JPS63154280A - Laser beam machine - Google Patents

Laser beam machine

Info

Publication number
JPS63154280A
JPS63154280A JP61300277A JP30027786A JPS63154280A JP S63154280 A JPS63154280 A JP S63154280A JP 61300277 A JP61300277 A JP 61300277A JP 30027786 A JP30027786 A JP 30027786A JP S63154280 A JPS63154280 A JP S63154280A
Authority
JP
Japan
Prior art keywords
focus
laser
fundamental wave
condensing lens
higher harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61300277A
Other languages
Japanese (ja)
Inventor
Akihiko Asano
明彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP61300277A priority Critical patent/JPS63154280A/en
Publication of JPS63154280A publication Critical patent/JPS63154280A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute laser beam machining at a high speed by providing a higher harmonic generator between a laser light source and a condensing lens, and condensing a laser light of >=two wavelengths containing a fundamental wave and each order higher harmonic onto an object to be worked, by the same condensing lens. CONSTITUTION:A fundamental wave optical pulse 11 emitted from an Nd : YAG laser 1 is made incident on the second higher harmonic generator 7, and converted to an emitting pulse 12 consisting of a fundamental wave and the second higher harmonic. This emitting pulse 12 passes through a reflecting mirror 2 and is condensed by the same condensing lens 3, and in its focus and the vicinity of the focus, a metallic thin film 4 on a glass substrate 5 supported by a moving stage 6 is cut. In such a way, an allowable quantity against a position shift of the object to be worked is increased, and laser beam machining can be executed at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ光をレンズにて集光した際に焦点およ
びその付近に生じる高い光エネルギー密度を利用して、
種々の材料に穴あけ、切断1溶接。
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes the high optical energy density generated at and around the focal point when laser light is focused by a lens.
Drilling, cutting and welding in various materials.

表面処理等の加工を施すレーザ加工装置に関する。The present invention relates to a laser processing device that performs processing such as surface treatment.

〔従来の技術〕[Conventional technology]

レーザ加工は、位相の揃った、いわゆるコヒーレントな
レーザ光を、加工点上の微小なスポットに集光して光パ
ワー密度を高め−、材料を瞬時に溶融もしくは蒸発させ
て行う非接触熱加工であり、次のような特長を持つため
、現在広く用いられている。
Laser processing is a non-contact thermal processing that instantly melts or evaporates the material by focusing so-called coherent laser light on a microscopic spot on the processing point to increase the optical power density. It is currently widely used because it has the following features:

(11微細加工、切断、溶接1表面熱処理(硬化、非晶
質化1合金化)等の多岐にわたる加工ができる。
(11) A wide variety of processing can be performed, such as micromachining, cutting, welding, 1 surface heat treatment (hardening, amorphization, and 1 alloying).

(2)金属、非金属(半導体、セラミックス、樹脂。(2) Metals, nonmetals (semiconductors, ceramics, resins).

ダイヤモンド、水晶等)のほとんどすべての材料が加工
できる。
Almost all materials (diamond, crystal, etc.) can be processed.

(3)加工中に被加工物に力が加わらないので、寸法精
度の高い加工ができる。
(3) Since no force is applied to the workpiece during machining, machining with high dimensional accuracy is possible.

(4)電子計算機による加工の自動化に適し、複雑な形
状の加工ができる。
(4) Suitable for automation of processing using electronic computers, allowing processing of complex shapes.

第2図はレーザ加工装置の一例を示し、この装置におい
ては、Qスイッチ・ネオジム・ヤグレーザ(以下、Nd
:YAGレーザと記す)1より発射された光パルス11
が反射鏡2で90°曲げられた後、凸レンズ3によって
ガラス基板5上に被着された金属11114上で直径0
.1 tm程度の焦点を結ぶ、この時、焦点での光パワ
ー密度は、10?〜10”W/d程度になるため、レー
ザ光の照射された部分の金属薄膜4は瞬時に蒸発し除去
される。従って、光パルスを1回照射する毎に、移動ス
テージ6によって、ガラス基板5を、焦点直径ずつ移動
していけば、この移動方向に沿って金属薄膜4を切断す
ることができる。
Figure 2 shows an example of a laser processing device.
: Light pulse 11 emitted from 1 (denoted as YAG laser) 1
is bent by 90 degrees by the reflecting mirror 2, and then the convex lens 3 bends the diameter 0 on the metal 11114 deposited on the glass substrate 5.
.. At this time, the optical power density at the focal point is 10? ~10" W/d, the metal thin film 4 in the area irradiated with the laser beam is instantaneously evaporated and removed. Therefore, each time the light pulse is irradiated, the glass substrate is moved by the moving stage 6. 5 is moved by the diameter of the focal point, the metal thin film 4 can be cut along this moving direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来のレーザ加工方法においては、焦点
半径を小さくするほど、その2乗に比例して焦点での光
パワー密度は増加し、切断は確実になる。したがって、
この観点からは、できるだけ焦点距離の短い集光レンズ
でレーザ光を集光した方がよい、なぜならば、焦点半径
は、集光レンズの焦点距離に反比例するからである。し
かしながら、焦点距離を短くするほどそれに比例して焦
点深度は浅くなるので、金rs薄膜4の位置が上下方向
に少しでもずれると、焦点から外れてしまい切断されな
くなってしまうという問題が生ずる。
As described above, in the conventional laser processing method, as the focal radius is made smaller, the optical power density at the focal point increases in proportion to the square of the focal radius, and cutting becomes more reliable. therefore,
From this point of view, it is better to condense the laser beam using a condensing lens with a focal length as short as possible, because the focal radius is inversely proportional to the focal length of the condensing lens. However, as the focal length becomes shorter, the depth of focus becomes shallower in proportion to it, so if the position of the gold RS thin film 4 shifts even slightly in the vertical direction, a problem arises in that it is out of focus and cannot be cut.

この問題を解決するには、従来、集光レンズを上下に移
動し、焦点が金属薄膜上にくるように調節するという方
法が用いられていたが、この方法は応答速度が遅いため
、レーザ切断速度が、焦点調節速度に制限されてしまう
という欠点があった。
To solve this problem, the conventional method was to move the condensing lens up and down and adjust the focus so that it was on the thin metal film, but this method had a slow response speed, so laser cutting The disadvantage is that the speed is limited to the focus adjustment speed.

特に、ガラス基板の大きさが3QcnX3Qcm程度に
なると、基板の反りが焦点深度より大きくなってしまい
、金属薄膜の加工速度は、集光レンズの焦点調節の速度
によって制限されていた。
In particular, when the size of the glass substrate is about 3Qcnx3Qcm, the warpage of the substrate becomes larger than the depth of focus, and the processing speed of the metal thin film is limited by the speed of focus adjustment of the condenser lens.

本発明の目的は、上述の問題を解決して焦点距離の短い
集光レンズを用いて焦点半径を小さくし、かつ集光レン
ズから被加工物への距離が均一でなくても焦点調節の必
要がなく、高速でレーザ加工を行うことのできるレーザ
加工装置を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, to reduce the focal radius by using a condenser lens with a short focal length, and to make focus adjustment necessary even if the distance from the condenser lens to the workpiece is not uniform. An object of the present invention is to provide a laser processing device that can perform laser processing at high speed without any problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明は、レーザ光を集
光レンズで集光して被加工物上に焦点を結ばせて加工す
る装置において、レーザ光源と集光レンズの間に高調波
発生器を備え、集光レンズが基本波および各次高調波の
うちの少なくとも二つの波長のレーザ光を被加工物上へ
集光することができるものとする。
In order to achieve the above object, the present invention provides an apparatus for processing a workpiece by condensing laser light with a condensing lens and focusing it on a workpiece. A generator is provided, and a condensing lens is capable of condensing laser light of at least two wavelengths of the fundamental wave and each harmonic onto the workpiece.

〔作用〕[Effect]

二つ以上の波長の光を同一集光レンズで被加工物上へ集
光することにより、各波長の光の位置のずれた焦点深度
によって実効的な焦点深度が深まるので、被加工物面の
位置にずれがあっても焦点調節の必要がなくなる。
By condensing light of two or more wavelengths onto the workpiece using the same condensing lens, the effective depth of focus deepens due to the shifted focal depths of the light of each wavelength. There is no need to adjust the focus even if there is a positional shift.

〔実施例〕〔Example〕

第1図は、本発明の一実施例を示すもので、第2図と共
通の部分には同一の符号が付されNd:YAGレーザー
の基本波(波長1 、064nm)および第二高調波(
波長532nm)を、同一の集光レンズ3で集光し、そ
の焦点および焦点付近で移動ステークに支持されたガラ
ス基板5上の金属薄膜4の切断加工を行うものである。
FIG. 1 shows an embodiment of the present invention. Parts common to those in FIG.
A wavelength of 532 nm) is condensed by the same condensing lens 3, and the thin metal film 4 on the glass substrate 5 supported by a moving stake is cut at and near the focal point.

まずNdjYAGレーザーより発射された基本波光パル
ス11は、非線形光学結晶としてKHtPO4(KDP
)を用いた第二高調波発生器7に入射し、約50%は波
長532nmの第二高調波に変換され、基本波と共に出
射される。この出射パルス12は、反射鏡2を経て光学
ガラス(BI3)製の凸レンズ3により集光される。こ
のレンズの焦点距離は約9鶴である。焦点距離fと、屈
折率nのあいだには、  oc − なる関係があるが、屈折率nは同一材料でも波長によっ
て異なり、波長532n+wの場合1.519、波長1
 、064nmの場合1.507である。そのため、第
二高調波の焦点は、基本波の焦点より手前にあり、第3
図に示すその間の距離d1は次のようになる。
First, the fundamental wave light pulse 11 emitted from the NdjYAG laser is transferred to KHtPO4 (KDP) as a nonlinear optical crystal.
), about 50% of which is converted into a second harmonic with a wavelength of 532 nm, which is emitted together with the fundamental wave. This emitted pulse 12 passes through a reflecting mirror 2 and is focused by a convex lens 3 made of optical glass (BI3). The focal length of this lens is approximately 9 points. There is an oc − relationship between the focal length f and the refractive index n, but the refractive index n varies depending on the wavelength even for the same material.
, 064 nm is 1.507. Therefore, the focus of the second harmonic is in front of the focus of the fundamental wave, and the focus of the third harmonic is in front of the focus of the fundamental wave.
The distance d1 shown in the figure is as follows.

d、 −9x (1,519−1)/ (1,507−
1)−9−0,213(fl)第3図に示すように凸レ
ンズ3の単一波長光に対する焦点深度d !+ d 、
は約0.2 tmであるから、基本波と第二高調波を合
わせた焦点深度d4は約0.4態となり、結局、焦点半
径rを増すことなく焦点深度を2倍深くすることができ
た。そのため30cmX30cmのガラス基板の反りに
よる上下方向のずれを加算された焦点深度d4内で吸収
できるようになり、焦点調節をすることなく、金属薄膜
の切断加工を実施できた。また、第3図に示す基本波の
光束断面31.第二高調波の光束断面32の最も絞られ
た部分の焦点半径が従来と同じため、切断幅も従来と同
じ約o、 t tmであった。
d, -9x (1,519-1)/(1,507-
1) -9-0,213 (fl) As shown in FIG. 3, the depth of focus d of the convex lens 3 for single wavelength light! +d,
is about 0.2 tm, so the depth of focus d4, which is the sum of the fundamental wave and the second harmonic, is about 0.4, and in the end, the depth of focus can be doubled without increasing the radius of focus r. Ta. Therefore, the vertical shift due to the warpage of the 30 cm x 30 cm glass substrate can be absorbed within the added depth of focus d4, and the metal thin film can be cut without adjusting the focus. In addition, the beam cross section 31 of the fundamental wave shown in FIG. Since the focal radius of the narrowest part of the second harmonic beam cross section 32 is the same as in the conventional case, the cutting width is also about o, t tm, which is the same as in the conventional case.

上記実施例はQスイッチNd:YAGレーザの基本波お
よび第二高調波の組合わせであったが、該レーザの基本
波と非線形光学結晶で位相整合をとることによって得ら
れる第二高調波、第三高調波(波長355n■)、第四
高調波(波長266n■)のうち、任意の二つ以上の波
長を組合わせることができることは言うまでもない、ま
たレーザ発振器についてもQスイッチNd:YAGレー
ザ以外のものを用いても同様の加工方法が可能である。
The above embodiment was a combination of the fundamental wave and the second harmonic of a Q-switched Nd:YAG laser. It goes without saying that it is possible to combine any two or more wavelengths of the third harmonic (wavelength 355n■) and fourth harmonic (wavelength 266n■), and also for laser oscillators other than Q-switched Nd:YAG lasers. A similar processing method is also possible using .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高調波発生器を用いて得られた各次高
調波のうちの2波長以上のレーザ光を同一のレンズで集
光したため、その各波長に対する焦点距離が異なり、ず
れた位置で焦点を結び、焦点深度の範囲がずれて重なる
か、あるいは隣接するようにできるので、加工に利用で
きる実効的焦点深度を深くすることができる。従って被
加工物の位置のずれに対する許容量が増加し、基板の反
りがあっても焦点調節の手間を省くことができ、高速の
レーザ加工が可能になる。
According to the present invention, since laser beams of two or more wavelengths of each harmonic obtained using a harmonic generator are focused by the same lens, the focal length for each wavelength is different, and the positions are shifted. Since the focal depths can be shifted and overlapped or adjacent to each other, the effective depth of focus that can be used for processing can be increased. Therefore, the tolerance for displacement of the workpiece increases, and even if the substrate is warped, the effort of focus adjustment can be saved, and high-speed laser processing becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の作動状態を概念的に示す側
面図、第2図は従来装置の作動状態を概念的に示す側面
図、第3図は本発明の一実施例の装置における焦点付近
のレーザ光束の断面図である。 lid:YAGレーザ、3:集光レンズ、4:金r!A
薄膜、5ニガラス基板、7:第二高調波発生器。 第1図 第2図 第3図
Fig. 1 is a side view conceptually showing the operating state of an embodiment of the present invention, Fig. 2 is a side view conceptually showing the operating state of a conventional device, and Fig. 3 is a side view conceptually showing the operating state of an embodiment of the present invention. FIG. 2 is a cross-sectional view of a laser beam near a focal point in FIG. lid: YAG laser, 3: condenser lens, 4: gold r! A
Thin film, 5 glass substrates, 7: second harmonic generator. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)レーザ光を集光レンズで集光して被加工物上に焦点
を結ばせて加工するものにおいて、レーザ光源と集光レ
ンズの間に高調波発生器を備え、該集光レンズが基本波
および各次高調波のうちの少なくとも二つの波長のレー
ザ光を被加工物上へ集光することができることを特徴と
するレーザ加工装置。
1) In devices that process laser light by condensing it with a condensing lens and focusing it on the workpiece, a harmonic generator is provided between the laser light source and the condensing lens, and the condensing lens is the basic 1. A laser processing device that is capable of condensing laser light of at least two wavelengths of waves and harmonics onto a workpiece.
JP61300277A 1986-12-17 1986-12-17 Laser beam machine Pending JPS63154280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61300277A JPS63154280A (en) 1986-12-17 1986-12-17 Laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300277A JPS63154280A (en) 1986-12-17 1986-12-17 Laser beam machine

Publications (1)

Publication Number Publication Date
JPS63154280A true JPS63154280A (en) 1988-06-27

Family

ID=17882851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300277A Pending JPS63154280A (en) 1986-12-17 1986-12-17 Laser beam machine

Country Status (1)

Country Link
JP (1) JPS63154280A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192492A (en) * 1988-01-22 1989-08-02 Matsushita Electric Ind Co Ltd Laser processing device
WO1992002331A1 (en) * 1990-07-31 1992-02-20 Materials And Intelligent Devices Reserch Co., Ltd. Yag laser working machine for precision working of thin film
JPH04351280A (en) * 1990-12-26 1992-12-07 Mid:Kk Yag laser beam machine for thin film precision processing
US5500505A (en) * 1994-05-09 1996-03-19 General Electric Company Method for cutting epoxy/carbon fiber composite with lasers
US5611946A (en) * 1994-02-18 1997-03-18 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
US6573702B2 (en) 1997-09-12 2003-06-03 New Wave Research Method and apparatus for cleaning electronic test contacts
JPWO2012144146A1 (en) * 2011-04-22 2014-07-28 パナソニックヘルスケア株式会社 Read label for information recording medium and information recording method thereof
JP2020116599A (en) * 2019-01-22 2020-08-06 東レエンジニアリング株式会社 Laser beam machining apparatus and laser beam machining method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192492A (en) * 1988-01-22 1989-08-02 Matsushita Electric Ind Co Ltd Laser processing device
WO1992002331A1 (en) * 1990-07-31 1992-02-20 Materials And Intelligent Devices Reserch Co., Ltd. Yag laser working machine for precision working of thin film
JPH04351280A (en) * 1990-12-26 1992-12-07 Mid:Kk Yag laser beam machine for thin film precision processing
US5611946A (en) * 1994-02-18 1997-03-18 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
US5811751A (en) * 1994-02-18 1998-09-22 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
US5963364A (en) * 1994-02-18 1999-10-05 New Wave Research Multi-wavelength variable attenuator and half wave plate
US5500505A (en) * 1994-05-09 1996-03-19 General Electric Company Method for cutting epoxy/carbon fiber composite with lasers
US6573702B2 (en) 1997-09-12 2003-06-03 New Wave Research Method and apparatus for cleaning electronic test contacts
JPWO2012144146A1 (en) * 2011-04-22 2014-07-28 パナソニックヘルスケア株式会社 Read label for information recording medium and information recording method thereof
JP2020116599A (en) * 2019-01-22 2020-08-06 東レエンジニアリング株式会社 Laser beam machining apparatus and laser beam machining method

Similar Documents

Publication Publication Date Title
KR100433896B1 (en) Laser marking method and apparatus, and marked member
CN106312314B (en) double laser beam welding system and method
JP2002205180A (en) Method for laser beam machining
JPS63154280A (en) Laser beam machine
JP3210934B2 (en) How to cut brittle materials
CN1448755A (en) Method for preparing periodic microstructure on metallic film by femto second laser
JP2005047290A (en) Laser machining device
Mur et al. Precision and resolution in laser direct microstructuring with bursts of picosecond pulses
JPH0436794B2 (en)
JPH10244386A (en) Device and method of laser beam machining for transparent hard brittle material
Venkatakrishnan et al. Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration
JPH02263590A (en) Laser beam machine
JPS63212084A (en) Laser beam machine
JP2003010991A (en) Laser beam machining method
JPS63215394A (en) Method for processing substrate
JPH04143092A (en) Laser beam machine
JPH01271084A (en) Laser cutting method for glass
JPS63273587A (en) Laser beam machining method
JPS62168688A (en) Laser beam machining device
JPH02255292A (en) Laser processing device
JPS60244495A (en) Laser beam machine
JP2003001473A (en) Laser beam machining device
JPH08291322A (en) Laser hardening method
JP2872792B2 (en) Laser marking device
Lanin et al. Hole Formation in Semiconductor Materials by Laser Microprocessing