JPH06307762A - アルゴンの製造装置 - Google Patents

アルゴンの製造装置

Info

Publication number
JPH06307762A
JPH06307762A JP9607393A JP9607393A JPH06307762A JP H06307762 A JPH06307762 A JP H06307762A JP 9607393 A JP9607393 A JP 9607393A JP 9607393 A JP9607393 A JP 9607393A JP H06307762 A JPH06307762 A JP H06307762A
Authority
JP
Japan
Prior art keywords
column
argon
rectification
rectification column
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9607393A
Other languages
English (en)
Inventor
Masayuki Tanaka
正幸 田中
Hideto Fujita
秀人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9607393A priority Critical patent/JPH06307762A/ja
Publication of JPH06307762A publication Critical patent/JPH06307762A/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04909Structured packings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】 【目的】 アルゴン製造装置において、装置全体の大型
化を避けながら、水素添加を行わずにアルゴン濃縮ガス
の脱酸を行い、高純度アルゴンガスを製造する。 【構成】 主精留塔10の側方に第1粗アルゴン塔16
及び第2粗アルゴン塔28を並設する。両粗アルゴン塔
16,28の総理論段数を、主精留塔10で精製された
アルゴン濃縮ガス中の酸素濃度を十分低下させるだけの
段数に設定する。第1粗アルゴン塔16の理論段数は、
第2粗アルゴン塔28の理論段数よりも小さくし、第1
粗アルゴン塔16の底部が主精留塔上塔14の底部より
高く、第2粗アルゴン塔28の底部が第1粗アルゴン塔
16の底部よりも低くなるように両塔16,28を設置
する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、空気分離装置等におい
て、高純度アルゴンを製造するための装置に関するもの
である。
【0002】
【従来の技術】従来、空気から高純度アルゴンを製造す
るための装置としては、特開昭62−276387号公
報に示すようなものが知られている。図5は、この装置
を模式的に示したものであり、この装置では次のような
手順で高純度アルゴンガスが製造される。
【0003】まず、空気(原料ガス)を主精留塔90の
下塔91に導入して窒素と富酸素液体空気とに粗分離
し、これらを主精留塔上塔92に導入し、この上塔92
の下部から抽出した富アルゴンガス(約10%)を精留
塔である粗アルゴン塔93に導入する。この粗アルゴン
塔93では、その塔頂に設けられた塔頂コンデンサ93
aにより還流液が生成され、上記塔頂には粗アルゴンガ
スが精製されるが、このガスの酸素濃度は約2〜3%、
窒素濃度も約2〜3%とまだ十分には下がっていないの
で、この粗アルゴンガスを熱交換器94で一度常温に戻
してから酸素除去装置95に導入する。
【0004】この酸素除去装置95では、粗アルゴンガ
スの圧力を圧縮機96で高めた後、これに水素を添加し
てから脱酸用触媒塔97に導入することにより、粗アル
ゴンガス中の酸素分を水に変換し、この水を乾燥用吸着
塔98でガス中から除去する。さらに、このガスを上記
熱交換器94で再び低温に戻してから精製アルゴン塔9
9に導入し、窒素や水素といった不純物を精留分離する
ことにより、製品液体アルゴンを製造する。
【0005】
【発明が解決しようとする課題】上記装置では、粗アル
ゴンガス中の酸素を除去するために、粗アルゴンガスに
水素を添加して酸素を水に変換する手段をとっているの
で、次の理由によりランニングコストが非常に高くな
る。
【0006】(a) 水素添加前に粗アルゴンガスを熱交換
器94で一旦常温に戻し、脱酸後は精製アルゴン塔99
に導入する前に再び粗アルゴンガスを低温まで冷却しな
ければならないので、エネルギのロスが大きい。また、
水素添加前に圧縮機96で粗アルゴンガスを圧縮しなけ
ればならないため、その分エネルギ消費量はさらに増大
する。
【0007】(b) 水素は比較的貴重な物質であり、特に
その入手が難しい地域では水素の補充に多大な手間を要
する。この水素は、水の電気分解により得ることが可能
であるものの、このような手段をとると設備費及び消費
電力の増加は免れ得ない。
【0008】なお、このような水素添加に代わる脱酸手
段として、粗アルゴン塔93の理論段数を大幅に増や
し、粗アルゴン塔93での精留段階で酸素濃度を許容値
(例えば100ppm)まで下げることが理論上は可能である
が、このように精留だけで十分な脱酸を行うには極めて
大きな理論段数を要し、これに伴って粗アルゴン塔93
の全長も非常に大きくなるため、装置全体を収容する保
冷箱の全高が非常に大きくなり、設備費及び所要スペー
スが大幅に増大してしまう。特に、図示のように粗アル
ゴン塔93の塔底液を主精留塔上塔92の下部に戻す装
置では、粗アルゴン塔93の底部が主精留塔上塔92の
下部よりも上側に位置するような高さに粗アルゴン塔9
3を配置しなければならないので、この粗アルゴン塔9
3の理論段数を増やすと粗アルゴン塔93は主精留塔上
塔92の塔頂よりさらに高くそびえ立つことになり、そ
の実用化は実質上不可能である。
【0009】本発明は、このような事情に鑑み、ランニ
ングコストの低減を図り、かつ装置全体の大型化を避け
ながら、酸素を十分に除去して高純度アルゴンを製造す
ることができるアルゴンの製造装置を提供することを目
的とする。
【0010】
【課題を解決するための手段】本発明は、アルゴンを含
む原料ガスを精留してこれを濃縮する主精留塔と、この
主精留塔より抽出されたアルゴン濃縮ガスから酸素を分
離してアルゴンガスを精製するアルゴン精製手段とを備
えたアルゴンの製造装置において、上記アルゴン精製手
段として、上記主精留塔より抽出されたガスを精留する
第1精留塔と、塔底が第1精留塔の塔頂よりも低くなる
高さ位置に設けられ、上記第1粗アルゴン塔の塔頂ガス
を精留して塔頂にアルゴンガスを精製する第2精留塔と
を並設したものである(請求項1)。ここで、第1精留
塔及び第2精留塔は、充填塔であることがより好ましい
(請求項5)。
【0011】この装置は、上記主精留塔を、原料ガスを
窒素と富酸素液体空気に粗分離する主精留塔下塔と、こ
の主精留塔下塔で粗分離された窒素及び富酸素液体空気
を精留することにより、上記第1精留塔に供給するため
のアルゴン濃縮ガスを精製する主精留塔上塔とで構成す
るとともに、上記第1精留塔の底部が上記主精留塔上塔
の底部よりも高くなる高さ位置に第1精留塔を設け、こ
の第1精留塔の塔底液を上記主精留塔下部において第1
精留塔の底部よりも低い位置に供給するための液体供給
通路を備えたものにおいて、特に有効となる(請求項
2)。
【0012】この装置では、上記第1精留塔の理論段数
を第2精留塔の理論段数よりも少ない段数に設定すると
ともに、第2精留塔の塔底が第1精留塔の塔底よりも低
くなる高さ位置に第2精留塔を配置することにより、さ
らに好ましいものとなる(請求項3)。
【0013】また、上記各装置において、上記第2精留
塔の塔底液を汲み上げて上記第1精留塔の上部にその還
流液として供給する還流液供給手段を備えることによ
り、後述のようなより優れた効果が得られる(請求項
4)。
【0014】
【作用】請求項1記載の装置によれば、第1精留塔及び
第2精留塔の並設によって総理論段数を増やすことによ
り、酸素の除去を十分に行うことができる。すなわち、
上記主精留塔より抽出されたガスを第1精留塔で粗精製
し、この第1精留塔頂部の粗アルゴンガスを第2精留塔
でさらに精製することにより、水素を用いず、またガス
の圧縮や加温・冷却を行わずに、ガス中の酸素濃度を十
分に低下させることができる。しかも、第2精留塔はそ
の塔底が第1精留塔の塔頂よりも低くなる高さ位置に設
けられているので、第1精留塔及び第2精留塔の総理論
段数と同等の理論段数をもつ単一の精留塔(粗アルゴン
塔)を設置する場合に比べ、高さ方向のスペースは非常
に小さい。
【0015】特に、請求項2記載のように、主精留塔を
下塔及び上塔に分け、上記第1精留塔の底部が主精留塔
上塔の底部よりも高くなる高さ位置に第1精留塔を設
け、この第1精留塔の塔底液を上記主精留塔下部におい
て第1精留塔の底部よりも低い位置に供給するようにし
た装置においては、第1精留塔がより高い位置に設置さ
れることになるので、この第1精留塔と別に第2精留塔
を設置することにより、高さ方向のスペース削減はより
顕著となる。
【0016】この装置では、請求項3記載のように、上
記第1精留塔の理論段数を第2精留塔の理論段数よりも
少ない段数に設定する、すなわち第1精留塔の全長を第
2精留塔の全長より短くするとともに、第2精留塔の塔
底が第1精留塔の塔底よりも低くなる高さ位置に第2精
留塔を配置することにより、第1精留塔及び第2精留塔
の塔頂高さをより平均化することができる。
【0017】また、請求項4記載の装置では、上記第2
精留塔の塔底液を汲み上げて上記第1精留塔の上部にそ
の還流液として供給することにより、アルゴンの回収効
率が高められ、また第1精留塔塔頂において還流液を生
成するためのコンデンサ等の省略が可能となる。
【0018】上述のように、第1精留塔及び第2精留塔
で酸素濃度を十分に下げるためには、両塔の総理論段数
を非常に多くしなければならず、その分、第1精留塔底
部の圧力と第2精留塔頂部の圧力との差はより大きくな
るが、ここで、請求項5記載のように上記第1精留塔及
び第2精留塔を充填塔(充填物を充填した精留塔)、す
なわち棚段式精留塔よりも1段当りの圧損が低い精留塔
とすれば、第2精留塔塔頂の圧力(すなわち脱酸後の高
純度アルゴンガスの圧力)を十分高く保持することがで
きる。
【0019】
【実施例】本発明の第1実施例を図1に基づいて説明す
る。
【0020】図1に示す装置は、主精留塔10を備え、
主精留塔10は下塔12及び上塔14を備えている。下
塔12の底部には、原料空気導入部が設けられ、上塔1
4の底部には主凝縮器13が設けられており、この主凝
縮器13により、上塔14底部における富酸素液体の蒸
発と、下塔12の頂部におけるガスの液化とが同時に行
われるようになっている。また、下塔12の上部は図略
の還流液供給通路を介して上塔14の頂部に接続されて
いる。
【0021】上記主精留塔10の側方には、アルゴンガ
スの脱酸手段として、第1粗アルゴン塔(第1精留塔)
16及び第2粗アルゴン塔(第2精留塔)28が設置さ
れている。
【0022】第1粗アルゴン塔16は、その底部が上記
上塔14の底部よりも高くなる高さ位置に設置されてお
り、この第1粗アルゴン塔16の下部と上記上塔14の
下部とがガス移送通路18を介して接続されるととも
に、第1粗アルゴン塔16の底部が、液体供給通路20
を介し、上塔14の下部において第1粗アルゴン塔16
の底部よりも低い位置に接続されている。
【0023】第2粗アルゴン塔28は、第1粗アルゴン
塔16よりも大きな理論段数を有し、この第2粗アルゴ
ン塔28と上記第1粗アルゴン塔16の総理論段数は、
アルゴンガス中の酸素濃度を十分に低下させる(この実
施例では100ppm以下まで下げる)のに十分な段数に設定
されている。従って、第2粗アルゴン塔28の全長は第
1粗アルゴン塔16の全長よりも長くなっているが、こ
の第2粗アルゴン塔28は、その底部が上記第1粗アル
ゴン塔16の底部よりも低くなるような高さ位置(図例
では第2粗アルゴン塔28の底部と下塔12の底部とが
ほぼ同じ高さとなるような高さ位置)に設置されてい
る。
【0024】この第2粗アルゴン塔28の下部は、ガス
移送通路22を介して上記第1粗アルゴン塔16の頂部
に接続されており、第2粗アルゴン塔28の底部は還流
液供給通路24を介して上記第1粗アルゴン塔16の頂
部に接続されている。還流液供給通路24の途中にはポ
ンプ26が設けられており、このポンプ26及び還流液
供給通路24により、第2粗アルゴン塔28の塔底液を
汲み上げて第1粗アルゴン塔16の頂部に還流液として
供給するための還流液供給手段が構成されている。
【0025】第2粗アルゴン塔28の頂部には、コンデ
ンサ30が設けられており、このコンデンサ30に第2
粗アルゴン塔28上部のガスが導入され、その凝縮によ
り第2粗アルゴン塔28の還流液が生成されるようにな
っている。また、第2粗アルゴン塔28の頂部は、ガス
移送通路32を介して精製アルゴン塔34の中腹部に接
続されている。この精製アルゴン塔34は、導入されて
きた高純度アルゴンガスからさらに窒素を精留によって
除去するものであり、塔底リボイラ36及び塔頂コンデ
ンサ38を備えている。
【0026】なお、この精製アルゴン塔34は、必要に
応じて適宜設置すれば良く、本発明では必ずしも要しな
い。例えば主精留塔上塔14の下部においてほとんど窒
素が存在しない高さ位置からガス移送通路18を通じて
ガスを抽出することにより、窒素濃度の非常に低いアル
ゴンガスを精製アルゴン塔34を用いずに得ることも可
能である。
【0027】次に、この装置の作用を説明する。
【0028】まず、図外の手段で液化点付近まで冷却さ
れた原料空気が、下塔12内に導入され、この下塔12
内で窒素と富酸素液体空気とに分離される。富酸素液体
空気は、図略の富酸素液体供給通路を通じて上塔14に
供給される。下塔12頂部のガスは、上塔14の底部に
設けられた凝縮器13で液化され、下塔12内に還流さ
れるが、この還流液は図略の還流液供給通路を通じて上
塔14の頂部に供給される。
【0029】この上塔14においては、塔頂へ向かって
の窒素の分離と、塔底へ向かっての酸素の分離によりア
ルゴンの濃縮が行われる。そして、この上塔14下部の
所定位置からガス移送通路18を通じて第1粗アルゴン
塔16内にガスが供給される。また、第1粗アルゴン塔
16の塔底液は、液体供給通路20を通じて上記上塔1
4の下部に戻される。
【0030】この第1粗アルゴン塔16の頂部には、酸
素濃度が約1〜3%まで低下した粗アルゴンガスが精製
される。このガスは、ガス移送通路22を通じて第2粗
アルゴン塔28の下部に移送される。また、この第2粗
アルゴン塔28の塔底液は、ポンプ26によって汲み上
げられ、還流液供給通路24を通じて第1粗アルゴン塔
16の頂部に還流液として供給される。
【0031】この第2粗アルゴン塔28では、その頂部
のガスがコンデンサ30に導入され、凝縮した後に還流
液として第2粗アルゴン塔28の上部に戻される。この
ようにして精留が進められることにより、第2粗アルゴ
ン塔28の頂部には酸素濃度が十分に(100ppm以下に)
低下した高純度アルゴンガスが精製され、このガスはガ
ス移送通路32を通じて精製アルゴン塔34に移送され
る。この精製アルゴン塔34では、アルゴンと窒素とが
精製分離され、この精製アルゴン塔34の頂部から、酸
素濃度及び窒素濃度が十分に低下した高純度ヘリウムガ
スが製品アルゴンとして系外へ取り出される。
【0032】以上のように、この装置では、第1粗アル
ゴン塔16及び第2粗アルゴン塔28の並設によって粗
アルゴン塔の総理論段数を増やすことにより、酸素の除
去を十分に行うことができる。すなわち、上記主精留塔
上塔14の下部より抽出されたガスを第1粗アルゴン塔
16で粗精製し、この第1粗アルゴン塔頂部の粗アルゴ
ンガスを第2粗アルゴン塔28でさらに精製することに
より、比較的貴重な物質である水素を用いることなく、
また精製途中でガスの圧縮や加温・冷却を行うことな
く、ガス中の酸素濃度を十分に低下させることができ
る。従って、従来の水素添加式の装置に比べ、ランニン
グコストを大幅に削減することができる。
【0033】しかも、単一の粗アルゴン塔の理論段数を
増やすのではなく、第1粗アルゴン塔16及び第2粗ア
ルゴン塔28を並設し、第2粗アルゴン塔28をその塔
底が第1粗アルゴン塔の塔頂よりも低くなる高さ位置に
設けるようにしたものであるので、単一の粗アルゴン塔
を設置する場合に比べ、高さ方向の設置スペースを大幅
に削減することができる。
【0034】特に、この装置では、上記第1粗アルゴン
塔16の底部が上記主精留塔上塔14の底部よりも高く
なる高さ位置に第1粗アルゴン塔16を設け、この第1
粗アルゴン塔16の塔底液を液体供給通路20を通じて
上塔14の底部に供給するようにしているため、第1粗
アルゴン塔16は地盤よりも上方の高い位置に設置され
た状態となっているが、この第1粗アルゴン塔16の理
論段数が第2粗アルゴン塔28の理論段数よりも少ない
段数に設定されて、第1粗アルゴン塔16の全長を第2
粗アルゴン塔28の全長より短くなっており、しかも、
第2粗アルゴン塔28の塔底が第1粗アルゴン塔16の
塔底よりも低くなる高さ位置に第2粗アルゴン塔28が
配置されているので、第1粗アルゴン塔16の配設位置
が高いにもかかわらず、第1粗アルゴン塔16及び第2
粗アルゴン塔28の塔頂高さを平均化することができ
る。従って、図例のように、第1粗アルゴン塔16及び
第2粗アルゴン塔28の塔頂を主精留塔10の塔頂とほ
ぼ同等もしくはそれ以下に位置させることも可能とな
る。
【0035】また、この装置では、上記第2粗アルゴン
塔28の塔底液を汲み上げて上記第1粗アルゴン塔16
の上部にその還流液として供給しているので、その分ア
ルゴンの回収効率を高めるとともに、第1粗アルゴン塔
16塔頂において還流液を生成するためのコンデンサ等
を省略することができ、イニシャルコスト及びランニン
グコストをより削減することができる。
【0036】ところで、この装置では、第1粗アルゴン
塔16及び第2粗アルゴン塔28で酸素濃度を十分に下
げるために、両塔の総理論段数を非常に多くしなければ
ならず、その分、第1粗アルゴン塔16底部の圧力と第
2粗アルゴン塔28頂部の圧力との差はより大きくなる
が、ここで、両塔16,28を充填塔(充填物を充填し
た精留塔)、すなわち棚段式精留塔よりも1段当りの圧
損が低い精留塔とすれば、第2粗アルゴン塔28塔頂の
圧力(すなわち脱酸後の高純度アルゴンガスの圧力)を
十分に保持することができる。
【0037】具体的に、第1粗アルゴン塔16底部の圧
力が 0.5kg/cm2Gである場合、上記両粗アルゴン塔1
6,28をともに棚段式のものとすると、第1粗アルゴ
ン塔16頂部の圧力及び第2粗アルゴン塔28底部の圧
力は 0.3kg/cm2Gまで下がり、さらに第2粗アルゴン塔
28頂部の圧力は -0.4kg/cm2G(負圧)まで下がること
となり、この塔頂からの高純度アルゴンガスの抽出にポ
ンプ等を用いなければならない不都合を生じる場合があ
るが、両粗アルゴン塔16,28をともに充填塔とすれ
ば、第1粗アルゴン塔16頂部の圧力及び第2粗アルゴ
ン塔28底部の圧力は 0.45kg/cm2Gまでしか下がらず、
第2粗アルゴン塔28頂部の圧力は 0.3kg/cm2G(負
圧)といった十分高い圧力に保持することが可能とな
る。
【0038】なお、この充填塔としては、気液接触を十
分に確保して良好な精留が実現できるものであればよ
く、図2に示すような穴8aをもつ薄波板状の規則充填
物8を図3に示すように規則的に配列しながら塔内に充
填したものであってもよいし、従来から周知の不規則充
填物、例えば図4(a)に示すラシヒリング81、同図
(b)に示すサドル82、同図(c)に示すレシヒリン
グ83、同図(d)に示すヘリカル84等を充填したも
のであってもよい。
【0039】また、本発明において主精留塔10の具体
的な構成は問わず、上記下塔12及び上塔14が上下に
連設されたものの他、例えば高圧塔と低圧塔とが並設さ
れたものでも良い。ただし、上記のように主精留塔10
を下塔12及び上塔14で構成し、この上塔14の底部
よりも高い位置に第1粗アルゴン塔16を配置する場合
に、上記高さ方向のスペース削減による効果はより顕著
となる。
【0040】
【発明の効果】以上のように、本発明によれば次の効果
を得ることができる。
【0041】請求項1記載の装置では、第1精留塔及び
第2精留塔の並設によって両精留塔の総理論段数を増や
すことにより、比較的貴重な物質である水素を用いるこ
となく、また精製途中でガスの圧縮や加温・冷却を行う
ことなく、ガス中の酸素濃度を精留のみで十分に低下さ
せることができる。従って、従来の水素添加式の装置に
比べ、ランニングコストを大幅に削減することができる
効果がある。
【0042】しかも、単一の粗アルゴン塔の理論段数を
増やすのではなく、第1精留塔及び第2精留塔を並設
し、第2精留塔をその塔底が第1精留塔の塔頂よりも低
くなる高さ位置に設けるようにしたものであるので、高
さ方向の設置スペースの増大を避け、あるいはこれを回
避しながら上記効果を得ることができる。
【0043】特に、請求項2記載のように、上記第1精
留塔の底部が上記主精留塔上塔の底部よりも高くなる高
さ位置に第1精留塔を設け、この第1精留塔の塔底液を
液体供給通路を通じて上塔の底部に供給する装置では、
上記第1精留塔及び第2精留塔の並設で第1精留塔の全
長を抑えることにより、高さ方向の設置スペースの削減
がより有効となる。
【0044】さらに、このような装置において、請求項
3記載のように、第1精留塔の理論段数を第2精留塔の
理論段数よりも少ない段数に設定して第1精留塔の全長
を第2精留塔の全長より短くし、かつ、第2精留塔の塔
底が第1精留塔の塔底よりも低くなる高さ位置に第2精
留塔を配置すれば、第1精留塔の配設位置が高いにもか
かわらず、第1精留塔及び第2精留塔の塔頂高さをより
平均化することができ、装置の小型化をさらに進めるこ
とができる。
【0045】さらに、請求項4記載の装置では、上記第
2精留塔の塔底液を汲み上げて上記第1精留塔の上部に
その還流液として供給しているので、その分アルゴンの
回収効率を高めるとともに、第1精留塔塔頂において還
流液を生成するためのコンデンサ等を省略することがで
き、イニシャルコスト及びランニングコストをより削減
することができる。
【0046】また、請求項5記載の装置では、第1及び
第2精留塔を充填塔、すなわち棚段式精留塔よりも1段
当りの圧損が低い精留塔としているので、第1及び第2
精留塔の総理論段数を多く設定しても、第2精留塔塔頂
の圧力(すなわち脱酸後の高純度アルゴンガスの圧力)
を十分高く保持することができる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例におけるアルゴン製造装置を
示すフローシートである。
【図2】上記アルゴン製造装置における第1及び第2粗
アルゴン塔に充填される規則充填物を示す正面図であ
る。
【図3】上記規則充填物を規則的に充填した状態を示す
斜視図である。
【図4】(a)(b)(c)(d)は上記両粗アルゴン
塔に充填される不規則充填物の例を示す斜視図である。
【図5】従来のアルゴン製造装置の一例を示すフローシ
ートである。
【符号の説明】
8 規則充填物 10 主精留塔 12 下塔 14 上塔 16 第1粗アルゴン塔(第1精留塔) 20 液体供給通路 24 還流液供給通路(還流液供給手段を構成) 26 ポンプ(還流液供給手段を構成) 28 第2粗アルゴン塔(第2精留塔)

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 アルゴンを含む原料ガスを精留してこれ
    を濃縮する主精留塔と、この主精留塔より抽出されたア
    ルゴン濃縮ガスから酸素を分離してアルゴンガスを精製
    するアルゴン精製手段とを備えたアルゴンの製造装置に
    おいて、上記アルゴン精製手段として、上記主精留塔よ
    り抽出されたガスを精留する第1精留塔と、塔底が第1
    精留塔の塔頂よりも低くなる高さ位置に設けられ、上記
    第1粗アルゴン塔の塔頂ガスを精留して塔頂にアルゴン
    ガスを精製する第2精留塔とを並設したことを特徴とす
    るアルゴンの製造装置。
  2. 【請求項2】 請求項1記載のアルゴンの製造装置にお
    いて、上記主精留塔を、原料ガスを窒素と富酸素液体空
    気に粗分離する主精留塔下塔と、この主精留塔下塔で粗
    分離された窒素及び富酸素液体空気を精留することによ
    り、上記第1精留塔に供給するためのアルゴン濃縮ガス
    を精製する主精留塔上塔とで構成するとともに、上記第
    1精留塔の底部が上記主精留塔上塔の底部よりも高くな
    る高さ位置に第1精留塔を設け、この第1精留塔の塔底
    液を上記主精留塔下部において第1精留塔の底部よりも
    低い位置に供給するための液体供給通路を備えたことを
    特徴とする請求項1記載のアルゴンの製造装置。
  3. 【請求項3】 請求項2記載のアルゴンの製造装置にお
    いて、上記第1精留塔の理論段数を第2精留塔の理論段
    数よりも少ない段数に設定するとともに、第2精留塔の
    塔底が第1精留塔の塔底よりも低くなる高さ位置に第2
    精留塔を配置したことを特徴とする請求項1記載のアル
    ゴンの製造装置。
  4. 【請求項4】 請求項1〜3のいずれかに記載のアルゴ
    ンの製造装置において、上記第2精留塔の塔底液を汲み
    上げて上記第1精留塔の上部にその還流液として供給す
    る還流液供給手段を備えたことを特徴とする請求項1記
    載のアルゴンの製造装置。
  5. 【請求項5】 請求項1〜4のいずれかに記載のアルゴ
    ンの製造装置において、上記第1精留塔及び第2精留塔
    を充填塔としたことを特徴とするアルゴンの製造装置。
JP9607393A 1993-04-22 1993-04-22 アルゴンの製造装置 Pending JPH06307762A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9607393A JPH06307762A (ja) 1993-04-22 1993-04-22 アルゴンの製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9607393A JPH06307762A (ja) 1993-04-22 1993-04-22 アルゴンの製造装置

Publications (1)

Publication Number Publication Date
JPH06307762A true JPH06307762A (ja) 1994-11-01

Family

ID=14155235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9607393A Pending JPH06307762A (ja) 1993-04-22 1993-04-22 アルゴンの製造装置

Country Status (1)

Country Link
JP (1) JPH06307762A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013914A2 (en) 2011-07-25 2013-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Low-temperature material transfer apparatus and low-temperature liquefied gas supply system using the low-temperature material transfer apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125285A (ja) * 1985-11-27 1987-06-06 株式会社神戸製鋼所 アルゴンの回収方法
JPH01244269A (ja) * 1987-12-14 1989-09-28 Air Prod And Chem Inc 酸素、窒素とアルゴンから成る混合物の極低温蒸流による分離法と極低温蒸流装置の改良法
JPH06109361A (ja) * 1992-09-29 1994-04-19 Nippon Sanso Kk 高純度アルゴンの分離方法及びその装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125285A (ja) * 1985-11-27 1987-06-06 株式会社神戸製鋼所 アルゴンの回収方法
JPH01244269A (ja) * 1987-12-14 1989-09-28 Air Prod And Chem Inc 酸素、窒素とアルゴンから成る混合物の極低温蒸流による分離法と極低温蒸流装置の改良法
JPH06109361A (ja) * 1992-09-29 1994-04-19 Nippon Sanso Kk 高純度アルゴンの分離方法及びその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013914A2 (en) 2011-07-25 2013-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Low-temperature material transfer apparatus and low-temperature liquefied gas supply system using the low-temperature material transfer apparatus
JP2013024376A (ja) * 2011-07-25 2013-02-04 Air Liquide Japan Ltd 低温物質の移送装置およびこれを用いた低温液化ガス供給システム

Similar Documents

Publication Publication Date Title
CN108027201B (zh) 用于除氩和回收氩的方法和装置
EP0328112B1 (en) Double column air separation apparatus and process with hybrid upper column
EP0464636B1 (en) Cryogenic air separation with dual temperature feed turboexpansion
CN107850387B (zh) 在与变压吸附系统集成的低温空气分离单元中用于氩回收的方法和装置
EP0962732B1 (en) Multiple column nitrogen generators with oxygen coproduction
JP2597521B2 (ja) 粗アルゴン生成物生産に係る極低温蒸留による空気分離法
EP0387872B1 (en) Cryogenic rectification process for producing ultra high purity nitrogen
JP3545629B2 (ja) 超高純度窒素及び超高純度酸素を生成するための極低温精製方法及び装置
EP0697575A1 (en) Cryogenic rectification method and apparatus
JPS61122479A (ja) 窒素製造方法
JP3935503B2 (ja) アルゴンの分離方法およびその装置
JPH08240380A (ja) 空気の分離
JPH06221753A (ja) 低温空気分離法
JPH05288464A (ja) 窒素と超高純度酸素を生成するための極低温式精留方法及び装置
JPH05312469A (ja) 空気液化分離装置及び方法
JP3097064B2 (ja) 超高純度液体酸素の製造方法
US6378333B1 (en) Cryogenic system for producing xenon employing a xenon concentrator column
KR20020027181A (ko) 감소된 높이의 증류 칼럼용 구조적 충전 시스템
JPH06307762A (ja) アルゴンの製造装置
CN103988037B (zh) 空气分离方法和装置
JP3424101B2 (ja) 高純度アルゴンの分離装置
CN107850386B (zh) 在与变压吸附系统集成的低温空气分离单元中回收氩的方法和装置
JP3957842B2 (ja) 窒素製造方法及び装置
JPH11325716A (ja) 空気の分離
EP0439126B1 (en) Cryogenic air separation system with hybrid argon column