JPH06306478A - Production of high strength galvannealed hot rolled steel sheet excellent in elongation flanging property - Google Patents

Production of high strength galvannealed hot rolled steel sheet excellent in elongation flanging property

Info

Publication number
JPH06306478A
JPH06306478A JP5094682A JP9468293A JPH06306478A JP H06306478 A JPH06306478 A JP H06306478A JP 5094682 A JP5094682 A JP 5094682A JP 9468293 A JP9468293 A JP 9468293A JP H06306478 A JPH06306478 A JP H06306478A
Authority
JP
Japan
Prior art keywords
rolling
hot
less
rolled steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5094682A
Other languages
Japanese (ja)
Other versions
JP3293001B2 (en
Inventor
Hirohide Asano
裕秀 浅野
Makoto Tefun
誠 手墳
Nobuhiko Matsuzu
伸彦 松津
Atsushi Itami
淳 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09468293A priority Critical patent/JP3293001B2/en
Publication of JPH06306478A publication Critical patent/JPH06306478A/en
Application granted granted Critical
Publication of JP3293001B2 publication Critical patent/JP3293001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To provide a method for producing a high strength galvannealed hot rolled steel sheet excellent in elongation flanging properties and used for automotive parts in which working is severe or the like. CONSTITUTION:A steel slab having a compsn. contg. <=0.0l% C, <=0.3% Si, 0.1 to 2% Mn, <=0.1% Al, <=0.01% S and <= 0.1% P and furthermore contg. 0.8 to 2.0% Cu, and the balance Fe with inevitable impurities is used, and the drafts of rough rolling and finish rolling at the time of subjecting it to rolling in a hot rolling line immediately as it is or after low temp. heating and the cooling conditions after the rolling are prescribed, by which the texture is controlled to improve its elongation flanging properties. Moreover, skinpass with 1 to 5% elongation percentage is executed, and the sheet passing temp. in a reducing atmosphere in a continuous galvanizing line is prescribed to produce the high strength galvannealed hot rolled steel sheet in which the strength is increased by utilizing the precipitation strengthening by Cu and having excellent elongation flanging properties and >=540MPa tensile strength. Furthermore, Ni may be added thereto by 0.3 to 1.0%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車を始めとする機械
構造部材や一般加工用に使用される伸びフランジ性の優
れた高強度合金化溶融亜鉛めっき熱延鋼板の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot-rolled galvanized hot-rolled steel sheet having excellent stretch flangeability, which is used for mechanical structural members such as automobiles and general processing.

【0002】[0002]

【従来の技術】近年、省エネルギーや燃費軽減のために
板厚を減少して高強度化するという強い要求がある。こ
の要求に対して、いわゆるDual Phase鋼等が
開発されてきたが、伸びフランジ加工の厳しい部材では
これらの高強度熱延鋼板でも割れが生じるため、適用部
材が限定されているのが現状であり、高強度−良加工性
の鋼板が求められている。
2. Description of the Related Art In recent years, there has been a strong demand for reducing the plate thickness and increasing the strength in order to save energy and reduce fuel consumption. In response to this requirement, so-called Dual Phase steel and the like have been developed, but in the current situation, the members to which stretch flange processing is severe are cracked even in these high-strength hot-rolled steel sheets, so that the applicable members are limited. , A steel plate with high strength and good workability is required.

【0003】このような状況を打破すべく、伸びフラン
ジ性に優れた熱延鋼板の製造方法が特公平2−4860
8号公報、特公平開昭51−44508号公報に開示さ
れている。しかし、特公平2−48608号公報に開示
されているような高強度化のためにSiを添加する方法
では、Siスケールの発生による不めっきの問題があ
る。
In order to overcome such a situation, a method for producing a hot rolled steel sheet having excellent stretch flangeability is disclosed in Japanese Patent Publication No. 2860/1990.
No. 8 and Japanese Patent Publication No. 51-44508. However, the method of adding Si for high strength as disclosed in JP-B-2-48608 has a problem of non-plating due to generation of Si scale.

【0004】また、特開昭51−44508号公報に開
示されている方法は、Cr添加を必要とするため経済的
に不利であり、本発明のように引張強度540MPa以
上の高強度鋼板を意図したものではない。また、これら
の特許公報では合金化溶融亜鉛めっきを施されたものに
ついての開示はない。溶融亜鉛めっきは連続式溶融亜鉛
めっきラインで施されるが、ライン中で再加熱されるた
め、目的とする品質を得るためには多大な困難が伴う。
例えば再加熱のために結晶粒が粗大化すると、熱延まま
の材質に比較して強度が低下する。
Further, the method disclosed in Japanese Patent Laid-Open No. 51-44508 is economically disadvantageous because it requires the addition of Cr, and is intended for a high strength steel plate having a tensile strength of 540 MPa or more as in the present invention. Not what I did. Further, in these patent publications, there is no disclosure of alloy galvanized. The hot dip galvanizing is performed in a continuous hot dip galvanizing line, but since it is reheated in the line, it is very difficult to obtain a desired quality.
For example, if the crystal grains become coarse due to reheating, the strength will be lower than that of the as-hot-rolled material.

【0005】この強度低下を補って目的の強度を得るた
めには鋼中の合金量を増やすことが必要となるが、この
合金量の増加によってめっき密着性の低下や不めっきと
いった問題が生じる。そこで、溶融亜鉛めっきを施した
良加工性高強度鋼板を製造する試みとして特開昭62−
133059号公報にはNb,Ti,Vを添加した鋼成
分系にて引張強度440MPa以上の高強度溶融亜鉛め
っき鋼板が提示されているが、伸びフランジ性について
は何ら検討されていない。
It is necessary to increase the amount of alloy in the steel in order to compensate for this decrease in strength to obtain the desired strength, but this increase in the amount of alloy causes problems such as poor plating adhesion and non-plating. Therefore, as an attempt to produce a hot-dip galvanized high-workability high-strength steel sheet, Japanese Patent Laid-Open No. 62-
No. 133059 discloses a high-strength hot-dip galvanized steel sheet having a tensile strength of 440 MPa or more in a steel component system containing Nb, Ti, and V, but no stretch flangeability has been examined.

【0006】[0006]

【発明が解決しようとする課題】伸びフランジ性を向上
させるには炭化物などの第2相のない極低炭素系をベー
スにするのが有効である。そこで、本発明者らは極低炭
素系熱延鋼板の伸びフランジ性を向上させるべく、鋭意
検討を重ねた結果、第2相の影響のない極低炭素系では
伸びフランジ性と各方向のr値とは強い相関があること
を見出した。すなわち、伸びフランジ性を評価する穴拡
げ試験では割れが板厚を貫通する時点をもって試験終了
とするが、このときの割れが生じる方向はr値の低い方
向で生じる。
In order to improve stretch flangeability, it is effective to use an ultra low carbon system without a second phase such as carbides as a base. Therefore, the inventors of the present invention have conducted extensive studies to improve the stretch flange formability of the ultra low carbon hot rolled steel sheet, and as a result, the stretch flange formability and r in each direction are obtained in the ultra low carbon type which is not affected by the second phase. It was found that there is a strong correlation with the value. That is, in the hole expansion test for evaluating stretch flangeability, the test ends when the crack penetrates the plate thickness, but the crack occurs at this time in the direction of low r value.

【0007】このr値の最小値を向上させるには各方向
の特性値の差を小さくすること、つまり面内異方性を低
減することが有効である。そのためには熱延鋼板の集合
組織をランダム化すること、すなわちγ粒の動的再結晶
を促進させることが重要である。しかし、Cu添加鋼は
強い集合組織を形成しやすく、面内異方性が大きい。そ
のため、r値の最小値も小さく、穴拡げ性も向上しにく
かった。
To improve the minimum r value, it is effective to reduce the difference between the characteristic values in each direction, that is, to reduce the in-plane anisotropy. For that purpose, it is important to randomize the texture of the hot rolled steel sheet, that is, to promote the dynamic recrystallization of γ grains. However, Cu-added steel easily forms a strong texture and has large in-plane anisotropy. Therefore, the minimum r value was small, and it was difficult to improve the hole expansibility.

【0008】そこで、本発明者らは熱間圧延ラインで、
以下の事項をベースにして、厳密に製造条件を定めるこ
とにより、面内異方性を低減し、r値の最小値を向上さ
せ、伸びフランジ性を向上させることを図った。 (1)粗圧延でγ粒を微細にすることによりγ粒の動的
再結晶を生じやすくする。
[0008] Therefore, the present inventors, in the hot rolling line,
By strictly determining the manufacturing conditions based on the following items, the in-plane anisotropy was reduced, the minimum r value was improved, and the stretch flangeability was improved. (1) Making the γ grains fine by rough rolling facilitates dynamic recrystallization of the γ grains.

【0009】(2)仕上圧延後段で大圧下で圧延し、か
つ高仕上温度で圧延を終了することによりγ粒の動的再
結晶を促進する。さらに圧延終了後の空冷によっても促
進を行う。 (3)γ粒を未再結晶にさせる傾向が強いNb,Tiを
添加しない。 次に本発明者らはCuの析出強化に及ぼすプレスキンパ
スの影響を調査した。
(2) Dynamic recrystallization of γ grains is promoted by rolling under a large pressure after finishing rolling and finishing rolling at a high finishing temperature. Further, it is also promoted by air cooling after the completion of rolling. (3) Do not add Nb and Ti, which have a strong tendency to cause non-recrystallization of γ grains. Next, the present inventors investigated the influence of press-kind pass on the precipitation strengthening of Cu.

【0010】表1に示す供試鋼を用いて熱延を行った。
この熱延板に、スキンパスを伸び率0、1、2%と変化
させて行ってから、Cuの析出処理を600℃−3mi
nで行い、引張強度の変化を調査した。図1にこの実験
手順を示す。また図2にはスキンパス率と引張強度の関
係を示す。このように、熱延後スキンパスを施すことに
より同条件の熱処理の場合と比較して、引張強度が向上
することがわかる。これはスキンパスにより導入された
転位がCuの析出サイトとなるためと推定される。この
熱延後のスキンパスの効果を利用することにより、同一
Cu量でもより高強度の鋼板を得ることができる。
Hot rolling was performed using the test steels shown in Table 1.
The hot-rolled sheet was subjected to a skin pass while changing the elongation rate to 0, 1, and 2%, and then subjected to Cu precipitation treatment at 600 ° C.-3 mi.
n, and the change in tensile strength was investigated. The experimental procedure is shown in FIG. Further, FIG. 2 shows the relationship between the skin pass rate and the tensile strength. As described above, it can be seen that the skin strength after hot rolling improves the tensile strength as compared with the case of heat treatment under the same conditions. It is presumed that this is because the dislocation introduced by the skin path becomes a Cu precipitation site. By utilizing the effect of the skin pass after hot rolling, a steel sheet having higher strength can be obtained even with the same Cu content.

【0011】[0011]

【表1】 [Table 1]

【0012】さらに本発明は連続溶融亜鉛めっきライン
で通板する際、還元雰囲気中の温度を規定し、Cuの析
出強化を利用して穴拡げ性を落とさずに高強度化し、加
えて耐食性およびスポット溶接性の優れた合金化溶融亜
鉛めっきをすることを可能としたものである。前記のよ
うに本発明はかかる問題点に鑑み、外観性状・経済性を
損ねることなく、伸びフランジ性の優れた高強度合金化
溶融亜鉛めっき熱延鋼板の製造方法を提供することを目
的とするものである。
Further, the present invention regulates the temperature in the reducing atmosphere when passing through a continuous hot-dip galvanizing line and utilizes the precipitation strengthening of Cu to enhance the strength without sacrificing the hole expansibility. This enables galvannealing with excellent spot weldability. As described above, in view of the above problems, it is an object of the present invention to provide a method for producing a high-strength hot-dip galvanized hot-rolled steel sheet having excellent stretch-flangeability without impairing the appearance properties and economy. It is a thing.

【0013】[0013]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1)mass%で、C:0.01%以下、Si:0.
3%以下、Mn:0.1〜2%、Al:0.1%以下、
S:0.01%以下、P:0.1%以下を含み、かつC
u:0.8〜2.0%を含有し、残部Feおよび不可避
的不純物よりなる鋼をスラブとした後、直ちにあるいは
1000〜1200℃に加熱し、熱間圧延を行う当り、
粗圧延では全圧下率を70%以上で圧延を行い、仕上圧
延では圧下を有効歪[εeff=最終パス圧下率(%)
+1/2(最終前1段目パス圧下率(%))+1/4
(最終前2段目パス圧下率(%))]を30%以上とす
る圧延を行い、(Ar3点+20℃)〜950℃の仕上
温度で圧延を終了し、圧延後1秒以上空冷し、続いて平
均冷却速度10℃/sec以上で冷却し、750℃以下
で巻取って熱延鋼帯とし、得られた熱延鋼帯に伸び率1
〜5%のスキンパスを行ってから、連続溶融亜鉛めっき
ラインにおいて還元雰囲気下に550〜680℃の温度
で通板し、冷却後、溶融亜鉛めっき槽に浸漬して溶融亜
鉛めっきを施した後、再び加熱し、500〜600℃で
合金化することを特徴とする伸びフランジ性の優れた引
張強度が540MPa以上の高強度合金化溶融亜鉛めっ
き熱延鋼板の製造方法。 (2)mass%で、C:0.01%以下、Si:0.
3%以下、Mn:0.1〜2%、Al:0.1%以下、
S:0.01%以下、P:0.1%以下を含み、かつC
u:0.8〜2.0%、Ni:0.3〜1.0%を含有
し、残部Feおよび不可避的不純物よりなる鋼をスラブ
とした後、直ちにあるいは1000〜1250℃に加熱
して熱間圧延を行うに当り、粗圧延では全圧下率を70
%以上で圧延を行い、仕上圧延では圧下を有効歪[εe
ff=最終パス圧下率(%)+1/2(最終前1段目パ
ス圧下率(%))+1/4(最終前2段目パス圧下率
(%))]を30%以上とする圧延を行い、(Ar3
+20℃)〜950℃の仕上温度で圧延を終了し、圧延
後1秒以上空冷し、続いて平均冷却速度10℃/sec
以上で冷却し、750℃以下で巻取って熱延鋼帯とし、
得られた熱延鋼帯に伸び率1〜5%のスキンパスを行っ
てから、連続溶融亜鉛めっきラインにおいて還元雰囲気
下に550〜680℃の温度で通板し、冷却後、溶融亜
鉛めっき槽に浸漬して溶融亜鉛めっきを施した後、再び
加熱し、500〜600℃で合金化することを特徴とす
る伸びフランジ性の優れた引張強度が540MPa以上
の高強度合金化溶融亜鉛めっき熱延鋼板の製造方法。
The gist of the present invention is as follows. (1) Mass%, C: 0.01% or less, Si: 0.
3% or less, Mn: 0.1 to 2%, Al: 0.1% or less,
S: 0.01% or less, P: 0.1% or less, and C
u: A steel containing 0.8 to 2.0% with the balance Fe and unavoidable impurities is made into a slab, and immediately or after heating to 1000 to 1200 ° C. and hot rolling,
In rough rolling, rolling is performed at a total reduction of 70% or more, and in finish rolling, reduction is effective strain [εeff = final pass reduction (%).
+1/2 (1st stage pass reduction before final (%)) + 1/4
Rolling (second pre-final second pass reduction (%))] is 30% or more, rolling is completed at a finishing temperature of (Ar 3 points + 20 ° C.) to 950 ° C., and air cooling is performed for 1 second or more after rolling. Then, it is cooled at an average cooling rate of 10 ° C./sec or more and wound at 750 ° C. or less to form a hot rolled steel strip, and the obtained hot rolled steel strip has an elongation of 1
After performing a skin pass of ˜5%, it is passed through a continuous hot dip galvanizing line in a reducing atmosphere at a temperature of 550 to 680 ° C., and after cooling, it is immersed in a hot dip galvanizing bath to apply hot dip galvanizing, A method for producing a high-strength hot-dip galvanized hot-rolled steel sheet having a tensile strength of 540 MPa or more, which is excellent in stretch-flangeability and is characterized by heating again and alloying at 500 to 600 ° C. (2) Mass%, C: 0.01% or less, Si: 0.
3% or less, Mn: 0.1 to 2%, Al: 0.1% or less,
S: 0.01% or less, P: 0.1% or less, and C
Steel containing u: 0.8 to 2.0% and Ni: 0.3 to 1.0% and the balance Fe and unavoidable impurities was formed into a slab, and immediately or heated to 1000 to 1250 ° C. When performing hot rolling, the total rolling reduction is 70 in rough rolling.
% Or more, and in finish rolling, the reduction is effective strain [εe
ff = final pass reduction (%) + 1/2 (first final stage pass reduction (%)) + 1/4 (previous second stage pass reduction (%))] to 30% or more And finish rolling at a finishing temperature of (Ar 3 points + 20 ° C.) to 950 ° C., air cool for 1 second or more after rolling, and then average cooling rate 10 ° C./sec.
Cooled as above, rolled up at 750 ° C or lower to form a hot rolled steel strip,
The hot-rolled steel strip thus obtained is subjected to a skin pass with an elongation of 1 to 5%, and then it is passed through a continuous hot dip galvanizing line in a reducing atmosphere at a temperature of 550 to 680 ° C., and after cooling, it is put in a hot dip galvanizing tank. A high-strength hot-dip galvanized hot-rolled steel sheet having a tensile strength of 540 MPa or more, which is excellent in stretch-flange formability, characterized by being immersed in hot-dip galvanized steel and then heated again to be alloyed at 500 to 600 ° C. Manufacturing method.

【0014】[0014]

【作用】次に本発明の各構成要件の限定理由について詳
述する。Cは0.01%以下とする。これを超えると炭
化物が生成し、伸びフランジ性が低下する。Mnは強度
を付与する元素であり、0.1〜2%の範囲で添加す
る。下限値未満では目標強度が得られず、2%を超える
添加では製造上、Cのピックアップがあり、Cの上限値
を満足できない。
Next, the reasons for limiting the constituents of the present invention will be described in detail. C is 0.01% or less. If it exceeds this, carbides are generated, and stretch flangeability is deteriorated. Mn is an element that imparts strength, and is added in the range of 0.1 to 2%. If it is less than the lower limit, the target strength cannot be obtained, and if it exceeds 2%, C is picked up in production and the upper limit of C cannot be satisfied.

【0015】SiはSiスケールの原因となるとともに
めっき不良を生じるので0.3%以下とする。Alは脱
酸剤として必要であるが、0.1%を超えるとアルミナ
系介在物が増加し、鋼の伸びフランジ性を損ねる。Sは
圧延方向に伸びたA系介在物を増加させ、そこを起点に
して割れが伝播するので、穴拡げ性が低下する。そこで
上限値を0.01%とする。
Since Si causes Si scale and causes plating failure, the content of Si is set to 0.3% or less. Al is necessary as a deoxidizing agent, but if it exceeds 0.1%, alumina-based inclusions increase and the stretch flangeability of steel is impaired. S increases the amount of A-type inclusions extending in the rolling direction, and cracks propagate from that point as the starting point, so the hole expandability decreases. Therefore, the upper limit value is set to 0.01%.

【0016】Pは耐食性を付与する元素である。しか
し、0.1%を超えると延性が落ち、伸びフランジ性が
低下する。Cuは本発明では重要な元素である。すなわ
ち、本発明に従い、巻取およびその後の徐冷中にCuを
析出させることにより所定の強度を得ることができる。
Cuが0.8%未満では効果がなく、2.0%超える添
加では効果が飽和するとともにCuヘゲと呼ばれる表面
欠陥が熱延中に生じることがある。
P is an element that imparts corrosion resistance. However, if it exceeds 0.1%, the ductility decreases and the stretch flangeability decreases. Cu is an important element in the present invention. That is, according to the present invention, a predetermined strength can be obtained by precipitating Cu during winding and subsequent slow cooling.
If Cu is less than 0.8%, there is no effect, and if it exceeds 2.0%, the effect is saturated and a surface defect called Cu heggling may occur during hot rolling.

【0017】このCuヘゲを防止するにはNi添加が望
ましいが、0.3%未満では効果がなく、1.0%を超
えると効果が飽和するばかりでなく経済性を損ねる。続
いて熱延条件について述べる。前記したような鋼は通常
転炉で溶製され、連続鋳造にてスラブとされる。転炉溶
製後、種々の二次精錬がなされることもある。
Ni is preferably added to prevent Cu hegging, but if it is less than 0.3%, it has no effect, and if it exceeds 1.0%, the effect is saturated and the economy is impaired. Next, the hot rolling conditions will be described. The above-mentioned steel is usually melted in a converter and made into a slab by continuous casting. After the converter is melted, various secondary refining may be performed.

【0018】このスラブは冷片、温片あるいは熱片のま
ま加熱炉に挿入される。この時の加熱温度は1000〜
1200℃とする。下限は現状の連続熱延設備で生産性
を落とさずに操業できる範囲とした。上限値は1200
℃とする。これを超えるとCuヘゲが発生して表面性状
が劣化する。さらにNiを前述の範囲で添加した場合に
は加熱温度の上限値を1250℃とする。上限値はNi
添加により向上するが、これを超えるとやはりCuヘゲ
を生じるのを避けがたい。下限値は同様に現状の設備で
とりうる値とした。
This slab is inserted into a heating furnace as it is as a cold piece, a hot piece or a hot piece. The heating temperature at this time is 1000-
The temperature is 1200 ° C. The lower limit was set to the range where the current continuous hot rolling equipment can operate without lowering productivity. The upper limit is 1200
℃. If it exceeds this, Cu heggling occurs and the surface quality deteriorates. Further, when Ni is added within the above range, the upper limit of the heating temperature is set to 1250 ° C. The upper limit is Ni
Although it is improved by the addition, it is unavoidable that Cu heggling is generated when the amount exceeds this. Similarly, the lower limit value is a value that can be taken by the current equipment.

【0019】熱間圧延工程での圧下率は本発明では重要
な条件である。粗圧延での全圧下率は70%以上とす
る。これ未満ではγ粒が粗大となり、γの動的再結晶が
生じにくくなり、強い集合組織を形成する。その結果、
面内異方性が大きくなり、各方向のr値の最小値が低下
し、伸びフランジ性が低下する。仕上圧延では特に仕上
後段での圧下率が有効であるため、εeff=最終パス
圧下率(%)+1/2(最終前1段目パス圧下率
(%))+1/4(最終前2段目パス圧下率(%))で
定義される有効歪を30%以上とする。これ未満ではγ
粒の動的再結晶が生じにくくなり、強い集合組織を形成
する。その結果、面内異方性が大きくなり、各方向のr
値の最小値が低下し、伸びフランジ性が低下する。
The rolling reduction in the hot rolling process is an important condition in the present invention. The total rolling reduction in rough rolling is 70% or more. If it is less than this range, the γ grains become coarse, dynamic recrystallization of γ is less likely to occur, and a strong texture is formed. as a result,
The in-plane anisotropy increases, the minimum value of the r value in each direction decreases, and the stretch flangeability decreases. In finish rolling, the reduction ratio in the post-finishing stage is particularly effective. Therefore, εeff = final pass reduction ratio (%) + 1/2 (first final stage pass reduction ratio (%)) + 1/4 (final front second stage) The effective strain defined by the pass reduction rate (%) is set to 30% or more. Below this γ
Dynamic recrystallization of grains is less likely to occur and a strong texture is formed. As a result, the in-plane anisotropy increases, and r in each direction
The minimum value decreases, and stretch flangeability decreases.

【0020】仕上温度も本発明では極めて重要な条件で
ある。すなわち、本発明に従い仕上温度を規定してCu
添加熱延鋼板の集合組織をランダム化することにより、
面内異方性の低減を図るものである。従って、仕上温度
は(Ar3 点+20℃)〜950℃とする。下限値未満
であると強い集合組織が形成され、面内異方性が大きく
なり、各方向のr値の最小値が低下し、伸びフランジ性
が低下する。上限値は加熱温度との兼ね合いで実機で製
造可能な値とする。
The finishing temperature is also a very important condition in the present invention. That is, according to the present invention, the finishing temperature is regulated and Cu
By randomizing the texture of the added hot rolled steel sheet,
It is intended to reduce the in-plane anisotropy. Therefore, the finishing temperature is (Ar 3 points + 20 ° C.) to 950 ° C. If it is less than the lower limit value, a strong texture is formed, the in-plane anisotropy increases, the minimum value of the r value in each direction decreases, and the stretch flangeability decreases. The upper limit is a value that can be manufactured on an actual machine in consideration of the heating temperature.

【0021】仕上圧延後は1秒以上空冷する。これ未満
ではγ粒の未再結晶が残りやすく、集合組織が発達し、
伸びフランジ性が低下する。空冷後の平均冷却速度は1
0℃/sec以上とする。これ未満ではα粒が粗大化
し、延性が低下する。巻取温度は750℃以下とする。
これを超えるとα粒が粗大化し、延性が低下する。熱延
後のスキンパス条件は本発明では重要である。前述のよ
うにスキンパスにより連続溶融亜鉛めっきラインでのC
uの析出強化量を向上させることができる。条件は伸び
率1〜5%とする。下限値未満では効果がなく、上限値
を超えると加工硬化が大きく、延性が劣化する。
After finish rolling, air cooling is performed for 1 second or more. If it is less than this, unrecrystallized γ grains are likely to remain, and a texture develops,
Stretch-flangeability deteriorates. Average cooling rate after air cooling is 1
0 ° C./sec or more. If it is less than this range, the α-grains become coarse and the ductility decreases. The winding temperature is 750 ° C or lower.
If it exceeds this, the α-grains become coarse and ductility decreases. The skin pass conditions after hot rolling are important in the present invention. As mentioned above, C in the continuous hot dip galvanizing line by skin pass
The precipitation strengthening amount of u can be improved. The condition is an elongation rate of 1 to 5%. If it is less than the lower limit value, there is no effect, and if it exceeds the upper limit value, work hardening is large and ductility deteriorates.

【0022】続いて、連続溶融亜鉛めっき条件を詳述す
る。連続溶融亜鉛めっきラインで通板する際の還元雰囲
気中での温度は本発明では重要である。すなわち、本発
明に従った温度条件で通板し、Cuの析出ないしクラス
ター強化により目標とする強度を得るためである。その
温度は550〜680℃とする。上限値を超えるとCu
が固溶状態となり、目標とする強度が得られない。下限
値未満であると鋼板表面上に酸化皮膜が残り、めっき密
着性が低下する。
Next, the continuous hot dip galvanizing conditions will be described in detail. In the present invention, the temperature in the reducing atmosphere when passing through a continuous hot-dip galvanizing line is important. That is, it is intended to obtain the target strength by passing through the plate under the temperature condition according to the present invention and precipitating Cu or strengthening the cluster. The temperature is 550 to 680 ° C. Cu exceeds the upper limit
Becomes a solid solution state, and the target strength cannot be obtained. If it is less than the lower limit, an oxide film remains on the surface of the steel sheet, and the plating adhesion decreases.

【0023】なお、巻取温度によりCuの析出ないしク
ラスター強化量が異なるので、熱延鋼帯の引張強度は変
化する。そこで、最終製品で目標とする引張強度に達す
るように、連続溶融亜鉛めっきラインでの還元雰囲気温
度を熱延鋼帯の強度により調整する必要がある。特に目
標とする強度よりも熱延鋼帯の強度が低い場合は、連続
溶融亜鉛めっきラインでの還元雰囲気温度は570〜6
30℃とする。
Since the amount of Cu precipitation or cluster strengthening varies depending on the coiling temperature, the tensile strength of the hot-rolled steel strip changes. Therefore, it is necessary to adjust the reducing atmosphere temperature in the continuous hot-dip galvanizing line by the strength of the hot-rolled steel strip so as to reach the target tensile strength in the final product. Especially when the strength of the hot rolled steel strip is lower than the target strength, the reducing atmosphere temperature in the continuous hot dip galvanizing line is 570 to 6
Set to 30 ° C.

【0024】溶融亜鉛めっき浴に浸漬後の加熱温度は5
00〜600℃とする。上限値は現状の設備で可能な値
とした。下限値未満では合金化が不十分となる。好まし
くは520〜560℃とする。
The heating temperature after immersion in the hot dip galvanizing bath is 5
The temperature is set to 00 to 600 ° C. The upper limit was set to a value that is possible with current equipment. Below the lower limit, alloying will be insufficient. The temperature is preferably 520 to 560 ° C.

【0025】[0025]

【実施例】表2に示す成分を有する鋼を転炉にて出鋼
し、真空脱ガス等の二次精錬を経てスラブとした。表2
の中でA〜Eの符号で示す鋼は本発明範囲内であり、F
〜Lで示す鋼は本発明外である。F鋼はCが上限超、G
鋼はSiが上限超、H鋼はP、Al、Sが上限超であ
る。I鋼はCuが上限超、J鋼はNiが下限未満、K鋼
はTiを、L鋼はNb、Tiを含む。
Example Steels having the components shown in Table 2 were tapped in a converter and subjected to secondary refining such as vacuum degassing to obtain slabs. Table 2
The steels indicated by the symbols A to E are within the scope of the present invention, and F
The steels indicated by L are outside the scope of the present invention. For F steel, C exceeds the upper limit, G
For steel, Si exceeds the upper limit, and for H steel, P, Al, and S exceed the upper limit. In the I steel, Cu exceeds the upper limit, in the J steel, Ni is less than the lower limit, the K steel contains Ti, and the L steel contains Nb and Ti.

【0026】これらの鋼を出発材として、表3、表4
(表3のつづき)に示す熱延条件および溶融亜鉛めっき
条件で合金化溶融亜鉛めっき熱延鋼板を製造した。得ら
れた鋼板の特性値を表4に示す。引張試験はJIS Z
2201に準じた5号試験片を用い、JIS Z 2
241記載の方法に従って行った。
Starting from these steels, Table 3 and Table 4
An alloyed hot-dip galvanized hot-rolled steel sheet was produced under the hot-rolling conditions and hot-dip galvanizing conditions shown in Table 3 (continued). Table 4 shows the characteristic values of the obtained steel sheet. Tensile test is JIS Z
Using JIS No. 5 test piece according to 2201, JIS Z 2
According to the method described in 241.

【0027】また、r値は10%歪をかけた後、圧延方
向、90°方向、45°方向を測定した。実施例で示し
た鋼板では圧延方向のr値が最小であったので、それを
表4に示した。伸びフランジ性は打ち抜き穴拡げ試験に
おける穴拡げ比で評価した。試験片は250mm角の鋼板
に直径20mmのパンチと板厚の10%をクリアランス
(片側)を持たせたダイスにより直径d0(=ダイス
径)の穴を打ち抜いたものを用いた。穴拡げ試験はプレ
ス試験機にて上記の試験片を打ち抜き、穴バリのない
(バリとは反対の)面側から30°円錐パンチで押し拡
げ(この際押し拡げ部への材料流入がないようにフラン
ジには60トンのしわ押えをかける)、クラックが板厚
を貫通する時点で止めることとし、この時の穴径(d)
と元の穴径(d0)の比(d/d0)を穴拡げ比とし
た。
The r-value was measured in the rolling direction, 90 ° direction and 45 ° direction after applying 10% strain. Since the r value in the rolling direction was the minimum in the steel sheets shown in the examples, it is shown in Table 4. The stretch flangeability was evaluated by the hole expansion ratio in the punching hole expansion test. As the test piece, a 250 mm square steel plate having a diameter of d0 (= die diameter) punched out by a punch having a diameter of 20 mm and a die having a clearance (one side) of 10% of the plate thickness was used. In the hole expansion test, the above test piece is punched out by a press tester, and it is expanded with a 30 ° conical punch from the surface side without hole burrs (opposite to burrs) (At this time, there is no inflow of material into the expansion part. A 60 ton wrinkle retainer is applied to the flange), and it is stopped when the crack penetrates the plate thickness, and the hole diameter at this time (d)
The ratio (d / d0) of the original hole diameter (d0) was defined as the hole expansion ratio.

【0028】めっき密着性はインパクト試験で評価し
た。その方法は鋼板に半球状のポンチ(径12.7mm
φ)を落下させ、形成された円状のくぼみにテープを貼
り、剥離後テープに付着しためっき量を目視で判定し
た。全面剥離を生じたものを不良とし、その他は良好と
した。表3、表4においてNo.1〜No.5、No.
11およびNo.23、24は本発明例の鋼であり、本
発明の目的とする強度と良好な穴拡げ比を有するととも
にSiスケールおよびCuヘゲの発生はなく、めっき密
着性、合金化度も良好であった。
The plating adhesion was evaluated by an impact test. The method is a hemispherical punch (diameter: 12.7 mm) on a steel plate.
φ) was dropped, a tape was attached to the formed circular recess, and the amount of plating adhered to the tape after peeling was visually determined. The case where the entire surface was peeled was defined as bad, and the others were regarded as good. In Tables 3 and 4, No. 1-No. 5, No.
11 and No. Nos. 23 and 24 are steels of the present invention examples, which have the strength and the good hole expansion ratio which are the objects of the present invention, do not generate Si scale and Cu heggling, and have good plating adhesion and alloying degree. It was

【0029】No.6〜No.10.No.12〜N
o.22およびNo.25〜No.26は比較例鋼であ
る。No.6は加熱温度が高すぎたためCuヘゲが生成
し、表面性状が劣化した。No.7は熱間圧延工程での
粗圧延の全圧下率が低すぎたためにγの動的再結晶が不
十分で、熱延鋼板の集合組織が発達し、面内異方性が大
きくなり、これに伴いL方向のr値が小さくなり、穴拡
げ比が低下した。No.8は熱間仕上圧延での有効歪が
小さすぎたためにγの動的再結晶が不十分で、熱延鋼板
の集合組織が発達し、面内異方性が大きくなり、これに
伴いL方向のr値が小さくなり、穴拡げ比が低下した。
No.9は熱間圧延工程での空冷時間が短かったために
γの未再結晶が残り、熱延鋼板の集合組織が発達し、面
内異方性が大きくなり、これに伴いL方向のr値が小さ
くなり、穴拡げ比が低下した。No.10は熱間圧延工
程での冷却速度が遅すぎたのでフェライト粒が粗大にな
り、延性が低下した。No.12は熱間圧延工程での巻
取温度が高すぎたのでフェライト粒が粗大になり、延性
が低下した。No.13はCが高すぎたので炭化物が生
成し、穴拡げ比が低下した。No.14はSiが高すぎ
たのでSiスケールが生成し、表面性状が劣化した。N
o.15はAl、Sが高すぎたので介在物が生成し、穴
拡げ比が低下した。No.16はCuが高すぎたのでC
uヘゲが生成し、No.17はNiが低すぎたのでCu
ヘゲが生成し、いずれも表面性状が劣化した。No.1
8はTiを添加したためにγの未再結晶集合組織が発達
し、面内異方性が大きくなり、これに伴いL方向のr値
が小さくなり、穴拡げ比が低下した。No.19はN
b、Tiを添加したためにγの未再結晶集合組織が発達
し、面内異方性が大きくなり、これに伴いL方向のr値
が小さくなり、穴拡げ比が低下した。No.20は連続
溶融亜鉛めっきラインでの還元雰囲気中の温度が低すぎ
たので、めっき密着性が低下した。No.21は連続溶
融亜鉛めっきラインでの還元雰囲気中の温度が高すぎた
のでCuが固溶状態となり、Cuの析出ないしクラスタ
ー強化が得られず、目標とする強度が得られなかった。
No.22は連続溶融亜鉛めっきラインでの合金化温度
が低すぎたので、めっき層中のFe(%)が低下した。
No.25はスキンパス率が上限超なので、加工硬化が
大きく、延性が低下した。No.26はスキンパス率が
下限未満なので、Cuの析出強化量が足らず、強度が低
下した。
No. 6-No. 10. No. 12 to N
o. 22 and No. 22. 25-No. 26 is a comparative example steel. No. In No. 6, since the heating temperature was too high, Cu heggies were generated and the surface properties were deteriorated. No. In No. 7, since the total rolling reduction of the rough rolling in the hot rolling process was too low, the dynamic recrystallization of γ was insufficient, the texture of the hot rolled steel sheet developed, and the in-plane anisotropy became large. As a result, the r value in the L direction decreased, and the hole expansion ratio decreased. No. In No. 8, since the effective strain in hot finish rolling was too small, the dynamic recrystallization of γ was insufficient, the texture of the hot-rolled steel sheet developed, and the in-plane anisotropy became large. The r value of was decreased, and the hole expansion ratio was decreased.
No. In No. 9, unrecrystallized γ remained because the air-cooling time in the hot rolling process was short, the texture of the hot rolled steel sheet developed, and the in-plane anisotropy increased, and the r value in the L direction accordingly increased. It became smaller and the hole expansion ratio decreased. No. In No. 10, since the cooling rate in the hot rolling step was too slow, the ferrite grains became coarse and the ductility decreased. No. In No. 12, the winding temperature in the hot rolling step was too high, so the ferrite grains became coarse and the ductility decreased. No. In No. 13, since C was too high, carbide was generated and the hole expansion ratio was lowered. No. In No. 14, since Si was too high, Si scale was generated and the surface quality was deteriorated. N
o. In No. 15, since Al and S were too high, inclusions were generated and the hole expansion ratio decreased. No. 16 is C because Cu is too high
u heggies are generated and No. No. 17 was Cu because Ni was too low
Baldness was generated and the surface quality was deteriorated. No. 1
In No. 8, the unrecrystallized texture of γ developed due to the addition of Ti, the in-plane anisotropy increased, and along with this, the r value in the L direction decreased and the hole expansion ratio decreased. No. 19 is N
Due to the addition of b and Ti, a non-recrystallized texture of γ developed and the in-plane anisotropy increased, and along with this, the r value in the L direction decreased and the hole expansion ratio decreased. No. In No. 20, the temperature in the reducing atmosphere in the continuous hot-dip galvanizing line was too low, so the plating adhesion was reduced. No. In No. 21, since the temperature in the reducing atmosphere in the continuous hot-dip galvanizing line was too high, Cu was in a solid solution state, precipitation of Cu or cluster strengthening was not obtained, and the target strength was not obtained.
No. In No. 22, the alloying temperature in the continuous hot-dip galvanizing line was too low, so Fe (%) in the plating layer was lowered.
No. In No. 25, the skin pass ratio was more than the upper limit, so that work hardening was large and ductility was lowered. No. In No. 26, the skin pass ratio was less than the lower limit, so the amount of precipitation strengthening of Cu was insufficient and the strength was reduced.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、伸
びフランジ性に優れ、かつ耐食性に優れた合金化溶融亜
鉛めっき熱延鋼板を外観性状、経済性を損ねることなく
提供できる。これにより厳しい伸びフランジ加工が必要
な部材に本発明鋼板を適用することにより、例えば自動
車等の軽量化が容易となり燃費の向上や省資源などを可
能にしうるものであり工業的価値は極めて高い。
As described above, according to the present invention, it is possible to provide an alloyed hot-dip galvanized hot-rolled steel sheet having excellent stretch flangeability and corrosion resistance without impairing the appearance and economical efficiency. Thus, by applying the steel sheet of the present invention to a member that requires severe stretch-flange processing, it is possible to easily reduce the weight of, for example, an automobile, improve fuel efficiency, save resources, and the like, and have an extremely high industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu析出強化に及ぼすプレスキンパスの影響を
調べるためのCu析出処理の実験手順を示す図である。
FIG. 1 is a diagram showing an experimental procedure of Cu precipitation treatment for investigating the influence of presskin pass on Cu precipitation strengthening.

【図2】図1の実験より得られたスキンパスの伸び率の
引張強度に及ぼす影響を示す図である。
FIG. 2 is a diagram showing the influence of the elongation rate of the skin path obtained in the experiment of FIG. 1 on the tensile strength.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C22C 38/00 301 T 38/16 (72)発明者 伊丹 淳 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内Continuation of front page (51) Int.Cl. 5 Identification number Reference number within the agency FI technical display location // C22C 38/00 301 T 38/16 (72) Inventor Atsushi Itami 1 Kimitsu, Chiba, Japan Made in Japan Kimitsu Steel Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 mass%で、C:0.01%以下、S
i:0.3%以下、Mn:0.1〜2%、Al:0.1
%以下、S:0.01%以下、P:0.1%以下を含
み、かつCu:0.8〜2.0%を含有し、残部Feお
よび不可避的不純物よりなる鋼をスラブとした後、直ち
にあるいは1000〜1200℃に加熱して熱間圧延を
行うに当り、粗圧延では全圧下率を70%以上で圧延を
行い、仕上圧延では圧下を有効歪[εeff=最終パス
圧下率(%)+1/2(最終前1段目パス圧下率
(%))+1/4(最終前2段目パス圧下率(%))]
を30%以上とする圧延を行い、(Ar3 点+20℃)
〜950℃の仕上温度で圧延を終了し、圧延後1秒以上
空冷し、続いて平均冷却速度10℃/sec以上で冷却
し、750℃以下で巻取って熱延鋼帯とし、得られた熱
延鋼帯に伸び率1〜5%のスキンパスを行ってから、連
続溶融亜鉛めっきラインにおいて還元雰囲気下に550
〜680℃の温度で通板し、冷却後、溶融亜鉛めっき槽
に浸漬して溶融亜鉛めっきを施した後、再び加熱し、5
00〜600℃で合金化することを特徴とする伸びフラ
ンジ性の優れた引張強度が540MPa以上の高強度合
金化溶融亜鉛めっき熱延鋼板の製造方法。
1. Mass%, C: 0.01% or less, S
i: 0.3% or less, Mn: 0.1 to 2%, Al: 0.1
%, S: 0.01% or less, P: 0.1% or less, Cu: 0.8 to 2.0%, and the balance Fe and unavoidable impurities after slab Immediately or at the time of performing hot rolling by heating to 1000 to 1200 ° C., rolling is performed at a total reduction ratio of 70% or more in rough rolling, and effective reduction in final rolling is [εeff = final pass reduction ratio (% ) +1/2 (1st stage pass reduction before final (%)) + 1/4 (2nd stage pass reduction before final (%))]
Rolling to 30% or more (Ar 3 points + 20 ° C)
Rolling was completed at a finishing temperature of up to 950 ° C, air-cooled for 1 second or more after rolling, subsequently cooled at an average cooling rate of 10 ° C / sec or more, and rolled at 750 ° C or less to obtain a hot-rolled steel strip, which was obtained. A hot-rolled steel strip is skin-passed with an elongation of 1 to 5%, and then subjected to 550 in a reducing atmosphere in a continuous hot-dip galvanizing line.
After passing through the plate at a temperature of up to 680 ° C., cooling, dipping in a hot dip galvanizing bath to apply hot dip galvanizing, and then heating again, 5
A method for producing a high-strength hot-dip galvanized hot-rolled steel sheet having a tensile strength of 540 MPa or more, which is excellent in stretch-flangeability and is characterized by alloying at 00 to 600 ° C.
【請求項2】 mass%で、C:0.01%以下、S
i:0.3%以下、Mn:0.1〜2%、Al:0.1
%以下、S:0.01%以下、P:0.1%以下を含
み、かつCu:0.8〜2.0%、Ni:0.3〜1.
0%を含有し、残部Feおよび不可避的不純物よりなる
鋼をスラブとした後、直ちにあるいは1000〜125
0℃に加熱して熱間圧延を行うに当り、粗圧延では全圧
下率を70%以上で圧延を行い、仕上圧延では圧下を有
効歪[εeff=最終パス圧下率(%)+1/2(最終
前1段目パス圧下率(%))+1/4(最終前2段目パ
ス圧下率(%))]を30%以上とする圧延を行い、
(Ar3 点+20℃)〜950℃の仕上温度で圧延を終
了し、圧延後1秒以上空冷し、続いて平均冷却速度10
℃/sec以上で冷却し、750℃以下で巻取って熱延
鋼帯とし、得られた熱延鋼帯に伸び率1〜5%のスキン
パスを行ってから、連続溶融亜鉛めっきラインにおいて
還元雰囲気下に550〜680℃の温度で通板し、冷却
後、溶融亜鉛めっき槽に浸漬して溶融亜鉛めっきを施し
た後、再び加熱し、500〜600℃で合金化すること
を特徴とする伸びフランジ性に優れた引張強度が540
MPa以上の高強度合金化溶融亜鉛めっき熱延鋼板の製
造方法。
2. Mass%, C: 0.01% or less, S
i: 0.3% or less, Mn: 0.1 to 2%, Al: 0.1
% Or less, S: 0.01% or less, P: 0.1% or less, and Cu: 0.8 to 2.0%, Ni: 0.3 to 1.
Immediately after the steel containing 0% and the balance Fe and unavoidable impurities was made into a slab, or 1000 to 125
When heating to 0 ° C. and performing hot rolling, rolling is performed at a total reduction ratio of 70% or more in rough rolling, and effective strain [εeff = final pass reduction ratio (%) + 1/2 ( Rolling is performed so that the first-stage pre-final pass reduction (%)) + 1/4 (the second-stage pre-final second-pass reduction (%)) is 30% or more,
Rolling is completed at a finishing temperature of (Ar 3 points + 20 ° C.) to 950 ° C., air cooling is performed for 1 second or more after rolling, and then an average cooling rate of 10
After cooling at ℃ / sec or more and winding at 750 ° C or less to form a hot rolled steel strip, the obtained hot rolled steel strip is skin-passed with an elongation of 1 to 5%, and then a reducing atmosphere is applied in a continuous hot dip galvanizing line. The sheet is stretched at a temperature of 550 to 680 ° C., cooled, immersed in a hot dip galvanizing bath for hot dip galvanizing, then heated again, and alloyed at 500 to 600 ° C. 540 with excellent tensile strength
A method for producing a high-strength hot-dip galvanized hot-rolled steel sheet having a pressure of MPa or more.
JP09468293A 1993-04-21 1993-04-21 Method of manufacturing high strength galvannealed hot-rolled steel sheet with excellent stretch flangeability Expired - Fee Related JP3293001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09468293A JP3293001B2 (en) 1993-04-21 1993-04-21 Method of manufacturing high strength galvannealed hot-rolled steel sheet with excellent stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09468293A JP3293001B2 (en) 1993-04-21 1993-04-21 Method of manufacturing high strength galvannealed hot-rolled steel sheet with excellent stretch flangeability

Publications (2)

Publication Number Publication Date
JPH06306478A true JPH06306478A (en) 1994-11-01
JP3293001B2 JP3293001B2 (en) 2002-06-17

Family

ID=14116988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09468293A Expired - Fee Related JP3293001B2 (en) 1993-04-21 1993-04-21 Method of manufacturing high strength galvannealed hot-rolled steel sheet with excellent stretch flangeability

Country Status (1)

Country Link
JP (1) JP3293001B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416827A (en) * 2021-05-31 2021-09-21 北京首钢股份有限公司 Hot-dip galvanized IF steel with high elongation and excellent coating performance and preparation method thereof
WO2022070840A1 (en) * 2020-09-30 2022-04-07 日本製鉄株式会社 High-strength steel sheet
CN115917030B (en) * 2020-09-30 2024-05-31 日本制铁株式会社 High-strength steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070840A1 (en) * 2020-09-30 2022-04-07 日本製鉄株式会社 High-strength steel sheet
CN115917030A (en) * 2020-09-30 2023-04-04 日本制铁株式会社 High-strength steel plate
CN115917030B (en) * 2020-09-30 2024-05-31 日本制铁株式会社 High-strength steel sheet
CN113416827A (en) * 2021-05-31 2021-09-21 北京首钢股份有限公司 Hot-dip galvanized IF steel with high elongation and excellent coating performance and preparation method thereof

Also Published As

Publication number Publication date
JP3293001B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
US20040238081A1 (en) Steel plate exhibiting excellent workability and method for producing the same
WO2009125874A1 (en) High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
WO2016157258A1 (en) High-strength steel sheet and production method therefor
JP5272412B2 (en) High strength steel plate and manufacturing method thereof
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP2001303178A (en) High tension galvanized steel sheet excellent in formability and its producing method
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP3293001B2 (en) Method of manufacturing high strength galvannealed hot-rolled steel sheet with excellent stretch flangeability
CN114929918A (en) Hot-rolled steel sheet and method for producing same
JP3967868B2 (en) High-strength hot-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability, and manufacturing method thereof
JP3048739B2 (en) Method for producing high strength alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
JP2802513B2 (en) Method for producing steel sheet having excellent press formability, remarkable hardenability by heat treatment after molding and high corrosion resistance, and method for producing steel structural member using the steel sheet
JP2004218018A (en) High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JP5987999B1 (en) High strength steel plate and manufacturing method thereof
JP3257715B2 (en) Method for producing high-strength galvannealed steel sheet for high working with excellent plating adhesion
JP2844136B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent hole expandability
JP3357415B2 (en) Cold rolled steel sheet for ultra deep drawing excellent in stretch flangeability and method for producing the same
JPH06306479A (en) Production of high strength galvannealed cold rolled steel sheet excellent in deep drawability
JP2004115886A (en) Hot-dip zinc-based metal coated thin steel sheet with excellent workability, and its manufacturing method
JP2553413B2 (en) High-strength hot-dip galvanized steel sheet excellent in burring property and ductility, high-strength hot-dip galvanized steel sheet, and method for producing the same
JPH0734135A (en) Production of high strength galvannealed steel sheet for high working excellent in plating adhesion
JPH05195148A (en) Cold-rolled steel sheet excellent in curing performance for baking paint and secondary workability, galvanized cold-rolled steel sheet and production thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees