JPH06307819A - Automatic measuring device for inter-wire gap and falling angle of coil spring - Google Patents

Automatic measuring device for inter-wire gap and falling angle of coil spring

Info

Publication number
JPH06307819A
JPH06307819A JP5094749A JP9474993A JPH06307819A JP H06307819 A JPH06307819 A JP H06307819A JP 5094749 A JP5094749 A JP 5094749A JP 9474993 A JP9474993 A JP 9474993A JP H06307819 A JPH06307819 A JP H06307819A
Authority
JP
Japan
Prior art keywords
coil spring
prisms
constant speed
light
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5094749A
Other languages
Japanese (ja)
Other versions
JP2526010B2 (en
Inventor
Hironobu Sasada
弘暢 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKOOLE KK
Original Assignee
SANKOOLE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKOOLE KK filed Critical SANKOOLE KK
Priority to JP5094749A priority Critical patent/JP2526010B2/en
Publication of JPH06307819A publication Critical patent/JPH06307819A/en
Application granted granted Critical
Publication of JP2526010B2 publication Critical patent/JP2526010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To prevent increase in the spot diameter of a beam and drop of the measuring accuracy due to turn-around by using a laser beam as a medium for measuring. CONSTITUTION:One set of prisms 11, 12 are furnished inside of a coil layer of a coil spring 8, and correspondingly on the outside of the coil layer, laser beam projecting apparatus 13A, 13B and receiving apparatus 14A, 14B are furnished in such a way as mating with the prisms 11, 12. One end of the coil spring 8 is grasped by a chuck 1, and it is rotated intermittently by an indexing rotational mechanism 3, and meantime the prisms 11, 12 and the laser beam projecting and receiving apparatuses 13A, 13B, 14A, 14B are moved at a constant speed in the axial direction of the coil spring 8 by a constant speed feeding mechanism 15 while they are held in the specified relative positions. On the way of this constant speed movement, laser beams are cast off from the projecting apparatus 13A, 13B, reflected by the reflex surfaces of the prisms 11, 12, and put incident to the receiving apparatus 14A, 14B, and thereby the sensing signals of the inter-wire gap and wire falling angle are sent to a computational control part 5 at certain time intervals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は巻ばねの線間隙間及び倒
れ角度の自動測定装置に関するものであり、詳細には、
巻ばねを構成する線材の断面形状が、クロソイド曲線の
閉ループや楕円形など非円形をなす場合、当該線材の線
間隙間及びコイル線材の倒れ角度を精度良く連続的に測
定するための自動測定手段を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic measuring device for wire gaps and tilt angles of coil springs.
When the cross-sectional shape of the wire forming the spiral spring is a non-circular shape such as a closed loop of a clothoid curve or an elliptical shape, an automatic measuring means for accurately and continuously measuring the inter-wire gap of the wire and the tilt angle of the coil wire. Is provided.

【0002】[0002]

【従来の技術】従来、巻ばねの線間隙間は、隙間ゲージ
等を使用して人手で測定していた。しかしながら、この
ような人手による測定は非能率的であり、かつ、測定精
度を高水準に維持する上にも測定操作上問題があった。
2. Description of the Related Art Conventionally, a wire gap of a coil spring is manually measured by using a gap gauge or the like. However, such manual measurement is inefficient, and there is a problem in measurement operation in maintaining the measurement accuracy at a high level.

【0003】このような問題を解決するため、本発明の
出願人は、先に実願昭63−52289号にて、巻ばね
の線間隙間の測定手段として光電センサを使用した自動
測定装置を提案している。この巻ばねの線間隙間の自動
測定装置の概略構造と作動要領を本発明の先行技術とし
て図3を参照しながら説明する。
In order to solve such a problem, the applicant of the present invention previously disclosed in Japanese Patent Application No. 63-52289 an automatic measuring device using a photoelectric sensor as a measuring means between the wire gaps of a coil spring. is suggesting. A schematic structure and an operating procedure of the automatic measuring device for the line gap of the coil spring will be described as a prior art of the present invention with reference to FIG.

【0004】本願考案に係る巻ばね(8)の線間隙間
(G)の自動測定装置(10)は、図3(A)に示すよう
に、巻ばね(8)の一端を把持するチャック(1)と、
チャック(1)で把持され、回転可能に支持された上記
巻ばね(8)の他端からコイルを跨いで挿入可能に構成
され、それぞれの先端に光電センサ(6)(7)を対設
した2股フォーク状の測定ヘッド(2)と、上記チャッ
クを巻きばね(8)の中心軸線の周りに間歇回転させる
割出し回転機構(3)と、上記即位ヘッド(2)を巻ば
ね(8)の中心軸線と平行する方向に恒速移動させる支
持ブラケット(4a)、ガイドロッド(4b)、パルス
モータ(4c)、及び送りねじ(4d)からなる恒速送
り機構(4)と、割出し回転機構(3)及び恒速送り機
構(4)の同調制御下に巻ばね(8)の円周方向に沿う
割出し角度位置毎に、恒速送り機構(4)の送り速度と
光電センサ(6)(7)の検出信号から巻ばね(8)の
線間隙間(G)を算出する演算制御手段(5)により構
成されている。
As shown in FIG. 3A, an automatic measuring device (10) for measuring the inter-line gap (G) of a coil spring (8) according to the present invention, as shown in FIG. 1) and
The winding spring (8), which is gripped by the chuck (1) and is rotatably supported, is configured to be insertable across the coil from the other end, and photoelectric sensors (6) and (7) are provided opposite to the respective tips. A bifurcating fork-shaped measuring head (2), an indexing rotating mechanism (3) for intermittently rotating the chuck around the central axis of the winding spring (8), and a winding spring (8) for the relative head (2). Constant speed feed mechanism (4) consisting of a support bracket (4a), a guide rod (4b), a pulse motor (4c), and a feed screw (4d) for constant speed movement in a direction parallel to the central axis of the Under the synchronous control of the mechanism (3) and the constant speed feed mechanism (4), the feed rate of the constant speed feed mechanism (4) and the photoelectric sensor (6) are set for each indexing angle position along the circumferential direction of the coil spring (8). ) From the detection signal of (7), determine the wire gap (G) of the coil spring (8). It is constituted by the operation control means for output (5).

【0005】チャック(1)で一端を把持された巻ばね
(8)を割出し回転機構(3)で所定角度ずつ間歇回転
させながら当該巻ばねの他端から、上記恒速送り機構
(4)による送り込み動作を利用して測定ヘッド(2)
を挿入して行く。光電センサ(6)(7)間に形成され
た投受光経路を巻ばね(8)のコイルが横切ることによ
って、巻ばね(8)を構成している線材の実在部分と線
間隙間(G)の形成部分、即ち、上記線材の非実在部分
とで検出信号の大きさが変化する。この検出信号の長さ
(G0)を図3(B)に示すように測定ヘッド(2)の
移動速度を基準として演算制御手段(5)で演算処理す
ることによって、巻ばね(8)の線間隙間(G)が求め
られる。尚、上記演算制御手段(5)は、割出し回転機
構(3)及び恒速送り機構(4)を同調制御し、巻ばね
(8)の円周方向に沿う割出し角度位置毎に、恒速送り
機構(4)の送り速度及び光電センサ(6)(7)から
送出された隙間検出信号(G0)に基いて巻ばね(8)
の線間隙間(G)を算出するために設けられたものであ
って、コンピュータ(5a)と増幅器(5b)により構
成されている。
While the winding spring (8) whose one end is gripped by the chuck (1) is intermittently rotated by a predetermined angle by the indexing rotation mechanism (3), from the other end of the winding spring, the constant speed feed mechanism (4). Measuring head using the feeding operation by (2)
Insert and go. The coil of the coil spring (8) traverses the light projecting and receiving path formed between the photoelectric sensors (6) and (7), so that the wire rod and the actual portion of the wire material forming the coil spring (8) and the inter-wire gap (G). The size of the detection signal changes at the formation portion of, that is, the non-existing portion of the wire. The length (G 0 ) of this detection signal is arithmetically processed by the arithmetic control means (5) with reference to the moving speed of the measuring head (2) as shown in FIG. The line gap (G) is required. The arithmetic control means (5) synchronously controls the indexing rotation mechanism (3) and the constant speed feed mechanism (4) to control the indexing angular position along the circumferential direction of the coil spring (8). Based on the feed rate of the rapid feed mechanism (4) and the gap detection signal (G 0 ) sent from the photoelectric sensors (6) (7), the coil spring (8)
It is provided for calculating the inter-line gap (G), and is composed of a computer (5a) and an amplifier (5b).

【0006】上記線間隙間(G)の自動測定装置(10)
を使用することによって、隙間ゲージ等を利用した場合
に問題とされていた測定精度の低下や測定労力が可成り
抑制される。
Automatic measuring device (10) for the line gap (G)
By using, the decrease in measurement accuracy and the measurement labor, which have been problems when a gap gauge or the like is used, are considerably suppressed.

【0007】[0007]

【発明が解決しようとする課題】上記従来方式の自動測
定装置(10)を使用して巻きばね(8)の線間隙間
(G)を測定する場合、光電式の投光器(6)と受光器
(7)との間に光線を投射することによってコンピュー
タ(5a)に隙間検出信号(G0)が送出される。上記
の如く光源として光電管方式を採用した場合、その光線
には僅かながらも散乱性があるため、光線の一部が測定
対称物たる巻ばね(8)の周縁に沿って回り込んでしま
う。この光の干渉乃至は散乱に起因する光線のスポット
径の増大は、本発明者等の計測結果によれば、投光器
(6)から投射される光線のスポット性を一定値、例え
ば1mmに設定した場合、巻ばね(8)の照射域に到達
した時点では15μm乃至20μmに達し、このスポット径
の増大分だけ線間隙間(G)の検出信号の大きさが変化
し、図3(B)に二点鎖線と参照符号(Ge)で表示す
るように実際の線間隙間(G)と異なった誤差|G0
Ge|を含んだ検出信号(Ge)が演算制御手段(5)
に送出されることになる。この結果、線間隙間(G)の
測定精度を維持することは可成り困難となる。即ち、光
電管方式を採用した場合、測定精度を高めるためには演
算制御手段(5)に上記誤差|G0−Ge|の補正機能
を付加する必要があり、コンピュータ(5a)の演算制
御回路が複雑化することになる。更に詳細に説明する
と、巻ばね(8)が円形断面を持った線材から形成され
ている場合には上記誤差|G0−Ge|の補正は比較的
容易であるが、巻ばね(8)の横断面形状が方形や、ク
ロソイド曲線の閉ループである場合には、線材が光線の
投射方向に対して方向性を持っている分だけ光線が干渉
や散乱の影響を受け易くなり、線間隙間(G)やコイル
の倒れ角度の測定に際して、複雑な補正計算が必要とな
る。結果的に、測定インデックスが低下して省力化が阻
害されると共に、測定精度の維持に対しても種々の制約
が伴なうことになる。
When the line gap (G) of the coil spring (8) is measured using the above-mentioned conventional automatic measuring device (10), the photoelectric projector (6) and the photoreceiver are used. The gap detection signal (G 0 ) is sent to the computer (5a) by projecting a light beam between (7). When the photoelectric tube system is adopted as the light source as described above, the light beam has a slight scattering property, and therefore a part of the light beam wraps around the periphery of the spiral spring (8) which is a symmetrical object of measurement. According to the measurement results of the present inventors, the spot property of the light beam projected from the light projector (6) is set to a constant value, for example, 1 mm for the increase of the spot diameter of the light beam due to the interference or scattering of the light. In this case, when it reaches the irradiation area of the coil spring (8), it reaches 15 μm to 20 μm, and the magnitude of the detection signal of the inter-line gap (G) changes by the increase of this spot diameter, as shown in FIG. 3 (B). As indicated by the chain double-dashed line and the reference sign (Ge), an error different from the actual line gap (G) | G 0
The detection signal (Ge) including Ge |
Will be sent to. As a result, it becomes quite difficult to maintain the measurement accuracy of the line gap (G). That is, when the photoelectric tube method is adopted, it is necessary to add the correction function of the error | G 0 −Ge | to the operation control means (5) in order to improve the measurement accuracy, and the operation control circuit of the computer (5a) It will be complicated. More specifically, when the coil spring (8) is formed of a wire having a circular cross section, the error | G 0 −Ge | is relatively easy to correct. If the cross-sectional shape is a square or a closed loop of clothoid curve, the light rays are more susceptible to interference and scattering due to the directionality of the wire rod with respect to the projection direction of the light rays. G) and the measurement of the tilt angle of the coil require complicated correction calculation. As a result, the measurement index is lowered, labor saving is hindered, and various restrictions are involved in maintaining the measurement accuracy.

【0008】[0008]

【課題を解決するための手段】上記課題の解決手段とし
て本発明は、巻ばねの一端を間歇回転可能に支持するチ
ャックと、このチャックに接続され間歇回転を与える割
出し回転機構と、上記チャックで一端を把持された巻ば
ねの他端から当該巻ばねの内側に挿入され、当該巻ばね
の軸線方向に沿って所定の対向間隔を保持して恒速移動
する2個1組のプリズムと、上記プリズムに上記巻ばね
の外側からその線間隙間を通してレーザ光を投射する投
光器と、上記プリズムの反射面で光軸の方向を変化させ
たレーザ光を上記巻ばねの外側で受光する受光器と、上
記2個1組のプリズムと投光器、並びに受光器からなる
レーザ光の投受光構体を一定の相対位置を保持させたま
ま上記巻ばねの軸線方向に恒速移動させる恒速送り機構
と、上記割出し回転機構及び恒速送り機構を制御し、上
記巻ばねの円周方向に沿う割出し角度位置毎に、上記恒
速送り機構の送り速度とレーザ光の投受光構体から送出
される検出信号から上記巻ばねの線間隙間及び倒れ角度
を算出する演算制御手段とを具備したことを特徴とする
巻ばねの線間隙間及び倒れ角度の自動測定装置を提供す
るものである。
As a means for solving the above problems, the present invention provides a chuck for supporting one end of a coil spring so as to be capable of intermittent rotation, an indexing rotation mechanism which is connected to the chuck and provides intermittent rotation, and the chuck described above. A pair of prisms, which are inserted into the inside of the coil spring from the other end of the coil spring whose one end is gripped by, and which move at a constant speed along the axial direction of the coil spring while maintaining a predetermined opposing interval; A projector for projecting laser light from the outside of the coil spring through the line gap to the prism, and a receiver for receiving the laser beam whose optical axis direction is changed by the reflecting surface of the prism on the coil spring outside. A constant speed feed mechanism for moving the laser light projecting / receiving structure composed of the pair of prisms, the light projector, and the light receiver at a constant relative position in the axial direction of the coil spring, Index times The mechanism and the constant speed feed mechanism are controlled, and the winding speed is determined from the feed rate of the constant speed feed mechanism and the detection signal sent from the laser light projecting / receiving structure for each indexing angle position along the circumferential direction of the coil spring. The present invention provides an automatic measuring device for a wire gap and a tilt angle of a winding spring, which is provided with a calculation control means for calculating a wire gap and a tilt angle of the spring.

【0009】[0009]

【作用】巻ばねのコイル層の内側に2個1組でプリズム
を配置し、これに対応して巻ばねのコイル層の外側に上
記プリズムと対向状態でレーザ光の投光器と受光器を配
設する。巻ばねの一端をチャックで把持し、割出し回転
機構で間歇回転させながら、上記プリズムとレーザ光の
投受光器を一定の相対位置を保持させたまま恒速送り機
構で巻ばねの軸線方向に沿って恒速移動させる。この恒
速移動の途上で、投光器からレーザ光を投射し、プリズ
ムの反射面で反射させた後、受光器に入射させることに
よって、所定の時間間隔で線間隙間及び線材の倒れ角度
の検出信号を演算制御手段に送出する。
The prisms are arranged in pairs inside the coil layer of the coil spring, and correspondingly, the projector and the receiver of the laser beam are arranged outside the coil layer of the coil spring so as to face the prism. To do. While holding one end of the coil spring with a chuck and intermittently rotating it with an indexing rotation mechanism, keep the prism and the laser light emitter / receiver at a certain relative position while using the constant speed feed mechanism to move in the axial direction of the coil spring. Move along at a constant speed. During this constant speed movement, laser light is projected from the projector, reflected by the reflecting surface of the prism, and then incident on the light receiver, thereby detecting signals for the gap between the wires and the tilt angle of the wire at a predetermined time interval. To the arithmetic control means.

【0010】[0010]

【実施例】以下、図1及び図2を参照しながら本発明の
具体例を説明する。尚、以下の記述において従来技術を
示す図3と同一の構成部材は同一の参照番号で表示し、
重複事項に関しては説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete example of the present invention will be described below with reference to FIGS. In the following description, the same components as those in FIG. 3 showing the prior art are designated by the same reference numerals,
Description of duplicate items is omitted.

【0011】巻ばね(8)の線間隙間(G)と倒れ角度
(θ)の自動測定装置(20)は、巻ばね(8)の一端を
芯出し状態で間歇回転可能に支持するチャック(1)
と、このチャック(1)に間歇回転用の動力源として接
続された割出し回転機構(3)と、上記チャック(1)
で一端を把持された巻ばね(8)の他端からその内側に
挿入され、巻ばね(8)の軸線方向に沿って所定の対向
間隔を保持して恒速移動する2個1組のプリズム(11)
(12)と、巻ばね(8)のコイル層の外側からその線間
隙間(G)を通して上記プリズムの一方、例えば(11)
にレーザ光を投射する投光器(13A)と、上記一方のプ
リズム(11)の斜め上向きの反射面(11A)で光軸の方
向を巻ばね(8)の軸線方向に変化させて直進した後、
他方のプリズム(12)の斜め上向きの反射面(12A)で
光軸の方向を巻ばね(8)の軸線と直角方向に再度変化
させたレーザ光の受光手段として、上記巻ばね(8)の
コイル層の外側に配設された受光器(14A)と、上記2
個1組のプリズム(11)(12)と、投光器(13A)並び
に受光器(14B)からなるレーザ光の投受光構体を、一
定の相対位置を保持させたまま巻ばね(8)の軸線方向
に恒速移動させる恒速送り機構(15)と、上記割出し回
転機構(3)及び恒速送り機構(15)を同調制御し、予
め設定された巻ばね(8)の円周方向に沿う割出し角度
位置毎に、恒速送り機構(15)の送り速度と、レーザ光
の投受構体(13A)(11)(12)(14A)から送出され
る検出信号から、巻ばね(8)の線間隙間(G)及び巻
ばね(8)の軸線に対する線材の倒れ角度(θ)を算出
する演算制御手段(5)とを組合わせることによって構
成されている。
An automatic measuring device (20) for measuring a line gap (G) and a tilt angle (θ) of a coil spring (8) includes a chuck (1) for rotatably supporting one end of the coil spring (8) in a centered state so as to be intermittently rotatable. 1)
An indexing rotation mechanism (3) connected to the chuck (1) as a power source for intermittent rotation, and the chuck (1).
A pair of prisms inserted into the inside from the other end of the spiral spring (8) whose one end is gripped, and moving at a constant speed along the axial direction of the spiral spring (8) with a predetermined facing interval. (11)
(12) and one of the prisms, for example, (11), from the outside of the coil layer of the coil spring (8) through the line gap (G).
After changing the direction of the optical axis to the axial direction of the coil spring (8) by the projector (13A) for projecting the laser light on and the obliquely upward reflecting surface (11A) of the one prism (11), and then proceeding straight,
As the light receiving means for the laser light in which the direction of the optical axis is changed again in the direction perpendicular to the axis of the coil spring (8) by the obliquely upward reflecting surface (12A) of the other prism (12), the coil spring (8) is provided. The light receiver (14A) arranged outside the coil layer, and the above-mentioned 2
The axial direction of the coil spring (8) with the laser light projecting / receiving structure comprising the prism (11) (12) and the projector (13A) and the photoreceiver (14B) set in a set at a fixed relative position. The constant speed feed mechanism (15) for constant speed movement, the indexing rotation mechanism (3) and the constant speed feed mechanism (15) are synchronously controlled to follow a preset circumferential direction of the winding spring (8). For each indexing angular position, from the feed rate of the constant velocity feed mechanism (15) and the detection signals sent from the laser beam projecting / receiving structures (13A) (11) (12) (14A), the coil spring (8) is detected. Of the wire gap (G) and the calculation control means (5) for calculating the inclination angle (θ) of the wire with respect to the axis of the coil spring (8).

【0012】投光器(13A)と受光器(14A)は、巻ば
ね(8)のコイル層の外側に、それぞれの光軸の方向を
平行させて2個1組に配設されている。
The light emitter (13A) and the light receiver (14A) are arranged outside the coil layer of the coil spring (8) in pairs with their optical axes parallel to each other.

【0013】上記実施例では、第1の投光器(13A)と
第1の受光器(14A)の間に斜め上向きの反射面(11
A)(12A)を持った2個1組のプリズム(11)(12)
を介在させることによって線間隙間(G)の自動測定系
を構成しているが、更に好ましい変形例として、図2
(A)に拡大して図示するように、巻ばね(8)の上下
に所定の離間間隔を置いて第1の投光器(13A)と光軸
の方向を一致させた同軸配置で第2の投光器(13B)を
対設すると共に、第1の受光器(14A)と光軸の方向を
一致させた同軸配置で第2の受光器(14B)を対設し、
これに対応して第1のプリズム(11)の斜め下向きの反
射面(11B)と、第2のプリズム(12)の斜め下向きの
反射面(12B)をレーザ光の投射経路上に整列させた自
動測定系を構成することも可能である。この変形例によ
れば、レーザ光の1回の投射で、180゜の位相差を置く
巻ばね(8)の円周上の2点で線間隙間(G)と線材の
倒れ角度(θ)が測定されるため、第1の投光器(13
A)と第2の受光器(14A)のみを使用する場合に比較
して、巻ばね(8)の1回転当たりの測定回数が2倍と
なり、測定精度の維持が容易になる。
In the above-mentioned embodiment, the reflecting surface (11) facing obliquely upward is provided between the first light projector (13A) and the first light receiver (14A).
A) A pair of prisms (11) (12) with (12A)
Although an automatic measurement system for the inter-line gap (G) is configured by interposing, a more preferable modified example is shown in FIG.
As shown in the enlarged view of (A), the second light projector has a coaxial arrangement in which the direction of the optical axis is aligned with that of the first light projector (13A) with a predetermined space above and below the coil spring (8). (13B) is installed in parallel, and the second optical receiver (14B) is installed in parallel with the first optical receiver (14A) in a coaxial arrangement in which the directions of the optical axes match.
Correspondingly, the obliquely downward reflecting surface (11B) of the first prism (11) and the obliquely downward reflecting surface (12B) of the second prism (12) are aligned on the laser light projection path. It is also possible to configure an automatic measurement system. According to this modification, the laser beam is projected once and the line gap (G) and the inclination angle (θ) of the wire rod are set at two points on the circumference of the coil spring (8) having a phase difference of 180 °. Is measured, the first floodlight (13
Compared to the case where only A) and the second light receiver (14A) are used, the number of measurements per revolution of the coil spring (8) is doubled, and it becomes easier to maintain the measurement accuracy.

【0014】尚、図1に示す割出し回転機構(3)は、
チャック(1)を巻ばね(8)の中心軸線の周りに間歇
回転させる割出し機能を具えた駆動装置であって、ステ
ッピングモータの取付金具(3B)、チャック(1)の
軸部(17)を回転自在に支持するカップリング(3C)
及びピローブロック(3D)(3E)から構成されてい
る。
The indexing rotation mechanism (3) shown in FIG.
A drive device having an indexing function for intermittently rotating the chuck (1) around the central axis of the coil spring (8), which includes a mounting bracket (3B) for a stepping motor and a shaft portion (17) of the chuck (1). Coupling (3C) that rotatably supports
And pillow blocks (3D) (3E).

【0015】一方、恒速送り機構(15)は、2個1組で
ロッド(16)に固着されたプリズム(11)(12)と、こ
れらのプリズム(11)(12)と対向するように巻ばね
(8)のコイル層の外側に対設された投光器(13A)
(13B)並びに受光器(14A)(14B)を、一体構造と
したまま巻ばね(8)の軸線方向に沿って恒速送りする
直線運動装置であって、ベースプレート(18)上に設け
られた送りねじ(15B)付きのモータ(15C)と、上記
送りねじ(15B)と螺合する雌ねじブロック(15D)を
底部に固着したXテーブル(15A)により構成されてい
る。
On the other hand, the constant speed feeding mechanism (15) is arranged so that two prisms (11) and (12) fixed to the rod (16) in pairs and facing these prisms (11) and (12). Projector (13A) opposite to the coil layer of the coil spring (8)
(13B) and the light receivers (14A) and (14B) are linear motion devices that feed the springs (8) at a constant speed along the axial direction of the coil springs (8) with the integrated structure, and are provided on the base plate (18). It is composed of a motor (15C) with a feed screw (15B) and an X table (15A) having a female screw block (15D) screwed with the feed screw (15B) fixed to the bottom.

【0016】演算制御手段(5)は、割出し回転機構
(3)と恒速送り機構(15)を同調状態に制御するため
の手段であって、図3に示す従来方式のものと基本的に
は同一である。即ち、巻ばね(8)の円周方向に沿う割
出し角度、例えば1/8回転毎に、恒速送り機構(15)
によるレーザ式投受光構体(11)(12)(13A)(13
B)(14A)(14B)の送り速度及び上記レーザ式投受
光構体から送出される検出信号から巻ばね(8)の線間
隙間(G)を算出し、これと同時に線材の横幅(W 2
と、レーザ光の投射方向からの見掛け幅(W1)とを比
較演算することによって、巻ばね(8)でコイル層を形
成している線材の倒れ角度(θ)を算出する。
The arithmetic control means (5) is an indexing rotation mechanism.
To control (3) and constant speed feed mechanism (15) in a synchronized state
Which is basically the same as the conventional method shown in FIG.
Are the same. That is, the winding spring (8) is split along the circumferential direction.
Constant speed feed mechanism (15) for every 1/8 rotation
Laser type light emitting and receiving structure (11) (12) (13A) (13
B) (14A) (14B) feed rate and the above laser type receiving and receiving
From the detection signal sent from the optical structure to the line between the winding springs (8)
The gap (G) is calculated, and at the same time, the width (W 2)
And the apparent width (W1) And
The coil layer is formed with the coil spring (8) by performing a comparison operation.
Calculate the tilt angle (θ) of the wire rod.

【0017】以下、本発明装置(20)による線間隙間
(G)と線材の倒れ角度(θ)の測定動作を説明する。
The operation of measuring the inter-wire gap (G) and the inclination angle (θ) of the wire by the device (20) of the present invention will be described below.

【0018】先ず、チャック(1)に巻ばね(8)の一
端を把持させ、チャック(1)を制止状態ら保持したま
ま恒速送り機構(15)を起動し、レーザ光を投射しなが
らプリズム(11)(12)、投光器(13A)(13B)、及
び、受光器(14A)(14B)からなるレーザ光の投受光
構体を巻ばね(8)の軸線方向に恒速移動させる。これ
により、レーザ光の投光器(13A)と受光器(14A)の
間、及び投光器(13B)と受光器(14B)の間で、プリ
ズム(11)(12)の介在下に巻ばね(8)の線間隙間
(G)と倒れ角度(θ)の測定動作が行われる。即ち、
レーザ光を投射することによって、線材の線径及び線間
隙間(G)に比例したON−OFF信号を検出し、この
検出信号を増幅器(5b)を通してコンピュータ(5
a)に送出する。これと同時に、恒速送り機構(15)か
ら上記レーザ光の投受光構体の移動量がコンピュータ
(5a)に連続的に送り込まれる。上記ON−OFF信
号と投受光構体の送り速度から巻ばね(8)の線間隙間
(G)と、線材の倒れ角度(θ)を算出する。
First, the chuck (1) is made to grasp one end of the coil spring (8), and the constant speed feed mechanism (15) is activated while the chuck (1) is held in the stopped state, and the prism is projected while projecting laser light. (11) (12), the light projectors (13A) (13B) and the light receivers (14A) (14B), the laser light projecting / receiving structure is moved at a constant speed in the axial direction of the coil spring (8). As a result, the coil spring (8) is interposed between the prism (11) and (12) between the laser light projector (13A) and the light receiver (14A) and between the laser projector (13B) and the light receiver (14B). The measurement operation of the line gap (G) and the tilt angle (θ) is performed. That is,
By projecting a laser beam, an ON-OFF signal proportional to the wire diameter of the wire and the gap (G) between the wires is detected, and this detection signal is passed through an amplifier (5b) to a computer (5).
Send to a). At the same time, the moving amount of the laser light projecting / receiving structure is continuously sent from the constant speed sending mechanism (15) to the computer (5a). The line gap (G) of the coil spring (8) and the inclination angle (θ) of the wire rod are calculated from the ON-OFF signal and the feed speed of the light emitting / receiving structure.

【0019】1個の巻ばね(8)について、割出し回転
機構(3)の回転割出し動作を利用して所定の回転位相
角毎に上記測定動作を繰返す。
With respect to one coil spring (8), the above-described measurement operation is repeated for each predetermined rotation phase angle by utilizing the rotation indexing operation of the indexing rotation mechanism (3).

【0020】尚、チャック(1)は、巻ばね(8)を、
例えば三点支持爪で把持するものであって、この孔によ
る把持位置を除く巻ばね(8)の軸線方向全長が上記投
受光構体の作動域に形成されている。
The chuck (1) has a coil spring (8)
For example, it is gripped by a three-point support claw, and the entire length in the axial direction of the winding spring (8) excluding the gripping position by this hole is formed in the working area of the light emitting and receiving structure.

【0021】本発明装置(20)を使用することによっ
て、等ピッチの巻ばね(8)から不等ピッチの巻ばね
(8)迄、コイル形状と線材の横断面形状を異にする各
種の巻ばねについて線間隙間(G)と線材の倒れ角度
(θ)が自動測定される。測定に先立って、当該巻ばね
(8)の設計値を演算制御手段(5)のコンピュータ
(5a)のメモリ内にインプットして置き、この設計値
と測定値とを比較し、比較結果をグラフまたは数値で表
示し、合否判定を行なう。
By using the device (20) of the present invention, various windings having different coil shapes and different cross-sectional shapes of wire rods can be used, from the winding springs (8) having an equal pitch to the winding springs (8) having an unequal pitch. The clearance (G) between the wires and the inclination angle (θ) of the wire are automatically measured for the spring. Prior to the measurement, the design value of the spiral spring (8) is input and placed in the memory of the computer (5a) of the arithmetic control means (5), the design value and the measured value are compared, and the comparison result is graphed. Alternatively, it is displayed as a numerical value and a pass / fail judgment is made.

【0022】なお上記実施例に於て、プリズムは三角柱
状のものについて説明したが底面を正方形とした三角錐
とすれば同時測定は4個所となり測定精度並びに測定精
度を更に向上さすことが出来る。
In the above embodiment, the prism has been described as having a triangular prism shape, but if the prism is a triangular pyramid having a square bottom surface, the simultaneous measurement becomes four points, and the measurement accuracy and the measurement accuracy can be further improved.

【0023】[0023]

【発明の効果】線間隙間(G)及び巻ばね(8)を構成
する線材の倒れ角度(θ)の測定媒体としてレーザ光を
使用することによって、光電式の投受光器を使用する場
合に問題となる光線のスポット径の増大や光の回り込み
による測定精度の低下が効果的に回避される。
The use of a laser beam as a measuring medium for the inter-line gap (G) and the tilt angle (θ) of the wire material forming the coil spring (8) allows the use of a photoelectric light-emitter / receiver. It is possible to effectively avoid the problem of a decrease in measurement accuracy due to an increase in the spot diameter of the light beam and a wraparound of the light.

【0024】また、上下に反射面を持つ2個のプリズム
(11)(12)と、巻ばね(8)を挟んで上下に対向配置
された2組のレーザ光投受光器(13A)(14A)及び
(13B)(14B)とを併用することによって、同一の測
定位置で取得される検出信号の数を使用した場合に比較
してプリズムが三角柱の場合は2倍に、また三角錐の場
合は4倍にすることが可能となり、この分だけ測定値の
精度が向上する。
Two prisms (11) and (12) having upper and lower reflecting surfaces and two sets of laser light projecting / receiving devices (13A) (14A) which are vertically opposed to each other with a coil spring (8) interposed therebetween. ) And (13B) and (14B) together, the number of detection signals acquired at the same measurement position is doubled when the prism is a triangular prism, and when the prism is a triangular pyramid. Can be quadrupled, and the accuracy of the measured value is improved accordingly.

【0025】本発明によれば、巻ばね(8)の線間隙間
(G)と巻ばね(8)の構成部材たる線材の倒れ角度
(θ)の自動測定が可能となり、測定精度の向上と相俟
って、測定作業の省略化と高能率化に対しても顕著な効
果が発揮される。
According to the present invention, it is possible to automatically measure the wire gap (G) of the coil spring (8) and the tilt angle (θ) of the wire rod which is a constituent member of the coil spring (8), which improves the measurement accuracy. Together with this, a remarkable effect can be exerted also on the omission of measurement work and the improvement of efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の全体構造を説明する正面図。FIG. 1 is a front view illustrating the overall structure of a device of the present invention.

【図2】(A)は本発明装置要部の正面図、(B)は異
形線材の倒れ角度を説明する横断面図。
FIG. 2A is a front view of a main part of the device of the present invention, and FIG. 2B is a cross-sectional view for explaining a tilt angle of a deformed wire.

【図3】(A)は従来装置の正面図、(B)は測定ヘッ
ドの移動量と検出信号の関係を例示的に説明する直交線
図。
FIG. 3A is a front view of a conventional device, and FIG. 3B is an orthogonal line diagram exemplarily illustrating a relationship between a moving amount of a measuring head and a detection signal.

【符号の説明】 3 割出し回転機構 5 演算制御手段 8 巻ばね 11 プリズム 12 プリズム 13A レーザ光の第1の投光器 13B レーザ光の第2の投光器 14A レーザ光の第1の受光器 14B レーザ光の第2の受光器 15 恒速送り機構 20 線間隙間及び倒れ角度の自動測定装置[Explanation of Codes] 3 Indexing / Rotating Mechanism 5 Arithmetic Control Means 8 Winding Spring 11 Prism 12 Prism 13A First Projector of Laser Light 13B Second Projector of Laser Light 14A First Receiver of Laser Light 14B of Laser Light 2nd light receiver 15 Constant speed feeding mechanism 20 Automatic measuring device for gap between lines and tilt angle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 巻ばねの一端を間歇回転可能に支持する
チャックと、このチャックに接続され間歇回転を与える
割出し回転機構と、上記チャックで一端を把持された巻
ばねの他端から当該巻ばねの内側に挿入され、当該巻ば
ねの軸線方向に沿って所定の対向間隔を保持して恒速移
動する2個1組のプリズムと、上記プリズムに上記巻ば
ねの外側からその線間隙間を通してレーザ光を投射する
投光器と、上記プリズムの反射面で光軸の方向を変化さ
せたレーザ光を上記巻ばねの外側で受光する受光器と、
上記2個1組のプリズムと投光器、並びに受光器からな
るレーザ光の投受光構体を一定の相対位置を保持させた
まま上記巻ばねの軸線方向に恒速移動させる恒速送り機
構と、上記割出し回転機構及び恒速送り機構を制御し、
上記巻ばねの円周方向に沿う割出し角度位置毎に、上記
恒速送り機構の送り速度とレーザ光の投受光構体から送
出される検出信号から上記巻ばねの線間隙間及び倒れ角
度を算出する演算制御手段とを具備したことを特徴とす
る巻ばねの線間隙間及び倒れ角度の自動測定装置。
1. A chuck that supports one end of a coil spring so as to be intermittently rotatable, an indexing rotation mechanism that is connected to this chuck and that provides intermittent rotation, and a coil spring whose one end is gripped by the chuck from the other end of the coil spring. A pair of two prisms that are inserted inside the spring and move at a constant speed along the axial direction of the coil spring while maintaining a predetermined facing interval, and through the gap between the coils from the outside of the coil spring to the prism. A light projector that projects a laser beam, and a light receiver that receives the laser beam whose direction of the optical axis is changed by the reflecting surface of the prism outside the coil spring,
A constant speed feed mechanism for moving the laser light projecting / receiving structure consisting of the pair of prisms, the light projector, and the light receiver at a constant relative position in the axial direction of the coil spring while maintaining a constant relative position; Controls the feed rotation mechanism and constant speed feed mechanism,
For each indexed angle position along the circumferential direction of the coil spring, the wire gap and the tilt angle of the coil spring are calculated from the feed rate of the constant-speed feed mechanism and the detection signal sent from the laser light projecting / receiving structure. An automatic measuring device for a wire gap and a tilt angle of a coil spring, which comprises:
【請求項2】 請求項1記載のレーザ光の投受光構体
を、巻ばねの軸線の上下または左右にそれぞれ45゜の反
射角を保持し得るように所定の対向間隔を置いて対設さ
れた2個1組のプリズムと、上記巻ばねの内側に配置さ
れた第1のプリズムに対して互いに反対方向からレーザ
光を投射する2個の投光器と、上記第1のプリズムに対
設された第2のプリズムから互いに反対方向に反射する
レーザ光の受光手段として上記巻ばねの外側に配設され
た2個の受光器とによって構成したことを特徴とする巻
ばねの線間隙間及び倒れ角度の自動測定装置。
2. The laser light projecting / receiving structure according to claim 1 is arranged at a predetermined facing interval so as to maintain a reflection angle of 45 ° above and below or to the left and right of the axis of the coil spring. A set of two prisms, two projectors for projecting laser light from mutually opposite directions to the first prism arranged inside the coil spring, and a first projector provided opposite to the first prism. Two light receivers arranged outside the coil spring are used as light receiving means for laser beams reflected from the two prisms in mutually opposite directions. Automatic measuring device.
JP5094749A 1993-04-22 1993-04-22 Automatic measuring device for wire gap and tilt angle of coil spring Expired - Fee Related JP2526010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5094749A JP2526010B2 (en) 1993-04-22 1993-04-22 Automatic measuring device for wire gap and tilt angle of coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5094749A JP2526010B2 (en) 1993-04-22 1993-04-22 Automatic measuring device for wire gap and tilt angle of coil spring

Publications (2)

Publication Number Publication Date
JPH06307819A true JPH06307819A (en) 1994-11-04
JP2526010B2 JP2526010B2 (en) 1996-08-21

Family

ID=14118780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5094749A Expired - Fee Related JP2526010B2 (en) 1993-04-22 1993-04-22 Automatic measuring device for wire gap and tilt angle of coil spring

Country Status (1)

Country Link
JP (1) JP2526010B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119088A (en) * 2011-12-06 2013-06-17 Asahi- Seiki Manufacturing Co Ltd Coil spring measuring device
CN107655424A (en) * 2017-09-21 2018-02-02 大族激光科技产业集团股份有限公司 Testing apparatus for verticality and up- coiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119088A (en) * 2011-12-06 2013-06-17 Asahi- Seiki Manufacturing Co Ltd Coil spring measuring device
CN107655424A (en) * 2017-09-21 2018-02-02 大族激光科技产业集团股份有限公司 Testing apparatus for verticality and up- coiler
CN107655424B (en) * 2017-09-21 2020-10-16 大族激光科技产业集团股份有限公司 Verticality detection device and winding machine

Also Published As

Publication number Publication date
JP2526010B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
JPS59501540A (en) automatic welding system
JP2004533347A5 (en)
JPH1114357A (en) Automatic tracking device of surveying equipment
JPH022082B2 (en)
JP2526010B2 (en) Automatic measuring device for wire gap and tilt angle of coil spring
JP2000283729A (en) Method and device for measuring outside diameter of traveling pipe or rod
JP2003170335A (en) Method and device for measuring rotary cutting tool
JPH0966520A (en) Wire sawing machine
JP2574722B2 (en) Relative angle measuring device
JP2826300B2 (en) Outer diameter measuring device for circular members
EP0331445A2 (en) Method and apparatus for sonic digitizer coil measurement system
JPH06502018A (en) Rotator of ultrasonic testing equipment for rotationally symmetric specimens with one or more holes for test probe stand
JPH11325842A (en) Method and apparatus for measuring shape of long material
JPS62147306A (en) Apparatus for measuring shape of round shaft shaped member
JPH1062117A (en) Laser type probe of 3-dimension measuring device
JP2784481B2 (en) 2D position and direction measurement device for moving objects
JPH06329432A (en) Apparatus for producing optical fiber soot
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
JPS6175243A (en) 2-axis oscillating x rays stress measuring apparatus
JPS63121705A (en) Instrument for measuring outer diameter and center position of pipe
JP2004233364A (en) Eccentricity measuring system for optical fiber
JP2578153B2 (en) Cross section measuring device
JPS63312057A (en) Detecting device for inclination of cutting device
KR19990055104A (en) Shape measurement method of wire rod
JP2868382B2 (en) Outer diameter measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees