film 5 and an AgIn film 6 are formed on the CdTe film 4, and a film 1 containing a fluorescent substance an absorbing light, having a wavelength shorter than 510 nm and an emitting light having wavelength of 510 nm or longer is formed on the other side of the transparent glass substrate 2 to produce a CdS/CdTe solar cell. Since photoelectrically unconvertible light having wavelength of shorter than 510 nm is converted through the wavelength converting action of the fluorescent substance into photoelectrically convertible light, optical energy of a light source can be photoelectrically converted effectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CdS/CdTe
太陽電池の高性能化に関する。
TECHNICAL FIELD The present invention relates to a CdS / CdTe
Regarding high performance of solar cells.

【0002】[0002]

【従来の技術】近年、電卓や自動車用アクセサリーなど
の民生用小型機器の電源としてCdS/CdTe太陽電
池が普及しつつある。
2. Description of the Related Art In recent years, CdS / CdTe solar cells have become widespread as power sources for small consumer devices such as calculators and automobile accessories.

【0003】このCdS/CdTe太陽電池は、透明ガ
ラス基板の一方の面に、CdS膜およびCdTe膜を順
次それぞれの材料を含むペーストを塗布焼結することに
よって形成した後、CdTe膜に正電極を、CdS膜に
負電極を形成して作製される(例えば、特開平7−30
137号公報)。このCdS/CdTe太陽電池では5
10nm〜860nmの波長の光が太陽電池の光電変換
層であるCdS/CdTeの接合部分に入射され光電変
換される。つまり、510nm未満の波長の光は光電変
換されない。この510nm以下の光が光電変換される
ようにできれば、太陽電池の光電変換効率が上がり、性
能の向上につながる。
In this CdS / CdTe solar cell, a CdS film and a CdTe film are sequentially formed on one surface of a transparent glass substrate by applying and sintering a paste containing each material, and then a positive electrode is formed on the CdTe film. , Formed by forming a negative electrode on a CdS film (for example, see JP-A-7-30).
137). In this CdS / CdTe solar cell, 5
Light having a wavelength of 10 nm to 860 nm is incident on a CdS / CdTe junction, which is a photoelectric conversion layer of a solar cell, and is photoelectrically converted. That is, light having a wavelength of less than 510 nm is not photoelectrically converted. If the light having a wavelength of 510 nm or less can be photoelectrically converted, the photoelectric conversion efficiency of the solar cell increases, which leads to an improvement in performance.

【0004】このCdS/CdTe太陽電池性能の向上
のため、CdS膜の膜厚を0.1μm以下と小さくする
ことにより510nm以下の波長の光を光電変換させて
高性能化を行う提案がされている(例えば、特開平11
−31826号公報)。
In order to improve the performance of the CdS / CdTe solar cell, it has been proposed to reduce the thickness of the CdS film to 0.1 μm or less to photoelectrically convert light having a wavelength of 510 nm or less to improve the performance. (See, for example,
-31826 gazette).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では問題点を有しており、太陽電池性能の向上
が十分なされていない。
However, the above-mentioned conventional configuration has a problem, and the solar cell performance is not sufficiently improved.

【0006】特開平11−31826号公報などで提案
されているCdS/CdTe太陽電池においてCdS膜
の膜厚を0.1μm以下にする構成では、CdS膜を薄
くしたことにより膜抵抗が増加し、この悪影響を防止す
るためにガラス基板とCdS膜との間に透明導電膜を新
たに形成する必要がある。しかし、透明導電膜は高価で
あり、コスト高となる問題点を有していた。さらに、C
dS膜の膜厚を均一に小さくすることは困難であり、C
dS膜にピンホールが発生しやすくなり、大面積の太陽
電池を作製する際には歩留悪化の要因となる問題点も有
していた。
In a CdS / CdTe solar cell proposed in Japanese Patent Application Laid-Open No. 11-31826 and the like in which the thickness of the CdS film is set to 0.1 μm or less, the film resistance is increased by making the CdS film thinner. In order to prevent this adverse effect, it is necessary to newly form a transparent conductive film between the glass substrate and the CdS film. However, the transparent conductive film is expensive and has a problem of high cost. Further, C
It is difficult to reduce the thickness of the dS film uniformly,
Pinholes are likely to be generated in the dS film, and there is also a problem that the yield is deteriorated when manufacturing a large-area solar cell.

【0007】また、太陽電池の受光面に蛍光物質の膜を
形成し、蛍光物質の波長変換作用を利用して、光電変換
に寄与できる光の波長範囲を短波長側に広げて高性能化
を行う提案が特開平6−31074号公報などでされて
いるがこれらはシリコン系太陽電池においてのものであ
り、吸収波長の異なるCdS/CdTe太陽電池につい
ての具体的な記述はなされていない。
Further, a film of a fluorescent substance is formed on the light-receiving surface of the solar cell, and the wavelength conversion function of the fluorescent substance is used to extend the wavelength range of light that can contribute to photoelectric conversion to the shorter wavelength side to improve the performance. Although proposals to be made are made in Japanese Patent Application Laid-Open No. 6-31074 and the like, they are for silicon-based solar cells, and there is no specific description about CdS / CdTe solar cells having different absorption wavelengths.

【0008】本発明はこのような従来の上記課題を解決
するものであり、安価で高性能なCdS/CdTe太陽
電池を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and has as its object to provide an inexpensive and high-performance CdS / CdTe solar cell.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに本発明のCdS/CdTe太陽電池は、透明ガラス
基板の一方の面にCdS膜およびCdTe膜を順次形成
し、前記CdS膜に負電極を、前記CdTe膜に正電極
を形成し、さらに前記透明ガラス基板の他方の面に51
0nm未満の波長の光で吸収励起し510nm以上の波
長の光を発光する蛍光物質を含む膜を形成する構成とし
たものである。上記構成により、蛍光物質の波長変換作
用を利用して、光電変換できる光の波長範囲を短波長側
に広げて高光電変換効率化を行うことができる。これ
は、従来CdS/CdTe太陽電池では光電変換できな
かった510nm未満の波長の光が、光電変換できる5
10nm以上の波長の光に変換され、太陽電池の光電変
換層であるCdS/CdTe接合に入射するので、実質
的に光電変換できる光の波長範囲を510nm未満の短
波長側に広げることができるものである。したがって、
光電変換効率が向上し高性能のCdS/CdTe太陽電
池を得ることができる。
In order to solve the above-mentioned problems, a CdS / CdTe solar cell according to the present invention has a CdS film and a CdTe film sequentially formed on one surface of a transparent glass substrate, and a negative electrode is formed on the CdS film. An electrode is formed by forming a positive electrode on the CdTe film and further forming a positive electrode on the other surface of the transparent glass substrate.
A film containing a fluorescent substance that absorbs and excites with light having a wavelength of less than 0 nm and emits light with a wavelength of 510 nm or more is formed. According to the above configuration, the wavelength conversion function of the fluorescent substance can be used to widen the wavelength range of light that can be photoelectrically converted to a shorter wavelength side, thereby achieving higher photoelectric conversion efficiency. This is because light having a wavelength of less than 510 nm, which could not be photoelectrically converted by a conventional CdS / CdTe solar cell, can be photoelectrically converted.
Since it is converted into light having a wavelength of 10 nm or more and is incident on a CdS / CdTe junction, which is a photoelectric conversion layer of a solar cell, the wavelength range of light that can be substantially photoelectrically converted can be extended to a shorter wavelength side of less than 510 nm It is. Therefore,
A high-performance CdS / CdTe solar cell with improved photoelectric conversion efficiency can be obtained.

【0010】[0010]

【発明の実施の形態】本発明は、透明ガラス基板の一方
の面にCdS膜およびCdTe膜を順次形成し、前記C
dS膜に負電極を、前記CdTe膜に正電極を形成した
CdS/CdTe太陽電池であり、前記透明ガラス基板
の他方の面に510nm未満の波長の光で吸収励起し5
10nm以上の波長の光を発光する蛍光物質を含む膜を
形成したものである。このような構成とすることによ
り、蛍光物質の光波長変換作用を利用してCdS/Cd
Te太陽電池の光電変換できる光の波長範囲を短波長側
に広げ、光源の光エネルギーをより有効に電気エネルギ
ーに変換することができるので高光電変換効率化を行う
ことができ、高性能のCdS/CdTe太陽電池を得る
ことができる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a CdS film and a CdTe film are sequentially formed on one surface of a transparent glass substrate.
A CdS / CdTe solar cell in which a negative electrode is formed on a dS film and a positive electrode is formed on the CdTe film, and the other surface of the transparent glass substrate is excited by absorption with light having a wavelength of less than 510 nm.
A film containing a fluorescent substance that emits light having a wavelength of 10 nm or more is formed. With such a configuration, CdS / Cd
The wavelength range of light that can be photoelectrically converted by the Te solar cell is extended to the shorter wavelength side, and the light energy of the light source can be more effectively converted to electric energy, so that high photoelectric conversion efficiency can be achieved and high performance CdS / CdTe solar cell can be obtained.

【0011】CdS/CdTe太陽電池では510nm
〜860nmの波長の光が太陽電池の光電変換層である
CdS/CdTeの接合部分に入射され光電変換され
る。この波長に対する光電変換される感度を分光感度と
いい、結晶シリコン太陽電池の分光感度は波長800n
mをピークになだらかな正規分布曲線を描いており、ま
た、アモルファスシリコン太陽電池の分光感度も波長5
50nmをピークになだらかな正規分布曲線を描いてお
り極端な分光感度を示さない。これに対し、CdS/C
dTe太陽電池における分光感度は波長510nm〜8
60nmで非常に高感度であり、それ以外のところでは
ほとんど光電変換されない。このため、510nm未満
の光電変換されていない波長を光電変換される波長領域
に変換することが光電変換効率を向上することに大きく
寄与することとなる。
510 nm for CdS / CdTe solar cells
Light having a wavelength of 8860 nm is incident on a CdS / CdTe junction, which is a photoelectric conversion layer of a solar cell, and is photoelectrically converted. The sensitivity at which photoelectric conversion is performed with respect to this wavelength is referred to as spectral sensitivity.
m shows a gentle normal distribution curve with a peak, and the spectral sensitivity of the amorphous silicon
It draws a gentle normal distribution curve with a peak at 50 nm, and does not show extreme spectral sensitivity. On the other hand, CdS / C
The spectral sensitivity of the dTe solar cell is 510 nm to 8
Very high sensitivity is obtained at 60 nm, and little else is photoelectrically converted. For this reason, converting the wavelength of less than 510 nm that has not been subjected to photoelectric conversion into a wavelength region where photoelectric conversion is performed will greatly contribute to improving photoelectric conversion efficiency.

【0012】本発明の構造とすることにより、従来光電
変換できなかった510nm未満の波長の光が、光電変
換できる510nm以上の波長の光に変換され、太陽電
池の光電変換層であるCdS/CdTeの接合部分に入
射するので、実質的に光電変換できる光の波長範囲を5
10nm未満の短波長側に広げることができる。このこ
とにより太陽電池の光電変換効率が上がり、太陽電池性
能の向上につながる。
According to the structure of the present invention, light having a wavelength of less than 510 nm, which could not be photoelectrically converted conventionally, is converted into light of a wavelength of 510 nm or more that can be photoelectrically converted. , The wavelength range of light that can be substantially photoelectrically converted is 5
It can be extended to shorter wavelengths of less than 10 nm. This increases the photoelectric conversion efficiency of the solar cell, leading to an improvement in solar cell performance.

【0013】特に、室内で用いる白色蛍光灯の発光スペ
クトルは波長510nm未満で多くのスペクトル強度を
持つため、屋内用CdS/CdTe太陽電池に用いるこ
とは効果が大きく好ましい。
In particular, since the emission spectrum of a white fluorescent lamp used indoors has a large spectrum intensity at a wavelength of less than 510 nm, its use for indoor CdS / CdTe solar cells is highly effective and preferable.

【0014】さらにCdS膜の膜厚が0.5μm以上で
あることが好ましい。CdS膜の膜厚が十分大きい場合
には、そのバンドギャップ2.4eV以上のエネルギー
を持つ波長510nm以下の光は、すべて吸収され光電
変換が行われるCdS/CdTeの接合部分まで光が到
達しないので、光電変換に寄与できない。しかし、Cd
S膜の膜厚が0.5μm以下になると、波長510nm
以下の光がCdS膜を透過し光電変換に寄与するように
なり、光電変換できる波長範囲510〜860nmから
短波長域に広がる。このような場合には、本発明のよう
に蛍光着色剤を含む膜を太陽電池の受光面に形成しても
その効果は十分得られない。従って、CdS膜の膜厚は
0.5μm以上であることが好ましい。
Further, the thickness of the CdS film is preferably 0.5 μm or more. When the thickness of the CdS film is sufficiently large, light having a wavelength of 510 nm or less having energy having a band gap of 2.4 eV or more is not absorbed and reaches the CdS / CdTe junction where photoelectric conversion is performed. Cannot contribute to photoelectric conversion. However, Cd
When the thickness of the S film becomes 0.5 μm or less, the wavelength 510 nm
The following light passes through the CdS film and contributes to photoelectric conversion, and spreads from a wavelength range of 510 to 860 nm where photoelectric conversion can be performed to a short wavelength range. In such a case, even if a film containing a fluorescent colorant is formed on the light receiving surface of the solar cell as in the present invention, the effect cannot be sufficiently obtained. Accordingly, the thickness of the CdS film is preferably 0.5 μm or more.

【0015】また、CdS膜がCdS粉を主成分とする
ペーストの塗布焼結で形成した膜であることが好まし
い。この方法では、大面積で均一な膜が得られ、さらに
は、パターニングが容易に行える。
Preferably, the CdS film is a film formed by applying and sintering a paste containing CdS powder as a main component. According to this method, a uniform film having a large area can be obtained, and further, patterning can be easily performed.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】(実施例1)主として蛍光灯、白熱灯を光
源として使用される屋内用のCdS/CdTe太陽電池
を作製した。図1に本発明の基本CdS/CdTe太陽
電池セルの断面を示す。透明ガラス基板2の一方の面に
CdS膜3およびCdTe膜4がこの順に形成されてお
り、CdTe膜4には集電体膜5と正電極となるAgI
n膜6が形成されており、CdS膜3には負電極となる
AgIn膜7が形成されている。太陽電池の受光面とな
る透明ガラス基板2の他方の面には蛍光物質膜1が形成
されている。
Example 1 An indoor CdS / CdTe solar cell mainly using a fluorescent lamp and an incandescent lamp as a light source was manufactured. FIG. 1 shows a cross section of a basic CdS / CdTe solar cell of the present invention. On one surface of the transparent glass substrate 2, a CdS film 3 and a CdTe film 4 are formed in this order, and the CdTe film 4 has a current collector film 5 and a AgI serving as a positive electrode.
An n film 6 is formed, and an AgIn film 7 serving as a negative electrode is formed on the CdS film 3. A phosphor film 1 is formed on the other surface of the transparent glass substrate 2, which is a light receiving surface of the solar cell.

【0018】CdS膜は、CdS粉とCdCl2粉とを
重量比で4:1のプロピレングリコールと水の混合溶液
に、重量比で100:12:30の割合で分散してなる
CdSペーストを透明ガラス基板に印刷し、乾燥を行っ
た後、690℃の窒素ガス気流下で約60分加熱し焼結
処理を行って作成した。
The CdS film is made of a CdS paste obtained by dispersing a CdS powder and a CdCl 2 powder in a mixed solution of propylene glycol and water at a weight ratio of 4: 1 at a weight ratio of 100: 12: 30. After printing on a glass substrate and drying, it was heated under a nitrogen gas flow at 690 ° C. for about 60 minutes to perform sintering.

【0019】CdTe膜は、CdとTeを水中で粉砕
し、乾燥した粉とdCl2粉をエチレングリコールモノ
フェニルエーテルに、重量比で100:0.5:30の
割合で分散してなるCdTeペーストを透明ガラス基板
上に形成したCdS膜上に印刷し、乾燥を行った後、6
20℃の窒素ガス気流下で約20分加熱し焼結処理を行
って作製した。
The CdTe film is a CdTe paste obtained by pulverizing Cd and Te in water, and dispersing a dried powder and dCl 2 powder in ethylene glycol monophenyl ether at a weight ratio of 100: 0.5: 30. Is printed on a CdS film formed on a transparent glass substrate, dried, and then dried.
It was manufactured by heating under a nitrogen gas stream at 20 ° C. for about 20 minutes to perform a sintering process.

【0020】本実施例では、CdS膜、CdTe膜、集
電体膜およびAgIn膜で構成される基本セルを印刷パ
ターニングでガラス基板に4個直列に接続したCdS/
CdTe太陽電池を用いた。CdS膜の膜厚は8〜10
μmであり、CdTe膜の膜厚は15〜20μmであ
る。
In this embodiment, four basic cells each composed of a CdS film, a CdTe film, a current collector film and an AgIn film are connected in series to a glass substrate by printing patterning.
CdTe solar cells were used. The thickness of the CdS film is 8 to 10
μm, and the thickness of the CdTe film is 15 to 20 μm.

【0021】このようにして作製したCdS/CdTe
太陽電池の透明ガラス基板の受光面に蛍光物質を塗布し
て蛍光物質膜を形成し、本発明の実施例による太陽電池
Aを作製した。蛍光物質は蛍光着色剤(日本蛍光化学
(株)製 MPI−505C)を用い、これをエポキシ
樹脂とブチルカルビトールと混合してペースト状にし、
太陽電池の透明ガラス基板の受光面に塗布乾燥すること
により蛍光物質膜を形成した。比較例として、蛍光物質
膜を形成しない太陽電池を作成し、従来の太陽電池Xと
した。これら、本発明の太陽電池Aおよび従来の太陽電
池Xの分光スペクトル感度を日本分光(株)製 YQ−
250CW型定出力エネルギー分光器を用いて測定し
た。これは、定フォントで光を照射し、これにより流れ
る電流値を測定することにより分光スペクトル感度を表
すものである。
The CdS / CdTe thus prepared
A fluorescent substance was applied to the light receiving surface of the transparent glass substrate of the solar cell to form a fluorescent substance film, and a solar cell A according to an example of the present invention was manufactured. The fluorescent substance is a fluorescent colorant (MPI-505C manufactured by Nippon Fluorescent Chemical Co., Ltd.), which is mixed with an epoxy resin and butyl carbitol to form a paste.
A fluorescent material film was formed by applying and drying the light receiving surface of the transparent glass substrate of the solar cell. As a comparative example, a solar cell without a fluorescent material film was prepared, which was used as a conventional solar cell X. The spectral spectral sensitivities of the solar cell A of the present invention and the conventional solar cell X were measured by using YQ- manufactured by JASCO Corporation.
It measured using the 250CW type constant output energy spectrometer. This is to express spectral spectral sensitivity by irradiating light with a fixed font and measuring a current value flowing thereby.

【0022】図2にこの蛍光着色剤の吸収励起スペクト
ルと蛍光発光スペクトルを測定した結果を示す。波長範
囲が350〜500nmの光により励起され、波長範囲
が450〜600nmの蛍光を発している。
FIG. 2 shows the results of measuring the absorption excitation spectrum and the fluorescence emission spectrum of this fluorescent colorant. It is excited by light having a wavelength range of 350 to 500 nm and emits fluorescence having a wavelength range of 450 to 600 nm.

【0023】図3は太陽電池の分光スペクトル感度を測
定した結果を示したものである。横軸に波長、縦軸に分
光感度を光電流にて表したものである。(a)は蛍光物
質膜を形成しない従来の太陽電池Xであり、510〜8
60nmの波長範囲の光を光電変換している。一方、
(b)は10μmの膜厚の蛍光物質膜を形成した本発明
の太陽電池Aであり、510〜860nmの波長範囲に
加えて350〜500nmの波長範囲の光をも光電変換
している。これは、蛍光着色剤によって波長範囲350
〜500nmの光が波長範囲450〜600nmの光に
変換され、このうちの波長510nm以上の光がCdS
/CdTeの接合部分で光電変換されるからである。
FIG. 3 shows the result of measuring the spectral sensitivity of the solar cell. The horizontal axis represents wavelength, and the vertical axis represents spectral sensitivity in photocurrent. (A) is a conventional solar cell X in which a fluorescent material film is not formed.
Light in the wavelength range of 60 nm is photoelectrically converted. on the other hand,
(B) is a solar cell A of the present invention in which a phosphor film having a thickness of 10 μm is formed, and photoelectrically converts light in the wavelength range of 350 to 500 nm in addition to the wavelength range of 510 to 860 nm. This is due to the fact that the fluorescent colorant
Is converted to light having a wavelength range of 450 to 600 nm, and light having a wavelength of 510 nm or more is converted to CdS.
This is because photoelectric conversion is performed at the junction of / CdTe.

【0024】また、蛍光物質膜の膜厚を0、3、10、
20μmと変え、これらの太陽電池を白色蛍光灯(照度
200ルクス)と昼光色蛍光灯(照度200ルクス)を
光源として太陽電池の光電変換特性を測定した。この結
果を(表1)に示す。
Further, the thickness of the fluorescent material film is set to 0, 3, 10,
The photovoltaic conversion characteristics of these solar cells were measured using a white fluorescent lamp (illuminance of 200 lux) and a daylight fluorescent lamp (illuminance of 200 lux) as light sources. The results are shown in (Table 1).

【0025】[0025]

【表1】 [Table 1]

【0026】(表1)の結果から、蛍光物質膜の膜厚を
0μm(蛍光物質膜形成なし)から、3μm、10μ
m、20μmとすることにより短絡電流が増加し、結果
として最大出力が増加していることがわかる。
From the results shown in Table 1, the thickness of the fluorescent material film was changed from 0 μm (no fluorescent material film was formed) to 3 μm, 10 μm.
It can be seen that the short circuit current increases by setting m and 20 μm, and as a result, the maximum output increases.

【0027】これは、従来のCdS/CdTe太陽電池
の光電変換できる波長範囲510〜860nmより短波
長域にも白色蛍光灯および昼光色蛍光灯の発光スペクト
ルは広がっており、従来使われなかったこの波長510
nm未満の部分の光が蛍光物質膜の形成によって有効に
光電変換できるようになったことによるものである。
This is because the emission spectra of the white fluorescent lamp and the daylight fluorescent lamp are spread even in a wavelength range shorter than the wavelength range of 510 to 860 nm in which the photoelectric conversion of the conventional CdS / CdTe solar cell can be performed. 510
This is because light of a portion smaller than nm can be effectively photoelectrically converted by forming the fluorescent material film.

【0028】(実施例2)主として屋外光を光源として
使用される屋外用のCdS/CdTe太陽電池を作製し
た。基本CdS/CdTe太陽電池セルは実施例1の屋
内用と同じ構造であり、同様の方法にて作製した。
Example 2 An outdoor CdS / CdTe solar cell mainly using outdoor light as a light source was manufactured. The basic CdS / CdTe solar cell has the same structure as the indoor one of Example 1, and was manufactured by the same method.

【0029】本実施例ではCdS膜、CdTe膜、集電
体膜およびAgIn膜で構成される基本セルを印刷パタ
ーニングでガラス基板に8個直列に接続したCdS/C
dTe太陽電池を用いた。CdS膜の膜厚は15〜20
μmである。このCdS/CdTe太陽電池の透明ガラ
ス基板の受光面に蛍光物質を塗布して蛍光物質膜を形成
し、本発明の実施例による太陽電池Bを作製した。蛍光
物質は蛍光着色剤(日本蛍光化学(株)製 MPI−5
05C)を用い、これをエポキシ樹脂とブチルカルビト
ールと混合してペースト状にし、太陽電池の透明ガラス
基板の受光面に塗布乾燥することにより蛍光物質膜を形
成した。比較例として、蛍光物質膜を形成しない太陽電
池を作成し、従来の太陽電池Yとした。これら、本発明
の太陽電池Bおよび従来の太陽電池Yの分光スペクトル
感度を実施例1と同様の方法で測定した。
In this embodiment, eight CdS / Cd cells are connected in series to a glass substrate by printing patterning of a basic cell composed of a CdS film, a CdTe film, a current collector film and an AgIn film.
A dTe solar cell was used. The thickness of the CdS film is 15 to 20
μm. A fluorescent substance was applied to the light receiving surface of the transparent glass substrate of the CdS / CdTe solar cell to form a fluorescent substance film, thereby manufacturing a solar cell B according to the embodiment of the present invention. The fluorescent substance is a fluorescent colorant (MPI-5 manufactured by Nippon Fluorescent Chemical Co., Ltd.)
05C), which was mixed with an epoxy resin and butyl carbitol to form a paste, and applied to the light-receiving surface of a transparent glass substrate of a solar cell and dried to form a fluorescent material film. As a comparative example, a solar cell without a fluorescent material film was prepared, and was used as a conventional solar cell Y. The spectral sensitivities of the solar cell B of the present invention and the conventional solar cell Y were measured in the same manner as in Example 1.

【0030】図4は太陽電池の分光スペクトル感度を測
定した結果を示したものである。横軸に波長、縦軸に分
光感度を光電流にて表したものである。(a)は蛍光物
質膜を形成しない従来の太陽電池Yであり、510〜8
60nmの波長範囲の光を光電変換している。一方、
(b)は10μmの膜厚の蛍光物質膜を形成した本発明
の太陽電池Bであり、510〜860nmの波長範囲に
加えて350〜500nmの波長範囲の光をも光電変換
している。
FIG. 4 shows the result of measuring the spectral sensitivity of the solar cell. The horizontal axis represents wavelength, and the vertical axis represents spectral sensitivity in photocurrent. (A) is a conventional solar cell Y without forming a fluorescent material film,
Light in the wavelength range of 60 nm is photoelectrically converted. on the other hand,
(B) is a solar cell B of the present invention in which a phosphor film having a thickness of 10 μm is formed, and photoelectrically converts light in a wavelength range of 350 to 500 nm in addition to a wavelength range of 510 to 860 nm.

【0031】また、擬似太陽光(照射エネルギー:1k
W/m2)を光源として太陽電池の光電変換特性を測定
した。この結果を(表2)に示す。
In addition, simulated sunlight (irradiation energy: 1 k
W / m 2 ) as a light source, and the photoelectric conversion characteristics of the solar cell were measured. The results are shown in (Table 2).

【0032】[0032]

【表2】 [Table 2]

【0033】(表2)の結果から、蛍光物質膜を形成し
ないものと比較し、蛍光物質膜を10μmとすることに
より短絡電流が増加し、結果として最大出力が増加して
いることがわかる。
From the results shown in Table 2, it can be seen that the short-circuit current is increased by setting the thickness of the fluorescent material film to 10 μm as compared with the case where no fluorescent material film is formed, and as a result, the maximum output is increased.

【0034】これは、従来のCdS/CdTe太陽電池
の光電変換できる波長範囲510〜860nmより短波
長域の光が蛍光物質膜の形成によって有効に光電変換で
きるようになったことによる。
This is because light in a wavelength range shorter than 510 to 860 nm, which can be photoelectrically converted in a conventional CdS / CdTe solar cell, can be effectively photoelectrically converted by forming a fluorescent material film.

【0035】本実施例ではCdS膜を塗布焼結法により
製膜したが、塗布焼結法に限らず、蒸着や電着などの方
法を用いて製膜してもよい。
In this embodiment, the CdS film is formed by the coating and sintering method. However, the film is not limited to the coating and sintering method, but may be formed by a method such as vapor deposition or electrodeposition.

【0036】実施例に用いた蛍光物質としての蛍光着色
剤は、波長範囲が350〜500nmの光により励起さ
れ波長範囲が450〜600nmの蛍光を発するもので
あり、CdS/CdTe太陽電池の光電変換できる波長
範囲を広げるのに好都合であるが、これに限ることなく
510nm未満の波長の光により励起され510nm以
上の波長の蛍光を発する材料であれば、蛍光物質の材料
によらずCdS/CdTe太陽電池の受光面に蛍光物質
の膜を形成し、CdS/CdTe太陽電池の性能を向上
させることができる。
The fluorescent colorant as the fluorescent substance used in the examples is excited by light having a wavelength range of 350 to 500 nm and emits fluorescence having a wavelength range of 450 to 600 nm, and is used for photoelectric conversion of CdS / CdTe solar cells. Although it is convenient to extend the wavelength range that can be achieved, the material is not limited to this, and any material that is excited by light having a wavelength of less than 510 nm and emits fluorescence with a wavelength of 510 nm or more, regardless of the material of the fluorescent substance, can be used as a CdS / CdTe solar cell. By forming a fluorescent substance film on the light receiving surface of the battery, the performance of the CdS / CdTe solar cell can be improved.

【0037】なお、アモルファスシリコン太陽電池は光
電変換できる波長範囲が500nm付近をピークに短波
長側には300nm付近まで広がっているため、本発明
のように蛍光着色剤を含む膜を太陽電池の受光面に形成
してもCdS/CdTe太陽電池のような性能向上は期
待できない。
In the amorphous silicon solar cell, the wavelength range in which photoelectric conversion can be performed has a peak at around 500 nm and extends to around 300 nm on the short wavelength side. Even if it is formed on a surface, it cannot be expected to improve the performance like a CdS / CdTe solar cell.

【0038】[0038]

【発明の効果】以上のように本発明によれば、CdS/
CdTe太陽電池の受光面に510nm未満の波長の光
を吸収励起し510nm以上の波長の光を発光する蛍光
物質を含む膜を形成することにより、CdS/CdTe
太陽電池の高性能化を図ることができる。また、従来の
CdS/CdTe太陽電池の製法を変えることなく、そ
の受光面に蛍光物質を含む膜を形成するという安価で簡
単な方法で実施できる。
As described above, according to the present invention, CdS /
By forming a film containing a fluorescent substance that absorbs and excites light having a wavelength of less than 510 nm and emits light having a wavelength of 510 nm or more on the light receiving surface of the CdTe solar cell, CdS / CdTe is formed.
Higher performance of the solar cell can be achieved. Further, the method can be implemented by an inexpensive and simple method of forming a film containing a fluorescent substance on the light receiving surface without changing the conventional method of manufacturing a CdS / CdTe solar cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による基本CdS/CdTe太
陽電池セルの断面構成を示す図
FIG. 1 is a diagram showing a cross-sectional configuration of a basic CdS / CdTe solar cell according to an embodiment of the present invention.

【図2】本実施例に用いた蛍光着色剤の吸収励起スペク
トルと発光スペクトルを示す図
FIG. 2 is a diagram showing an absorption excitation spectrum and an emission spectrum of the fluorescent colorant used in this example.

【図3】(a)従来例の屋内用CdS/CdTe太陽電
池の分光スペクトル感度を示す図 (b)本実施例の屋内用CdS/CdTe太陽電池の分
光スペクトル感度を示す図
FIG. 3 (a) is a diagram showing the spectral spectral sensitivity of a conventional indoor CdS / CdTe solar cell; and (b) is a diagram showing the spectral spectral sensitivity of an indoor CdS / CdTe solar cell of the present embodiment.

【図4】(a)従来例の屋外用CdS/CdTe太陽電
池の分光スペクトル感度を示す図 (b)本実施例の屋外用CdS/CdTe太陽電池の分
光スペクトル感度を示す図
FIG. 4 (a) is a diagram showing the spectral spectral sensitivity of a conventional CdS / CdTe solar cell for outdoor use; FIG. 4 (b) is a diagram showing the spectral spectral sensitivity of an outdoor CdS / CdTe solar cell of the present embodiment;

【符号の説明】[Explanation of symbols]

1 蛍光物質膜 2 透明ガラス基板 3 CdS膜 4 CdTe膜 5 集電体膜 6 AgIn膜(正電極) 7 AgIn膜(負電極) Reference Signs List 1 fluorescent substance film 2 transparent glass substrate 3 CdS film 4 CdTe film 5 current collector film 6 AgIn film (positive electrode) 7 AgIn film (negative electrode)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明ガラス基板の一方の面にCdS膜お
よびCdTe膜を順次形成し、前記CdS膜に負電極
を、前記CdTe膜に正電極を形成したCdS/CdT
e太陽電池であって、前記透明ガラス基板の他方の面に
510nm未満の波長の光で吸収励起し510nm以上
の波長の光を発光する蛍光物質を含む膜を形成したこと
を特徴とするCdS/CdTe太陽電池。
1. A CdS / CdT film in which a CdS film and a CdTe film are sequentially formed on one surface of a transparent glass substrate, a negative electrode is formed on the CdS film, and a positive electrode is formed on the CdTe film.
An e-solar cell, wherein a film containing a fluorescent substance that absorbs and excites with light having a wavelength of less than 510 nm and emits light having a wavelength of 510 nm or more is formed on the other surface of the transparent glass substrate. CdTe solar cells.
【請求項2】 前記CdS膜の膜厚が0.5μm以上で
あることを特徴とする請求項1記載のCdS/CdTe
太陽電池。
2. The CdS / CdTe according to claim 1, wherein said CdS film has a thickness of 0.5 μm or more.
Solar cells.
【請求項3】 前記CdS膜がCdS粉を主成分とする
ペーストの塗布焼結で形成した膜であることを特徴とす
る請求項1あるいは2に記載のCdS/CdTe太陽電
池。
3. The CdS / CdTe solar cell according to claim 1, wherein the CdS film is a film formed by applying and sintering a paste containing CdS powder as a main component.
JP27081299A 1999-09-24 1999-09-24 CdS/CdTe SOLAR CELL Pending JP2001094129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27081299A JP2001094129A (en) 1999-09-24 1999-09-24 CdS/CdTe SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27081299A JP2001094129A (en) 1999-09-24 1999-09-24 CdS/CdTe SOLAR CELL

Publications (1)

Publication Number Publication Date
JP2001094129A true JP2001094129A (en) 2001-04-06

Family

ID=17491372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27081299A Pending JP2001094129A (en) 1999-09-24 1999-09-24 CdS/CdTe SOLAR CELL

Country Status (1)

Country Link
JP (1) JP2001094129A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005801A (en) * 2005-06-20 2007-01-11 Samsung Electro-Mechanics Co Ltd Led package forming metal reflective layer and method of manufacturing the same
WO2009148131A1 (en) * 2008-06-06 2009-12-10 住友ベークライト株式会社 Wavelength converting composition and photovoltaic device comprising layer composed of wavelength converting composition
EP2261300A1 (en) 2009-06-08 2010-12-15 Nitto Denko Corporation Methods for controlling optical property of wavelength conversion sheet and for producing wavelength conversion sheet, wavelength conversion sheet for cadmium telluride solar cell, and cadmium telluride solar cell
CN102544153A (en) * 2010-11-30 2012-07-04 通用电气公司 Photovoltaic device and method for making
KR101281330B1 (en) 2012-03-28 2013-07-03 고려대학교 산학협력단 Solar cells and methods of manufacturing the solar cells
WO2013116569A1 (en) * 2012-02-01 2013-08-08 Nitto Denko Corporation Wavelength conversion layer on a glass plate to enhance solar harvesting efficiency
US9287419B2 (en) 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
US9382424B2 (en) 2011-09-26 2016-07-05 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
US9394479B2 (en) 2011-10-05 2016-07-19 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency
US9399730B2 (en) 2011-12-06 2016-07-26 Nitto Denko Corporation Wavelength conversion material as encapsulate for solar module systems to enhance solar harvesting efficiency

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687292B2 (en) 2005-06-20 2010-03-30 Samsung Electro-Mechanics Co., Ltd. Light emitting diode package with metal reflective layer and method of manufacturing the same
JP2007005801A (en) * 2005-06-20 2007-01-11 Samsung Electro-Mechanics Co Ltd Led package forming metal reflective layer and method of manufacturing the same
WO2009148131A1 (en) * 2008-06-06 2009-12-10 住友ベークライト株式会社 Wavelength converting composition and photovoltaic device comprising layer composed of wavelength converting composition
EP2261300A1 (en) 2009-06-08 2010-12-15 Nitto Denko Corporation Methods for controlling optical property of wavelength conversion sheet and for producing wavelength conversion sheet, wavelength conversion sheet for cadmium telluride solar cell, and cadmium telluride solar cell
CN102544153A (en) * 2010-11-30 2012-07-04 通用电气公司 Photovoltaic device and method for making
EP2479789A3 (en) * 2010-11-30 2013-06-26 General Electric Company Photovoltaic device and method for making
US9287419B2 (en) 2011-01-05 2016-03-15 Nitto Denko Corporation Wavelength conversion perylene diester chromophores and luminescent films
US9382424B2 (en) 2011-09-26 2016-07-05 Nitto Denko Corporation Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency
US9394479B2 (en) 2011-10-05 2016-07-19 Nitto Denko Corporation Wavelength conversion film having pressure sensitive adhesive layer to enhance solar harvesting efficiency
US9399730B2 (en) 2011-12-06 2016-07-26 Nitto Denko Corporation Wavelength conversion material as encapsulate for solar module systems to enhance solar harvesting efficiency
WO2013116569A1 (en) * 2012-02-01 2013-08-08 Nitto Denko Corporation Wavelength conversion layer on a glass plate to enhance solar harvesting efficiency
CN105985661A (en) * 2012-02-01 2016-10-05 日东电工株式会社 Wavelength conversion layer on a glass plate to enhance solar harvesting efficiency
KR101281330B1 (en) 2012-03-28 2013-07-03 고려대학교 산학협력단 Solar cells and methods of manufacturing the solar cells

Similar Documents

Publication Publication Date Title
Chander et al. Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells
KR100997669B1 (en) Silicon solar cell using screen printing and Manufacturing method of thereof
AU2008290641B2 (en) Solar cell construction
US20070175508A1 (en) Solar cell of high efficiency and process for preparation of the same
JP2014042082A (en) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
JP2015512147A (en) Luminescence power generation window for plant growth
JP2001094129A (en) CdS/CdTe SOLAR CELL
US8124871B2 (en) Solar cell and its transparent light conversion film
CN101582330B (en) Application of up-conversion luminescent material on dye-sensitized solar cells
KR102068416B1 (en) Photovoltaic cells including aluminum-based solar converters
CN104617164A (en) Nano silicon boron slurry and method for preparing solar cell with the same
JP2004297025A (en) High-efficiency solar cell
CN106449978A (en) Preparation method of visible blind ultraviolet detector based on CH3NH3PbCl3 film
Ho et al. Improving the performance of textured silicon solar cells through the field‐effect passivation of aluminum oxide layers and up‐conversion via multiple coatings with Er/Yb‐doped phosphors
CN118073454A (en) Double-end perovskite crystal silicon laminated battery and preparation method thereof
Supasai et al. Unveiling the Influence of the Spectral Irradiance of Indoor Light‐Emitting Diodes on the Photovoltaics of a Methylammonium Lead Iodide‐Based Device
JP2004031050A (en) Dye-sensitized solar cell
CN113178497B (en) Ultraviolet detector based on quantum dots and manufacturing method
JP2011151068A (en) Photoelectric converter
Van Roosmalen Molecular-based concepts in PV towards full spectrum utilization
Benfadel et al. Properties of SiC-based luminescent composite thin film as light-harvesting material
Kaci et al. Study of the Effect of Luminescence Down-Shifting on Silicon Solar Cells with SiC Based Composite as Optical Windows Layer
JPH11220147A (en) Amorphous silicon solar cell
KR102442755B1 (en) Solar energy converting materials and Solar cell comprising the same
Cao et al. A packaging method to improve monocrystalline silicon solar cells with YAG: Ce Phosphors