JPH06310499A - Processing method for thin film - Google Patents

Processing method for thin film

Info

Publication number
JPH06310499A
JPH06310499A JP5098075A JP9807593A JPH06310499A JP H06310499 A JPH06310499 A JP H06310499A JP 5098075 A JP5098075 A JP 5098075A JP 9807593 A JP9807593 A JP 9807593A JP H06310499 A JPH06310499 A JP H06310499A
Authority
JP
Japan
Prior art keywords
thin film
transparent thin
laser light
processing
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5098075A
Other languages
Japanese (ja)
Inventor
Tsutomu Ota
勉 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5098075A priority Critical patent/JPH06310499A/en
Publication of JPH06310499A publication Critical patent/JPH06310499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To make it possible to remove transparent thin films at high speed with visible laser. CONSTITUTION:Parallel laser light 4, projected from a laser oscillator 7, is bent by a bending mirror 8 and turned into focused laser light 6 by a focusing lens 5. The focused laser light 6 is then applied to specified areas 3 on the transparent thin film 2 formed on the surface of a glass substrate 1, and the areas 3 are thus removed. At that time the thickness, t of the transparent thin film is controlled so that t is within the range of (lambda/2n)+ or -15%, where lambda is the wavelength of the focused laser light 6 and (n) is the refractive index of the transparent thin film 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザー光による薄膜の
加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a thin film with laser light.

【0002】[0002]

【従来の技術】近年レーザー光を利用する加工技術は急
速な進展を遂げ、炭酸ガスレーザーによる金属板の切
断、穴明け加工やYAG レーザーによる金属薄板の精密溶
接等は広く金属加工業界に普及している。また液晶表示
パネルや薄膜センサー、半導体用フォトマスクなどの薄
膜加工には加工部近傍へのダメージを軽減したり、加工
部の微細化をする為にエキシマレーザーやアルゴンイオ
ンレーザーそれにYAG レーザーの高調波のような可視光
から紫外光つまり波長が比較的短いレーザーが使われは
じめており、この傾向はますます強くなっていくと思わ
れる。
2. Description of the Related Art In recent years, processing technology using laser light has made rapid progress, and cutting of metal plates by carbon dioxide gas laser, punching and precision welding of thin metal plates by YAG laser have been widely spread in the metal processing industry. ing. Also, when processing thin films such as liquid crystal display panels, thin film sensors, and semiconductor photomasks, harmonics of excimer lasers, argon ion lasers, and YAG lasers are used to reduce damage to the processed parts and to miniaturize the processed parts. From visible light to ultraviolet light, that is, lasers with a relatively short wavelength, are beginning to be used, and this tendency is expected to become stronger.

【0003】液晶表示パネル生産工程へのレーザー加工
の利用は、ガラス基板上の透明電極パターンの加工に活
用されている。具体的にはフォトリソグラフ工法で透明
電極をパターニングする際に発生する隣接パターン間の
短絡不良をYAG レーザーによって切断修正するというも
のである。この技術はYAG レーザーの基本波と第二高調
波を利用する二つの方法があるが、加工部分の微細化と
下地のガラス基板へのダメージを軽減する目的で波長が
短い第二高調波の利用が検討されはじめている。
Utilization of laser processing in a liquid crystal display panel production process is utilized for processing a transparent electrode pattern on a glass substrate. Specifically, the YAG laser cuts and corrects short-circuit defects between adjacent patterns that occur when patterning a transparent electrode by the photolithography method. This technology has two methods of using the fundamental wave and the second harmonic of the YAG laser, but the use of the second harmonic with a short wavelength is used to reduce the size of the processed part and damage to the underlying glass substrate. Are being considered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、通産省
工業技術院編の「レーザー応用工学」72ページにも述べ
られているようにYAG レーザーの第二高調波を得るため
には非線形光学結晶を用いて波長変換することになる
が、その変換効率が低く高出力を得ることが難しい上、
そもそも可視光に対して透過性に優れる透明電極薄膜を
可視光の波長で発振するYAG レーザーの第二高調波で加
工するためエネルギーの利用効率が悪く局部的な除去加
工にしか適用できないという課題があった。
However, in order to obtain the second harmonic of the YAG laser, a nonlinear optical crystal is used as described on page 72 of "Laser application engineering" edited by the Ministry of International Trade and Industry. Although it will be wavelength conversion, its conversion efficiency is low and it is difficult to obtain high output,
In the first place, the transparent electrode thin film, which is highly transparent to visible light, is processed with the second harmonic of a YAG laser that oscillates at the wavelength of visible light, so the energy utilization efficiency is poor and it can only be applied to local removal processing. there were.

【0005】本発明は前に記したような課題を解決し、
透明薄膜を可視光レーザーで加工する際のエネルギー利
用効率を著しく改良して高速加工を実現し、従来は局部
的な加工だけにしか使えなかった技術を薄膜のパターニ
ングまで可能にすることを目的とする。
The present invention solves the problems described above,
The purpose is to significantly improve the energy utilization efficiency when processing a transparent thin film with a visible light laser to realize high-speed processing, and to enable thin film patterning, a technology that was previously only available for local processing. To do.

【0006】[0006]

【課題を解決するための手段】上記目的は、照射される
レーザービームのエネルギーを可能な限り被加工部に吸
収させる事で達成されるが、本発明の薄膜の加工方法は
被加工物である透明薄膜の厚みと屈折率の積であらわさ
れる光路長が照射する可視光レーザーの波長の42.5
%から57.5%の範囲にすることにより被加工物内で
多重反射させることを特徴とする。また、前記可視光レ
ーザーがYAG レーザーの第二高調波であることも特徴と
する。
The above-mentioned object can be achieved by absorbing the energy of the laser beam to be irradiated to the processed portion as much as possible, but the thin film processing method of the present invention is a processed object. 42.5 of the wavelength of the visible light laser irradiated by the optical path length expressed by the product of the thickness of the transparent thin film and the refractive index
% To 57.5%, so that multiple reflection is performed within the workpiece. The visible light laser is also a second harmonic of a YAG laser.

【0007】[0007]

【実施例】以下に本発明の一実施例を図面を用いて詳細
に説明する。図1は本発明の一実施例の加工原理を説明
する断面図である。ガラス基板1の表面には被加工物で
ある透明薄膜2が形成されている。透明薄膜2は厚さ
0.13マイクロメーターで、材質は液晶表示パネルに
一般的に使われるITOである。レーザー発振器7から
放出される平行レーザー光4はベンデイングミラー8に
よって折り曲げられ、集光レンズ5によって絞られ集光
レーザー光6となり被加工部3を照射する。この時レー
ザー発振器7には発振波長0.532マイクロメーター
で平均出力4WのYAG レーザー第二高調波を使った。実
際の加工にあたっては、4Wという連続発振では透明薄
膜2は加工されなかった為、Qスイッチによるパルス発
振とし繰り返し周波数30KHzで1パルス当り35マ
イクロジュールのエネルギーで加工したところ一発のパ
ルスで完全に透明薄膜2の被加工部3は除去することが
できた。この時ガラス基板1の表面は全く加工ダメージ
を受けなかった。これは透明薄膜2の厚さ0.13マイ
クロメーターと屈折率2を乗じた値が0.26マイクロ
メーターであり、これは透明薄膜2の中を集光レーザー
光6が通過する光路長に相当するが、この値が集光レー
ザー光6の波長0.532マイクロメーターの約半分に
相当するため集光レーザー光6は透明薄膜2の中を何度
も反射を繰り返すことになり、エネルギーの吸収効率が
著しく高まり少ないエネルギーで完全な除去が可能とな
った。また、透明薄膜2中に集光レーザー光6が充分吸
収されることによって下地であるガラス基板1へのレー
ザー光のもれが減少するので加工ダメージが発生しな
い。図2は本実施例に使った透明薄膜2の分光透過率特
性をグラフで示した図である。このグラフから加工に使
用した集光レーザー光6の波長である0.532マイク
ロメーターにおける透明薄膜2の透過率は93%程度で
あることがわかる。つまり集光レーザー光6が透明薄膜
2を通過する際に吸収される量は僅か7%にすぎない。
本実施例においては透明薄膜2の厚みと屈折率を考慮し
て集光レーザー光6の通過光路長を、集光レーザー光6
の波長の50%に設定してある為、集光レーザー光6が
透明薄膜2中を多重反射する。実験的にこの時の通過光
量を測定したところ、入射エネルギーの30%が吸収さ
れていた。図3は本発明の実施例の薄膜加工装置の斜視
図である。以下に装置の構成について説明する。レーザ
ー発振器7から出射された平行レーザー光4はベンデイ
ングミラー8で下方に折り曲げられ、集光レンズ5で集
光して被加工物であるガラス基板1上の透明薄膜2の表
面上に照射する構造になっている。ガラス基板1はパル
スモータ10およびボールねじ11で一軸方向に移動さ
れる移動テーブル9上に固定されている。この構成の薄
膜加工装置において発振レーザーの波長が0.532マ
イクロメーターでQスイッチの繰り返し周波数30KH
z、一発のパルスエネルギー35マイクロジュールとし
透明薄膜2が厚み0.13マイクロメーターのITOと
いう条件の時切断幅10マイクロメーターで切断速度2
00ミリメーター毎秒が得られた。
An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view for explaining the processing principle of an embodiment of the present invention. On the surface of the glass substrate 1, a transparent thin film 2 which is a workpiece is formed. The transparent thin film 2 has a thickness of 0.13 micrometer and is made of ITO which is generally used for liquid crystal display panels. The parallel laser light 4 emitted from the laser oscillator 7 is bent by a bending mirror 8 and is focused by a condenser lens 5 to become a condensed laser light 6 which irradiates the work piece 3. At this time, the YAG laser second harmonic having an oscillation wavelength of 0.532 micrometers and an average output of 4 W was used for the laser oscillator 7. In the actual processing, since the transparent thin film 2 was not processed by continuous oscillation of 4 W, pulse oscillation was performed by the Q switch and processing was performed with energy of 35 microjoule per pulse at a repetition frequency of 30 KHz. The processed portion 3 of the transparent thin film 2 could be removed. At this time, the surface of the glass substrate 1 was not damaged at all. This is a value obtained by multiplying the thickness of the transparent thin film 2 by 0.13 micrometer and the refractive index 2 to be 0.26 micrometer, which corresponds to the optical path length of the condensed laser beam 6 passing through the transparent thin film 2. However, since this value corresponds to about half of the wavelength 0.532 micrometer of the condensed laser beam 6, the condensed laser beam 6 is repeatedly reflected in the transparent thin film 2 to absorb energy. The efficiency was remarkably increased, and complete removal was possible with less energy. Further, since the condensed laser light 6 is sufficiently absorbed in the transparent thin film 2, leakage of the laser light to the underlying glass substrate 1 is reduced, so that processing damage does not occur. FIG. 2 is a graph showing the spectral transmittance characteristics of the transparent thin film 2 used in this example. From this graph, it can be seen that the transmittance of the transparent thin film 2 at the wavelength of the condensed laser beam 6 used for processing, 0.532 micrometer, is about 93%. That is, the amount of the condensed laser beam 6 absorbed when passing through the transparent thin film 2 is only 7%.
In the present embodiment, the passing optical path length of the condensed laser light 6 is set in consideration of the thickness and the refractive index of the transparent thin film 2.
Since it is set to 50% of the wavelength, the condensed laser light 6 is multiply reflected in the transparent thin film 2. When the amount of passing light at this time was experimentally measured, 30% of the incident energy was absorbed. FIG. 3 is a perspective view of a thin film processing apparatus according to an embodiment of the present invention. The configuration of the device will be described below. The parallel laser light 4 emitted from the laser oscillator 7 is bent downward by the bending mirror 8, condensed by the condenser lens 5, and irradiated onto the surface of the transparent thin film 2 on the glass substrate 1 which is the workpiece. It is structured. The glass substrate 1 is fixed on a moving table 9 which is uniaxially moved by a pulse motor 10 and a ball screw 11. In the thin film processing apparatus with this configuration, the oscillation laser wavelength is 0.532 micrometers and the Q switch repetition frequency is 30 KH.
z, a pulse energy of 35 microjoules per shot, and a transparent thin film 2 of ITO having a thickness of 0.13 micrometer, a cutting width of 10 micrometers and a cutting speed of 2
00 millimeters per second was obtained.

【0008】[0008]

【発明の効果】以上述べてきたように、本発明によれば
可視領域の加工用レーザーで透明薄膜を加工する場合に
問題となるエネルギー吸収が低いという根本的な現象に
対して被加工物である透明薄膜の中を何回も通過させる
事が可能になり、エネルギーの吸収効率を著しく高める
ことが可能となった。また、これによって少ないレーザ
ー光パワーで透明薄膜の加工が可能となり加工の高速化
も実現できた。さらに透明薄膜にレーザー光のエネルギ
ーが有効に吸収されるので透明薄膜の下地である基板へ
のダメージがなくなり、高品位な加工が可能になった。
As described above, according to the present invention, the fundamental phenomenon that energy absorption is low, which is a problem when processing a transparent thin film with a laser for processing in the visible region, is applied to a workpiece. It became possible to pass through a certain transparent thin film many times, and it became possible to remarkably enhance the energy absorption efficiency. In addition, this enabled the processing of transparent thin films with less laser light power, and the processing speed was also increased. Furthermore, since the energy of the laser beam is effectively absorbed by the transparent thin film, damage to the substrate that is the base of the transparent thin film is eliminated, and high-quality processing becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の加工原理を示す断面図であ
る。
FIG. 1 is a sectional view showing a processing principle of an embodiment of the present invention.

【図2】本発明の一実施例におけるITOの分光透過率
特性を示す図である。
FIG. 2 is a diagram showing a spectral transmittance characteristic of ITO in an example of the present invention.

【図3】本発明の一実施例の薄膜加工装置を示す斜視図
である。
FIG. 3 is a perspective view showing a thin film processing apparatus of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明薄膜 3 被加工部 4 平行レーザー光 5 集光レンズ 6 集光レーザー光 7 レーザー発振器 8 ベンデイングミラー 9 移動テーブル 10 パルスモーター 11 ボールねじ 1 Glass Substrate 2 Transparent Thin Film 3 Processed Part 4 Parallel Laser Light 5 Condensing Lens 6 Condensing Laser Light 7 Laser Oscillator 8 Bending Mirror 9 Moving Table 10 Pulse Motor 11 Ball Screw

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/00 B 8934−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01S 3/00 B 8934-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可視領域の波長で発振するレーザー光に
より基板上に形成した屈折率nの透明薄膜を除去する加
工方法において、前記レーザー光の波長λに対し前記透
明薄膜の厚みtが(λ/ 2n)±15%の範囲であるこ
とを特徴する薄膜の加工方法。
1. A processing method for removing a transparent thin film having a refractive index n formed on a substrate by laser light oscillating at a wavelength in the visible region, wherein the thickness t of the transparent thin film is (λ / 2n) ± 15% of the range, the thin film processing method.
【請求項2】 前記レーザー光がYAG レーザーの第二高
調波であることを特徴とする請求項1記載の薄膜の加工
方法。
2. The method of processing a thin film according to claim 1, wherein the laser light is a second harmonic of a YAG laser.
JP5098075A 1993-04-23 1993-04-23 Processing method for thin film Pending JPH06310499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5098075A JPH06310499A (en) 1993-04-23 1993-04-23 Processing method for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5098075A JPH06310499A (en) 1993-04-23 1993-04-23 Processing method for thin film

Publications (1)

Publication Number Publication Date
JPH06310499A true JPH06310499A (en) 1994-11-04

Family

ID=14210235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5098075A Pending JPH06310499A (en) 1993-04-23 1993-04-23 Processing method for thin film

Country Status (1)

Country Link
JP (1) JPH06310499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10109745B2 (en) 2015-06-01 2018-10-23 Samsung Display Co., Ltd. Method of manufacturing flexible display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10109745B2 (en) 2015-06-01 2018-10-23 Samsung Display Co., Ltd. Method of manufacturing flexible display
US11594640B2 (en) 2015-06-01 2023-02-28 Samsung Display Co., Ltd. Method of manufacturing flexible display

Similar Documents

Publication Publication Date Title
JP3001816B2 (en) Laser scribing on glass using Nd: YAG laser
US7423237B2 (en) Method of cutting laminated glass with laser beams
JP3293136B2 (en) Laser processing apparatus and laser processing method
US20060207976A1 (en) Laser material micromachining with green femtosecond pulses
JPH0563274B2 (en)
JPH05104276A (en) Laser beam machine and machining method with laser beam
KR100723935B1 (en) Laser pattern device
JPS628277B2 (en)
JPS6189636A (en) Optical processing
CA2258457A1 (en) Laser machining method and laser machining apparatus
JP2002160079A (en) Method and device for ablation working of thin film
CZ282088B6 (en) Method of engraving circular templates, and apparatus for making the same
JPH06310499A (en) Processing method for thin film
JP2004306127A (en) Processing method for patterning thin film
JP2807809B2 (en) Light processing method
JPS63154280A (en) Laser beam machine
JPS63215390A (en) Light machining method
JP2001347387A (en) Laser beam machining head
JPH0857678A (en) Laser beam processing machine
JPH0626207B2 (en) Light processing method
JP2616767B2 (en) Light treatment method
JP4292906B2 (en) Laser patterning method
JP2003285187A (en) Optical transmission device and laser beam machining device
EP4159357A1 (en) Method of and apparatus for cutting a substrate or preparing a substrate for cleaving
JP2808220B2 (en) Light irradiation device