JPH063049A - Automatically drying method for material to be dried - Google Patents

Automatically drying method for material to be dried

Info

Publication number
JPH063049A
JPH063049A JP16464492A JP16464492A JPH063049A JP H063049 A JPH063049 A JP H063049A JP 16464492 A JP16464492 A JP 16464492A JP 16464492 A JP16464492 A JP 16464492A JP H063049 A JPH063049 A JP H063049A
Authority
JP
Japan
Prior art keywords
drying
water content
bulb temperature
dry
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16464492A
Other languages
Japanese (ja)
Inventor
Tetsuo Suzuki
徹夫 鈴木
Shojiro Nakamura
昌二郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumikin Hildebrand Co Ltd
Original Assignee
Sumikin Hildebrand Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Hildebrand Co Ltd filed Critical Sumikin Hildebrand Co Ltd
Priority to JP16464492A priority Critical patent/JPH063049A/en
Publication of JPH063049A publication Critical patent/JPH063049A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To always enable drying optimally regardless of material and shape by measuring a water content of a material to be dried such as wood continuously to control temperature, humidity and the volume of air according to a drying schedule as indicated by an optimum water content change curve. CONSTITUTION:A water content measuring sensor 12 is mounted on wood 10 housed properly in a drying furnace and the water content of the wood 10 is measured continuously with a water content meter 14 from a measurement signal thereof. A dry-bulb temperature sensor 15 and a wet-bulb temperature sensor 16 are arranged in the furnace and signals thereof are outputted to a dry-bulb temperature controller 20 and a wet-bulb temperature controller 22. Optimum temperature and moisture conditions by a drying schedule are inputted with a feeder 26 and a signal is sent to the adjusting meters 20 and 22 via converters 28 and 30 to set the optimum drying schedule indicated by a dry-bulb/wet-bulb temperature change curve. Then, a heater solenoid value 32 and a damper motor 34 are controlled based on measured values of dry-bulb and wet-bulb temperature and a difference between the dry-bulb and wet-bulb temperatures corresponding to the optimum drying schedule.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被乾燥材、例えば木材
またはそれに類するもので、含水率計が使用できる被乾
燥材全般の自動乾燥方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic drying method for materials to be dried, such as wood or the like, which can be used with a moisture content meter.

【0002】[0002]

【従来の技術】木材の乾燥をはじめ産業界には多くの乾
燥方法が実施されており、製造コストの低減、省エネル
ギー等の観点から今日でも多くの改善の試みが行われて
いる。以下、木材の乾燥を例にとって説明する。
2. Description of the Related Art Many drying methods such as drying of wood have been carried out in the industrial world, and many attempts have been made to improve the production cost and energy saving even today. Hereinafter, drying of wood will be described as an example.

【0003】従来より、木材の乾燥法の制御には、単
にオン−オフ型の自動温度調節計を使用して、温度設定
値をその含水率の推移を監視しながら余り急激な含水率
変化(減少)が起こらないようにその都度設定して制御
する方法でいわゆる手動設定のもの、経験的に予め時
間的な乾燥スケジュールをインプットしてタイムスケジ
ュールにより制御する方法、乾燥による重量変化をロ
ードセルにて信号化し過度の重量変化が起こらないよう
に連続的に最適温湿度条件を設定していく方式のいずれ
かが使用されてきた。
Conventionally, for controlling the drying method of wood, an on-off type automatic temperature controller is simply used, and the water content change abruptly while monitoring the transition of the water content of the temperature set value ( In order to prevent (decrease) from occurring, a so-called manual setting method is used to control each time, a method of empirically inputting a time-dependent drying schedule in advance and controlling with a time schedule, and a weight change due to drying with a load cell One of the methods has been used in which the optimum temperature and humidity conditions are continuously set so that signalization is performed and excessive weight changes do not occur.

【0004】これら3方式のうちで、現状では、方式
が大部分であり、方式は高価で実用例が非常にまだ少
ない。方式は実体との乖離が問題で一定の安定した被
乾燥材には適するが、条件がその都度異なる木材乾燥へ
の適用には適せず、結局、相当の安全率をかけて操作を
行うため乾燥コストが非常に増大する欠点をもってい
る。
Of these three methods, most of them are presently used, the methods are expensive, and there are very few practical examples. The method is suitable for a certain stable material to be dried due to the problem of deviation from the substance, but it is not suitable for drying wood with different conditions each time, and in the end it requires a considerable safety factor for operation. It has the drawback of greatly increasing the cost of drying.

【0005】また、上記のいずれの方式においても、乾
燥の制御といっても乾燥進行に伴う含水率の変化値と関
係なく作動するものであり、含水率に対する乾燥理論か
ら提案された乾燥スケジュールを完全に保証するものと
なっていない欠点を有する。時間経過に応じその都度推
定しながら設定するか、もしくはサンプル材の重量変化
の連続的測定によって事後的に設定されているのが実情
である。
Also, in any of the above-mentioned methods, the control of the drying is performed regardless of the change value of the water content with the progress of drying, and the drying schedule proposed from the drying theory for the water content is used. It has the drawback that it is not completely guaranteed. In reality, it is set while estimating it each time as time passes, or it is set afterwards by continuously measuring the change in weight of the sample material.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、乾燥
の実態に則した自動乾燥方法であって、その都度変わる
材質、形態にも係わらず常に最適の乾燥条件で乾燥が進
行する自動乾燥方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic drying method according to the actual condition of drying, in which the drying always proceeds under optimum drying conditions regardless of the material and the form which change each time. Is to provide a method.

【0007】[0007]

【課題を解決するための手段】ここに、本発明者らは、
木材等の被乾燥材の含水率変化を直接連続的に計測する
ことでその信号を基準にして刻々と最適乾燥スケジュー
ルの条件を変更する機能を備えた全自動の制御システム
を実現できることを知った。しかも、このための制御機
器は従来品より安価かつ誰でも簡単に操作できる簡便性
を備えた機能となることを知り、本発明を完成した。
Here, the present inventors
We have found that it is possible to realize a fully automatic control system with the function of changing the conditions of the optimum drying schedule momentarily based on the signal by directly and continuously measuring the change in water content of the material to be dried such as wood. . Moreover, the present inventors have completed the present invention, knowing that the control device for this purpose has a function that is cheaper than the conventional product and has a convenience that anyone can easily operate.

【0008】さらに、本発明者らは、上述のような含水
率変化に対する最適乾球温度および湿球温度条件を予め
設定し、その設定値と実際の乾球温度および湿球温度と
を比較し、その差がゼロになるように排気弁・蒸気弁を
制御することにより簡便かつ精度の良い乾燥操業が可能
となることを知った。
Furthermore, the present inventors preset the optimum dry-bulb temperature and wet-bulb temperature conditions with respect to changes in water content as described above, and compared the set values with the actual dry-bulb temperature and wet-bulb temperature. However, by controlling the exhaust valve and the steam valve so that the difference becomes zero, it became possible to perform a simple and accurate dry operation.

【0009】よって、本発明の要旨とするところは、被
乾燥材の初期含水率を測定する段階と、測定された初期
含水率と最終目標含水率までの乾燥工程を規定する最適
含水率変化曲線を乾球温度、乾燥勾配、材質および形態
を考慮して求める段階と、乾燥を開始し、時々刻々の含
水率を計測し、計測された含水率と前記最適含水率変化
曲線との差位を求め、その差位の程度に応答して乾燥雰
囲気の温度、湿度および風量の少なくとも1の条件変更
を、最適含水率変化曲線に沿って順次繰り返して行う段
階と、目標含水率に到達したことを確認して乾燥操作を
終了する段階とから成る、被乾燥材の自動乾燥方法であ
る。
Therefore, the gist of the present invention is that the optimum moisture content change curve that defines the stage of measuring the initial moisture content of the material to be dried and the drying process up to the measured initial moisture content and the final target moisture content. And the step of determining the dry-bulb temperature, the drying gradient, the material and the morphology, starting the drying, measuring the water content at every moment, and measuring the difference between the measured water content and the optimum water content change curve. The step of performing at least one condition change of the temperature, humidity and air volume of the dry atmosphere in response to the degree of the difference and sequentially repeating it along the optimum moisture content change curve, and reaching the target moisture content This is an automatic drying method for the material to be dried, which comprises the steps of confirming and ending the drying operation.

【0010】かくして、本発明によれば、最適含水率変
化曲線に沿った乾燥を維持する雰囲気制御、つまり木材
乾燥の乾燥スケジュール制御に関し、被乾燥材の含水
率変化に直接的に追随して乾球温度、湿球温度を制御す
るシステムが実現され、この新規なシステムは、セン
サ部である含水率自動計測器と、その信号を最適乾球温
度、湿球温度の制御信号に変換する変換器および温度・
湿度調節計から構成され、その操作部はファンの作動、
ヒータバルブ、ダンパーの開閉を掌る機構から成り、
前記含水率自動計測器からの信号を最適乾球温度、湿球
温度の操作信号に変換して現時点のそれらと比較するこ
とで、そのときの含水率に対する最適温度・湿度・風量
の少なくとも1の条件を自動的に変更する機能を有して
おり、システム自体も従来のものより簡便となってお
り、実用的なシステムと言える。
Thus, according to the present invention, regarding the atmosphere control for maintaining the drying along the optimum moisture content change curve, that is, the drying schedule control of the wood drying, the drying is performed by directly following the moisture content change of the material to be dried. A system for controlling sphere temperature and wet bulb temperature has been realized, and this new system is a water content automatic measuring device that is a sensor unit and a converter that converts the signal into a control signal for optimum dry bulb temperature and wet bulb temperature. And temperature
Consists of a humidity controller, the operating part of which operates the fan,
It consists of a mechanism that controls the opening and closing of the heater valve and damper,
By converting the signal from the water content automatic measuring device into an operation signal of the optimum dry-bulb temperature and the wet-bulb temperature and comparing them with those at the present time, at least one of the optimum temperature / humidity / air volume with respect to the water content at that time is calculated. It has a function to automatically change the conditions, and the system itself is simpler than the conventional one, so it can be said that it is a practical system.

【0011】本来、含水率で直接制御されるべき乾燥ス
ケジュールは、その比較・評価手段がなかったため作業
者の経験にもとづき人為的にその都度温度・湿度調節計
を操作していたが、本発明ではそれを乾球温度および湿
球温度と関連づけて規定することで、乾燥スケジュール
の設定、制御を容易にすることができるようにした。し
かもその関連づけにあって、多くの乾燥データを収集
し、実験式を求めることによって、複雑な演算を必要と
せず、乾燥スケジュールの追随をより正確なものとする
ことができる利点を有するものである。
Originally, the drying schedule, which should be directly controlled by the water content, had no means for comparison / evaluation, so that the temperature / humidity controller was artificially operated each time based on the experience of the operator. By defining it in relation to the dry-bulb temperature and the wet-bulb temperature, we have made it possible to easily set and control the drying schedule. In addition, in relation to this, by collecting a large amount of drying data and obtaining an empirical formula, there is an advantage that it is possible to more accurately follow the drying schedule without requiring complicated calculation. .

【0012】この点、従来の重量変化による自動制御シ
ステムでは、数本のモニター材を選定しその重量変化を
耐熱性のある特殊なロードセルで計測し、その信号をコ
ンピュータ処理する大がかりなシステムで制御を実施す
る機構になっており、その操作にも高度な知識を要する
など容易簡便とは言えなかった。しかも小片のサンプル
材でモニターするため実態との差が大きくかけ離れるリ
スクのある方式であった。
In this respect, in the conventional automatic control system based on the change in weight, several monitor materials are selected, the change in weight is measured by a special heat-resistant load cell, and the signal is controlled by a large-scale system which is processed by a computer. It is not easy and convenient because it requires a high degree of knowledge to operate it. Moreover, since it is monitored with small sample materials, there is a risk that the difference from the actual situation will be greatly different.

【0013】[0013]

【作用】次に、本発明の作用についてさらに具体的に説
明する。本発明は、下記第一ないし第四段階のそれぞれ
から構成されるもので、それらの段階は次の通りであ
る。
Next, the operation of the present invention will be described more specifically. The present invention comprises each of the following first to fourth steps, and the steps are as follows.

【0014】第一段階:乾燥作業開始に当たって被乾燥
材の現在時点での含水率(初期含水率)を決定する段階
である。なお、含水率の定義としては多くのものが考え
られるが、通常は次式で求められる。 含水率の定義
First step: This is a step of determining the water content (initial water content) of the material to be dried at the present time when starting the drying operation. Although there are many possible definitions of the water content, it is usually calculated by the following formula. Definition of water content

【0015】[0015]

【数1】 [Equation 1]

【0016】GA : 全乾重量、GB : 水分重量、GC :
材料重量 (GA は、恒温試験器により100 ℃で24時間全乾させた
値) 第二段階:初期含水率と最終目標含水率とから乾球温
度、乾燥勾配、材質および形態を考慮して最適含水率変
化曲線、つまり乾燥スケジュールを求める段階である。
本発明によれば、そのとき得られた乾燥スケジュール
を、被乾燥材毎に予めもとめた実験式によって乾球温度
および湿球温度に読みかえて表示する。したがって、乾
燥スケジュールの設定はそれぞれの温度を予めプログラ
ムにインプットするだけでよい。
G A: Total dry weight, G B : Moisture weight, G C :
Material weight (G A, the constant temperature value for 24 hours total dry at 100 ° C. The tester) Second stage: initial water content and the dry bulb temperature and a final target moisture content, drying gradient, in consideration of the material and forms This is the stage of obtaining the optimum moisture content change curve, that is, the drying schedule.
According to the present invention, the drying schedule obtained at that time is read and displayed as the dry-bulb temperature and the wet-bulb temperature by an empirical formula obtained in advance for each material to be dried. Therefore, the drying schedule can be set only by inputting the respective temperatures into the program in advance.

【0017】最適含水率曲線に見られる含水率と乾球温
度( 湿球温度) との関係を示す関数式例は、後述する図
3の被乾燥材の場合にあっては、実験式として次のよう
に示すことができる。 1) 乾球温度曲線 y=−0.5x+(A+20) y: 乾球温度、x: 含水率、 A: 定数 (Aは乾球初期温度、後述する図3の場合65) 2) 湿球温度曲線
An example of a functional expression showing the relationship between the water content and the dry-bulb temperature (wet-bulb temperature) found in the optimum water content curve is as an empirical expression in the case of the material to be dried shown in FIG. Can be shown as. 1) Dry-bulb temperature curve y = -0.5x + (A + 20) y: Dry-bulb temperature, x: Moisture content, A: Constant (A is the initial dry-bulb temperature, 65 in the case of Fig. 3 described later) 2) Wet-bulb temperature curve

【0018】[0018]

【数2】 [Equation 2]

【0019】y: 湿球温度、x: 含水率、 A: 定数 (上記と同じく乾球初期温度、図3の場合65) このように、本発明にあっては、乾燥スケジュールと
は、乾球温度、乾燥勾配、樹種 (材質) ・形態を考慮し
て、含水率と温湿度条件を相関させた最適乾燥条件のテ
ーブルであり、これまでになした多くの乾燥試験結果か
ら技術的に帰納された乾燥の条件設定指針である。
Y: wet-bulb temperature, x: water content, A: constant (the same dry-bulb initial temperature as above, 65 in the case of FIG. 3) As described above, in the present invention, the drying schedule is the dry-bulb. It is a table of optimum drying conditions in which moisture content and temperature / humidity conditions are correlated in consideration of temperature, drying gradient, tree species (material) and morphology. It is a guideline for setting dry conditions.

【0020】すなわち、木材乾燥のスケジュール決定要
素は、乾球温度、乾燥勾配、樹種、材厚および大きさな
どの形態、初期含水率および仕上り含水率であり、乾燥
スケジュール選定に当たっては常にこれらの要素が加味
されて選択される。例えば、初期含水率と仕上り含水率
との差を所要乾燥時間で割って平均含水率減少率を算出
し、これを乾球温度等を考慮して補正するとか、樹種、
材厚によっては1時間当たりの含水率減少割合が含水率
全体の1%を超えないようにして、前半の乾燥期間には
減少率を多くし、一方、後半の仕上がり期間中には減少
率を少なくするようにして全体として所定期間内に仕上
り含水率が得られるように含水率減少曲線を求める。さ
らにこの場合、樹種および形態によって決定される測定
点、例えば、柾目材、板目材、追征材を考慮して、板厚
中心、1/2 点、1/4 点などにおける含水率の測定点を決
定する。好ましくはこれらのいくつかの測定点で計測さ
れた含水率の平均値または最適条件点を選択し、最適含
水率変化曲線を決定する。
That is, the factors for determining the wood drying schedule are the dry-bulb temperature, the drying gradient, the species such as the tree species, the thickness and the size, the initial water content and the finished water content, and these elements are always used when selecting the drying schedule. Is selected and selected. For example, the difference between the initial water content and the finished water content is divided by the required drying time to calculate the average water content reduction rate, which is then corrected by taking into consideration the dry-bulb temperature, the tree species,
Depending on the material thickness, the rate of decrease in water content per hour should not exceed 1% of the total water content, and the decrease rate should be increased during the first half of the drying period, while the decrease rate should be increased during the latter half of the finishing period. The water content decrease curve is obtained so that the finished water content can be obtained within a predetermined period by reducing the total amount. Furthermore, in this case, the measurement of the water content at the center of thickness, 1/2 point, 1/4 point, etc., taking into account the measurement points determined by the tree species and morphology, for example, grain wood, board wood, and conquering wood. Determine the point. Preferably, the average value of the water content measured at these several measurement points or the optimum condition point is selected to determine the optimum water content change curve.

【0021】このように、最適含水率変化曲線は樹種、
材厚および大きさなどの形態、初期含水率および仕上り
含水率を考慮して決定されるが、しかし、本発明にあっ
ては、そのような最適含水率曲線を得るために必要な乾
球温度および湿球温度を規定したことにより、乾燥開始
後は、乾燥条件の決定はそれらの要素のうち乾球温度お
よび湿球温度だけを基準に設定・制御すれば十分であ
る。なお、制御システムへの乾燥スケジュールインプッ
ト順序は、前述のように形状、乾燥勾配等より算出した
乾燥スケジュールの各含水率に対応する乾球温度および
湿球温度をそれぞれの信号変換器に設定することから始
める。これらの設定はインプット用の打込器によって実
施する。
As described above, the optimum water content change curve is
It is determined in consideration of morphology such as material thickness and size, initial moisture content and finished moisture content, but in the present invention, the dry-bulb temperature required to obtain such an optimum moisture content curve. Since the wet-bulb temperature and the wet-bulb temperature are specified, it is sufficient to determine the drying condition after the start of drying by setting and controlling only the dry-bulb temperature and the wet-bulb temperature among these factors. The order of inputting the drying schedule to the control system is to set the dry-bulb temperature and the wet-bulb temperature corresponding to each moisture content of the drying schedule calculated from the shape, the drying gradient, etc. to each signal converter as described above. Start with These settings are made by a driving tool for input.

【0022】かかる制御は、含水率連続計測器とその信
号の変換器および乾球、湿球温度調節計を一体とした制
御システムによって容易かつ簡便に達成できる。乾燥操
作は、上述の設定されたスケジュール通りにいかなる手
段を用いて追随させるかがポイントであり、先に述べた
ように含水率で直接的に条件設定をしてやることが最も
望ましい方法である。
Such control can be easily and easily achieved by a control system in which a moisture content continuous measuring instrument, its signal converter, and a dry bulb and wet bulb temperature controller are integrated. The point of the drying operation is to use any means according to the set schedule described above, and the most preferable method is to set the conditions directly by the water content as described above.

【0023】なぜならば、スケジュールの確立は全て含
水率に対応した条件設定となっているためであり、本発
明はその操作の簡便性から乾球温度および湿球温度に置
き換えているが、それらも含水率に一定の強力な相関が
みられるため、本発明にあっても含水率による乾燥理論
にもとずく乾燥スケジュールが実現されることが理解さ
れる。なお、信号変換器の代わりにパーソナルコンピュ
ータによりインプットする方法も含まれる。
This is because the establishment of the schedule is based on the condition setting corresponding to the water content, and in the present invention, the dry-bulb temperature and the wet-bulb temperature are replaced for simplicity of the operation. Since a certain strong correlation is found in the water content, it is understood that the present invention also realizes the drying schedule based on the theory of drying based on the water content. A method of inputting with a personal computer instead of the signal converter is also included.

【0024】第三段階:乾燥を開始し、含水率を計測
し、この計測された含水率と前記最適含水率変化曲線と
の差位を求め、それに応じて乾燥雰囲気の温度、湿度お
よび風量の少なくとも1の条件を変更する段階である。
このような条件変更は最適含水率変化曲線、つまり乾
球、湿球温度変化曲線に沿って順次繰り返し行う。
Third step: Drying is started, the water content is measured, the difference between the measured water content and the optimum water content change curve is determined, and the temperature, humidity and air flow rate of the dry atmosphere are calculated accordingly. It is a step of changing at least one condition.
Such condition changes are sequentially repeated along the optimum moisture content change curve, that is, the dry-bulb and wet-bulb temperature change curves.

【0025】選択した乾燥スケジュールに基づいて含水
率センサからの入力信号を温度調節器の入力信号に変換
する信号変換器を組込み、乾燥全工程を含水率変化に対
応した乾球温度および湿球温度をデジタル設定器により
設定する。設定数は最大2℃までとれるものとする。
Based on the selected drying schedule, a signal converter for converting an input signal from the moisture content sensor into an input signal of the temperature controller is incorporated, and the entire drying process corresponds to the moisture content change. Is set by the digital setter. The set number shall be up to 2 ° C.

【0026】ある乾燥時点に対する含水率に対応して乾
球温度および湿球温度を制御する機能は、含水率2点間
の任意の位置において演算回路を介して温度調整器に温
度信号を発信して温度調節機能を働かせることによる。
従来の夜間無人で操作できない時間制御方式と異なり、
全く無人で仕上り含水率まで無駄なく制御してかつ終了
の操作も自動的に行うことができる。
The function of controlling the dry-bulb temperature and the wet-bulb temperature corresponding to the moisture content at a certain drying point is to send a temperature signal to the temperature controller via an arithmetic circuit at an arbitrary position between the two moisture contents. By activating the temperature control function.
Unlike the conventional time control method that can be operated unattended at night,
It is completely unmanned, and the finished water content can be controlled without waste and the end operation can be performed automatically.

【0027】すなわち、乾燥開始後連続的に計測される
含水率と前述の最適含水率変化曲線から求めた含水率に
対する温湿度条件の差位がゼロになるように、乾燥雰囲
気の温度、湿度、そして風量の少なくとも1を変更す
る。この時、温度が異常に高くなっていれば乾燥材の表
面部分のみからの乾燥が異常に進行して、乾燥材の割れ
につながるため、いち早く温度を下げる操作を計器に指
示し、機能が作動する仕組であり、湿度、風量について
も同様な機能をくり返す。
That is, the temperature and humidity of the drying atmosphere are adjusted so that the difference between the water content measured continuously after the start of drying and the water content determined from the above-mentioned optimum water content change curve becomes zero. Then, at least one of the air volumes is changed. At this time, if the temperature is abnormally high, the drying from only the surface of the desiccant will proceed abnormally, which will lead to cracking of the desiccant.Therefore, the instrument is instructed to quickly lower the temperature and the function is activated. The same function is repeated for humidity and air volume.

【0028】このような含水率の計測と偏差の算出と条
件変更とは順次繰り返し目標含水率に達するまで行う。
すなわち、計測された含水率と最適含水率変化曲線上の
条件との差異が、例えばある時点で1%を超えるように
なると、乾球温度と湿球温度を最適含水率変化曲線上の
それに近づくようアドバンス (前進させていく)させて
いくのである。
The measurement of the water content, the calculation of the deviation, and the change of the conditions are sequentially repeated until the target water content is reached.
That is, when the difference between the measured water content and the conditions on the optimum water content change curve exceeds 1% at a certain time point, the dry-bulb temperature and the wet-bulb temperature are close to those on the optimum water content change curve. It is advanced (moving forward).

【0029】第四段階:目標含水率に到達したことを確
認して乾燥操作を終了する段階である。図1は本発明に
かかる自動乾燥法を実施するための装置の概略説明図で
ある。
Fourth step: a step of ending the drying operation after confirming that the target water content has been reached. FIG. 1 is a schematic explanatory view of an apparatus for carrying out the automatic drying method according to the present invention.

【0030】図中、適宜乾燥炉内に置かれた被乾燥材で
ある木材10には、含水率測定センサ12が取り付けられて
おり、その信号は含水率計14に送られて連続的に含水率
が計測されている。一方、炉内には乾球温度センサ15と
湿球温度センサ16とが設けられて、それぞれの信号は乾
球温度調節計20、湿球温度調節計22に送られる。
In the figure, a water content measuring sensor 12 is attached to a wood material 10 as a material to be dried, which is appropriately placed in a drying oven, and its signal is sent to a water content meter 14 to continuously contain water. The rate is being measured. On the other hand, a dry-bulb temperature sensor 15 and a wet-bulb temperature sensor 16 are provided in the furnace, and respective signals are sent to a dry-bulb temperature controller 20 and a wet-bulb temperature controller 22.

【0031】初期含水率と最終含水率とから決定される
乾燥スケジュールによる最適温度、湿度条件の入力は打
込み器26によって行われ、各変換器28、30を経て乾球温
度調節計20、湿球温度調節計22に信号が送られ、最適含
水率変化曲線、つまり乾球、湿球温度変化曲線で表わさ
れた最適乾燥スケジュールが設定される。
The optimum temperature and humidity conditions according to the drying schedule determined from the initial moisture content and the final moisture content are input by the implanter 26, and the dry bulb temperature controller 20, the wet bulb and the wet bulb are passed through the converters 28, 30. A signal is sent to the temperature controller 22, and the optimum drying schedule represented by the optimum moisture content change curve, that is, the dry-bulb and wet-bulb temperature change curve is set.

【0032】乾燥が開始後、時々刻計測される含水率は
含水計14から各変換器28、30を経て対応する乾球温度お
よび湿球温度に変換され、各設定値との比較をし、差位
を求める。求められた差位に応じて各調節計20、22に信
号が出力される。符号32はヒータ電動弁、34はダンパー
モーターを示す。
After the start of drying, the water content measured every moment is converted from the water content meter 14 through the converters 28 and 30 into the corresponding dry-bulb temperature and wet-bulb temperature, and compared with each set value. Find the difference. A signal is output to each of the controllers 20, 22 according to the calculated difference. Reference numeral 32 is a heater electric valve, and 34 is a damper motor.

【0033】本発明の好適態様にあっては、そのように
乾燥状態を含水率特性と相関した乾球温度、湿球温度に
それぞれ変換されて処理されるから、以後の制御操作は
それらに基づいて行えばよい。
In the preferred embodiment of the present invention, the dry state is converted into the dry-bulb temperature and the wet-bulb temperature, which are correlated with the water content characteristic, and processed. You can do it.

【0034】したがって、本発明の制御操作は著しく簡
便容易となり、しかも乾燥の実態に密着したものとな
る。次に、実施例によってさらにその作用・効果を詳述
する。
Therefore, the control operation of the present invention is remarkably simple and easy, and more closely adheres to the actual condition of drying. Next, the operation and effect will be described in more detail with reference to Examples.

【0035】[0035]

【実施例】本例では、図1の装置を使い、本発明にした
がって、カバ材およびベイマツの乾燥を行った。本例の
場合の最適含水率変化曲線は、含水率は桟積の時点で測
定したものの平均値を用い、初期含水率60%を得た。こ
れを均等な減少率でもって最終含水率10%にまで乾燥さ
せるとして最適含水率変化曲線を想定した。
EXAMPLES In this example, the apparatus shown in FIG. 1 was used to dry birch and pine pine according to the present invention. In the optimum moisture content change curve in the case of this example, an initial moisture content of 60% was obtained by using an average value of moisture content measured at the time of the crossing. An optimum moisture content change curve was assumed, assuming that this was dried to a final moisture content of 10% with an even reduction rate.

【0036】これに対しては、各含水率に対応する乾球
温度および湿球温度をぞれぞれ実験式に基づいて求め、
それを制御指標として乾燥操業を開始した。ほぼ1時間
毎に含水率を計測し、そのときの乾球温度と湿球温度と
を上述と同じ実験式によって求め、最適含水率変化曲線
に対応する乾球温度と湿球温度とそれぞれ比較し、その
差位を求めてからそれをゼロとするように、温度、湿度
および風量を変化させた。
On the other hand, the dry-bulb temperature and the wet-bulb temperature corresponding to each water content are obtained based on the empirical formulas,
Drying operation was started using it as a control index. The water content was measured almost every hour, the dry-bulb temperature and the wet-bulb temperature at that time were obtained by the same empirical formula as above, and the dry-bulb temperature and the wet-bulb temperature corresponding to the optimum water content change curve were respectively compared. , The temperature, humidity, and air volume were changed so that the difference was calculated and then set to zero.

【0037】それぞれの乾球温度および湿球温度の差位
が最適乾燥勾配値を越える場合には、危険雰囲気条件で
あるとして、加湿制御を行い適正雰囲気となるように最
適含水率変化曲線の追従操作を行った。図2は、カバ材
について行った本例の乾燥試験の結果を示すグラフであ
り、含水率と乾球温度および湿球温度との関係を示す。
When the difference between the dry-bulb temperature and the wet-bulb temperature exceeds the optimum drying gradient value, it is regarded as a dangerous atmosphere condition and humidification control is performed to follow the optimum moisture content change curve so as to obtain an appropriate atmosphere. The operation was performed. FIG. 2 is a graph showing the results of the drying test of this example conducted on birch wood, showing the relationship between the water content and the dry-bulb temperature and the wet-bulb temperature.

【0038】本例では予め決定した最適含水率変化曲線
とそれに基づいて決定した乾球温度および湿球温度の変
化曲線に沿った制御が行われ、ほぼスケジュール通りの
乾燥が行われた。図3は、表1に示すベイマツの乾燥ス
ケジュールを図表化したグラフである。本例の場合も、
図示の乾球温度および湿球温度の変化曲線に沿った制御
が行われ、ほぼスケジュール通りの乾燥が行われた。
In this example, control was performed along the predetermined optimum moisture content change curve and the change curves of the dry-bulb temperature and the wet-bulb temperature determined based on the optimum curve, and the drying was performed almost according to the schedule. FIG. 3 is a graph showing the drying schedule of the bay pine shown in Table 1. Also in this example,
The control was performed along the illustrated change curves of the dry-bulb temperature and the wet-bulb temperature, and the drying was performed almost according to the schedule.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明によれば、従来のように木材重量
変化を測定する間接的方式ではなく、含水率そのものを
連続的に計測し、その計測値に基づいて乾球温度と湿球
温度を予め設定された最適含水率変化曲線、つまり乾
球、湿球温度変化曲線で表わされた乾燥スケジュールに
したがって自動的に変えてゆく方式なので、操作は簡便
容易であり、常に最適状態での乾燥が行われるため、省
エネルギーも実現されるなど、その実用上の作用効果も
著しい。このように、本発明は、自動的に、乾球温度と
湿球温度が、含水率の低下により、自動的に切り変わっ
ていく方式を採用しており、特に木材の乾燥法として画
期的な自動制御であるといえる。
According to the present invention, the water content itself is continuously measured and the dry-bulb temperature and the wet-bulb temperature are measured based on the measured values, instead of the indirect method of measuring the change in the weight of wood as in the past. Is a method that automatically changes according to a preset optimum moisture content change curve, that is, a drying schedule represented by a dry-bulb and wet-bulb temperature change curve, so operation is simple and easy, and always in an optimal state. Since it is dried, energy saving is also realized, and its practical effects are remarkable. As described above, the present invention automatically adopts a method in which the dry-bulb temperature and the wet-bulb temperature are automatically switched by the decrease of the water content, which is particularly epoch-making as a method for drying wood. It can be said that it is automatic control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置の概略説明図であ
る。
FIG. 1 is a schematic explanatory view of an apparatus for carrying out the present invention.

【図2】本発明の1の実施例の結果を示すグラフであ
る。
FIG. 2 is a graph showing the results of Example 1 of the present invention.

【図3】本発明の別の実施例で用いた乾燥スケジュール
を示すグラフである。
FIG. 3 is a graph showing a drying schedule used in another example of the present invention.

【符号の説明】[Explanation of symbols]

10 : 木材 12 : 含水率測定セン
サ 14 : 含水率計 15 : 乾球温度センサ 16 : 湿球温度センサ 20 : 乾球温度調節計 22 : 湿球温度調節計 26 : 28 : 変換器 30 : 変換器 32 : ヒーター電動弁 34 : ダンパーモータ
10: Wood 12: Moisture content measuring sensor 14: Moisture content meter 15: Dry-bulb temperature sensor 16: Wet-bulb temperature sensor 20: Dry-bulb temperature controller 22: Wet-bulb temperature controller 26: 28: Transducer 30: Transducer 32: Heater electric valve 34: Damper motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被乾燥材の初期含水率を測定する段階
と、測定された初期含水率と最終目標含水率までの乾燥
工程を規定する最適含水率変化曲線を乾球温度、乾燥勾
配、材質および形態を考慮して求める段階と、乾燥を開
始し、時々刻々の含水率を計測し、計測された含水率と
前記最適含水率変化曲線との差位を求め、その差位の程
度に応答して乾燥雰囲気の温度、湿度および風量の少な
くとも1の条件変更を、最適含水率変化曲線に沿って順
次繰り返して行う段階と、目標含水率に到達したことを
確認して乾燥操作を終了する段階とから成る、被乾燥材
の自動乾燥方法。
1. An optimum moisture content change curve that defines a stage of measuring an initial moisture content of a material to be dried and a drying process up to the measured initial moisture content and a final target moisture content is a dry bulb temperature, a drying gradient, and a material. And the step of obtaining considering the morphology, start drying, measure the water content at every moment, find the difference between the measured water content and the optimum water content change curve, and respond to the degree of the difference Then, at least one of the conditions of the temperature, humidity and air volume of the drying atmosphere is sequentially repeated along the optimum moisture content change curve, and the step of terminating the drying operation after confirming that the target moisture content has been reached A method for automatically drying a material to be dried, which comprises
【請求項2】 前記最適含水率変化曲線を乾球温度およ
び湿球温度のそれぞれの変化曲線に置き換え、一方、計
測された含水率も相当する乾球温度および湿球温度にそ
れぞれ変換し、それぞれを比較することを特徴とする請
求項1記載の方法。
2. The optimum moisture content change curve is replaced with respective change curves of dry-bulb temperature and wet-bulb temperature, while the measured water content is also converted into corresponding dry-bulb temperature and wet-bulb temperature, respectively. The method according to claim 1, characterized in that
JP16464492A 1992-06-23 1992-06-23 Automatically drying method for material to be dried Withdrawn JPH063049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16464492A JPH063049A (en) 1992-06-23 1992-06-23 Automatically drying method for material to be dried

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16464492A JPH063049A (en) 1992-06-23 1992-06-23 Automatically drying method for material to be dried

Publications (1)

Publication Number Publication Date
JPH063049A true JPH063049A (en) 1994-01-11

Family

ID=15797106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16464492A Withdrawn JPH063049A (en) 1992-06-23 1992-06-23 Automatically drying method for material to be dried

Country Status (1)

Country Link
JP (1) JPH063049A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058326A (en) * 2009-09-14 2011-03-24 Tobishima Corp Lightweight wood, manufacturing method of the lightweight wood, and ground improvement method using the lightweight wood
CN105229401A (en) * 2013-03-15 2016-01-06 莫诺索尔克斯有限公司 The method of wet film drying is made by controlling loss on drying
CN105716373A (en) * 2016-01-30 2016-06-29 安徽福沃德干燥设备有限公司 Method for drying poplar in dry kiln and used dry kiln
CN116909336A (en) * 2023-07-05 2023-10-20 广东祥通供应链管理有限公司 Kiln dry and wet bulb temperature control method, system and storage medium for wood drying

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058326A (en) * 2009-09-14 2011-03-24 Tobishima Corp Lightweight wood, manufacturing method of the lightweight wood, and ground improvement method using the lightweight wood
CN105229401A (en) * 2013-03-15 2016-01-06 莫诺索尔克斯有限公司 The method of wet film drying is made by controlling loss on drying
CN105229401B (en) * 2013-03-15 2017-09-08 莫诺索尔克斯有限公司 By controlling loss on drying to make the method for wet film drying
CN105716373A (en) * 2016-01-30 2016-06-29 安徽福沃德干燥设备有限公司 Method for drying poplar in dry kiln and used dry kiln
CN116909336A (en) * 2023-07-05 2023-10-20 广东祥通供应链管理有限公司 Kiln dry and wet bulb temperature control method, system and storage medium for wood drying
CN116909336B (en) * 2023-07-05 2024-03-22 广东祥通供应链管理有限公司 Kiln dry and wet bulb temperature control method, system and storage medium for wood drying

Similar Documents

Publication Publication Date Title
US8726535B2 (en) Method, apparatus and system for controlling heated air drying
US4566806A (en) Method and device for controlling the curing rate of concrete
WO2020098261A1 (en) Method and system for controlling moisture content at tobacco drying inlet
CN110261579A (en) A kind of automatic control ground wetting-drying test method and device
JPH063049A (en) Automatically drying method for material to be dried
JPH0239236B2 (en)
CN101236166B (en) Chilled-mirror type dew point instrument control method
CN110347197B (en) Grain continuous drying window control method based on equivalent accumulated temperature
US20100241364A1 (en) Device and method for determining material moisture by thermogravimetry
EP1959218A1 (en) Process for controlling, checking and adjusting instantaneous values of ceramic products submitted to drying
CN107500519B (en) Glass plate tempering process control method
JP4756976B2 (en) Grain moisture content calculation method
JPH0324437A (en) Quick moisture measuring method
CN206875839U (en) A kind of electric drying oven with forced convection
CN108680002B (en) A kind of batch quiescent bed Grain Drying Process investigating method based on temperature zone
RU109837U1 (en) SOFTWARE LEVER AUTOMATIC REGULATOR OF SPEED OF DEFECT-FREE DRYING OF Lumber
JPH1123504A (en) Method for measuring water content per unit volume of and water-cement ratio of fresh concrete
JP2638472B2 (en) Method and apparatus for producing fish dry products
SU785617A1 (en) Method of automatic control of drying process in convective dryer
JP3269174B2 (en) Moisture or volatile content meter
CN116878251A (en) Multi-physical field simulation test device for multi-parameter grain drying section and control method
CN106949732A (en) Detection method of the plasterboard in drying process
WO2024079199A1 (en) Method and system for measuring the setting time of a gypsum board
JP2006099352A (en) Temperature estimation device and controller unit using the same
CN113778153B (en) Grain continuous drying dual-drive mutual-window control method based on equivalent water potential product

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831