JPH06304812A - Hourglass shape worm gear generating method - Google Patents

Hourglass shape worm gear generating method

Info

Publication number
JPH06304812A
JPH06304812A JP10589993A JP10589993A JPH06304812A JP H06304812 A JPH06304812 A JP H06304812A JP 10589993 A JP10589993 A JP 10589993A JP 10589993 A JP10589993 A JP 10589993A JP H06304812 A JPH06304812 A JP H06304812A
Authority
JP
Japan
Prior art keywords
tool
worm
drum
conical surface
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10589993A
Other languages
Japanese (ja)
Other versions
JP3087238B2 (en
Inventor
Akiyo Horiuchi
昭世 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10589993A priority Critical patent/JP3087238B2/en
Publication of JPH06304812A publication Critical patent/JPH06304812A/en
Application granted granted Critical
Publication of JP3087238B2 publication Critical patent/JP3087238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)

Abstract

PURPOSE:To reduce a grinding margin, and shorten time necessary for generation by generating a worm wheel by a wheel generating tool to which the same shape with a hand drum shape worm or the part is adopted. CONSTITUTION:The whole or a part of an inverted conical surface where a half apex angle (gamma) is set in 90 deg.<gamma<180 deg., is adopted to an hourglass shape worm generating tool as a tooth surface of an intermediate gear, and relational motion similar to an hourglass shape worm wheel is given to this tool, and an hourglass shape worm is generated. Next, a worm wheel is generated by a wheel generating tool to which the same shape with this hourglass shape worm or the part is adopted. Or the whole or a part of two inverted conical surfaces where a half apex angle (gamma) is in 90 deg.<gamma<180 deg., is adopted to the hourglass shape worm generating tool as the tooth surface of the intermediate gear, and the conical principal axis of the two inverted conical surfaces are made to coincide with each other, and the bottom surfaces are made to coincide with each other, and both tooth surfaces of a worm gear are generated simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は逆円錐面工具を用いて鼓
形ウオ−ム・ギヤを研削する創成法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of grinding an hourglass-shaped worm gear with an inverted conical surface tool.

【0002】[0002]

【従来の技術】従来、鼓形ウオーム・ギヤの創成法とし
て平面工具を用いて研削創成するもの(可展歯面鼓形ウ
オ−ム・ギヤ)、円錐面工具を用いて研削創成するもの
等が公知(特公昭62ー19970号公報参照)であ
る。平面工具を用いて研削創成するものと、円錐面工具
を用いて研削創成するものとを比べると、平面工具を用
いて研削創成するものでは設計上の自由度が少なく、か
つウオーム・ギヤの歯面の両面を同時研削できないとい
う不便があるので、円錐面工具を用いて研削創成するも
のの方が現在多用されつつある。
2. Description of the Related Art Conventionally, as a method for creating a drum-shaped worm gear, grinding is performed using a flat tool (developing tooth surface drum-shaped worm gear), grinding is created using a conical tool, etc. Is publicly known (see Japanese Patent Publication No. 62-19970). Comparing the grinding created using a flat tool with the grinding created using a conical surface tool, the grinding created using a flat tool has less design freedom and the teeth of the worm gear. Since it is inconvenient that both sides of the surface cannot be ground at the same time, the method of grinding by using a conical tool is being used more and more.

【0003】この公知の円錐面工具を用いて研削創成す
る創成法を説明すると、図11に示すようにモータ1に
よって回転される工具2が円錐面となっており、この工
具2の円錐面の両面で同時に鼓形ウオーム・ギヤ3を創
成するものとなっている。しかしながら、上記公知の円
錐面の工具2によるウォ−ムでは、コスト面で良好なも
のということができなかった。その理由は、フライス時
間、研削時間が共に長いからであった。
[0003] Explaining the generating method of grinding by using this known conical surface tool, the tool 2 rotated by the motor 1 is a conical surface as shown in FIG. It creates a drum-shaped worm gear 3 on both sides at the same time. However, the worm using the known conical surface tool 2 has not been satisfactory in terms of cost. The reason is that both the milling time and the grinding time are long.

【0004】これに対して、逆円錐形のフライスを用い
て鼓形ウオーム・ギヤを切削することも提案されてい
る。(特公平2ー232119号公報参照)これを図1
2で説明すると、モータ11の回転をプーリ12、ベル
ト13によってホルダー14に伝達する。ホルダー14
にはフライス切り用のバイト15が取り付けられてお
り、ホルダー14を回転させることによってバイト15
で鼓形ウオーム・ギヤ16を切削するものとなってい
る。
On the other hand, it has also been proposed to cut an hourglass-shaped worm gear using an inverted conical milling cutter. (See Japanese Patent Publication No. 2-232119)
2, the rotation of the motor 11 is transmitted to the holder 14 by the pulley 12 and the belt 13. Holder 14
The cutting tool 15 for milling is attached to the tool. By turning the holder 14, the cutting tool 15
It is designed to cut the hourglass-shaped worm gear 16.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記逆円錐
形のバイト15によって鼓形ウオーム・ギヤ16を切削
するものでは、切削に要する時間が短縮されるという長
所がある反面、バイト15による切削であるために歯面
の表面が粗く、これを砥石によって研削仕上げしなけれ
ばならない。通常、この仕上げ研削には円錐面の砥石を
使用している円錐砥石歯車と逆円錐形工具によるねじ切
り歯車との誤差が大のため研削代が増え、結局表面仕上
げのための研削時間が長くなってしまうという欠点が残
ってしまう。 そこで、本発明の目的は工具を用いて鼓
形ウオーム・ギヤを創成する場合に短時間で創成できる
ようにした新規な創成法を提供するにある。
However, in the case where the hourglass-shaped worm gear 16 is cut by the above-mentioned inverted conical cutting tool 15, there is an advantage that the time required for cutting is shortened, while the cutting by the cutting tool 15 is performed. Because of this, the tooth surface is rough and must be ground and finished with a grindstone. Usually, in this finishing grinding, there is a large error between the conical grinding wheel gear that uses a grinding wheel with a conical surface and the thread cutting gear with an inverted conical tool, so the grinding allowance increases, and eventually the grinding time for surface finishing becomes long. The drawback is that it will be lost. Therefore, an object of the present invention is to provide a novel creation method capable of creating a drum-shaped worm gear with a tool in a short time.

【0006】[0006]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、以下の構成にある。先ず、本発明の第1の特徴と
するところは、媒介歯車歯面としての鼓形ウオ−ム創成
用工具に半頂角γを90゜<γ<180°とした逆円錐
面の全部又は一部を採用し、該工具に鼓形ウオ−ムホイ
−ルと同様な関係運動を与えて鼓形ウオ−ムを創成し、
かつこの鼓形ウオ−ムと同形又はその一部を採用したホ
イ−ル創成用工具によりウオ−ムホイ−ルを創成するこ
とを特徴とする媒介歯車理論による鼓形ウオ−ム・ギヤ
の創成法にある。
The features of the present invention are as follows. First, the first feature of the present invention is that, in a drum-shaped worm creation tool as a tooth flank of an intermediate gear, all or one of the inverted conical surfaces having a half apex angle γ of 90 ° <γ <180 °. Part, and gives the tool a movement similar to a drum-shaped worm wheel to create a drum-shaped worm,
And, a method for creating a drum-shaped worm gear by means of a medium gear theory, characterized in that a worm wheel is created by a tool for creating a wheel having the same shape as or a part of this drum-shaped worm. It is in.

【0007】本発明の第2の特徴とするところは、媒介
歯車歯面としての鼓形ウオ−ム創成用工具に半頂角γが
90゜<γ<180゜なる2つの逆円錐面の全部又は一
部を採用し、かつ、2つの逆円錐面の円錐主軸を一致さ
せかつその底面を合致させ、ウオ−ム歯車の両歯面を同
時に創成可能にしたことを特徴とする媒介歯車理論によ
る鼓形ウオ−ム・ギヤの創成法にある。
A second characteristic of the present invention is that the tool for creating a drum-shaped worm as a tooth flank of an intermediate gear has all two inverted conical surfaces with a half-vertical angle γ of 90 ° <γ <180 °. Or, a part of them is adopted, and the conical main axes of two inverted conical surfaces are made to coincide with each other and their bottom surfaces are made to coincide with each other so that both tooth surfaces of a worm gear can be simultaneously created. It is in the method of creating a drum-shaped worm gear.

【0008】[0008]

【実施例】以下、図によって本発明の一実施例を説明す
る。本発明の実施例の説明に先立って本発明の趣旨とす
るところを説明すると、本発明は前記逆円錐形のフライ
ス切り用のバイトを使用した場合に切削時間が短縮され
ることに着目し、逆円錐形の工具を使用して創成せんと
するものである。以下の説明では、本発明の理解を助け
るために従来公知の平面工具、円錐面工具、逆円錐形フ
ライス切り用のバイトをそれぞれ用いた場合の説明を加
えながら本発明の説明を行うものとする。
An embodiment of the present invention will be described below with reference to the drawings. Prior to the description of the embodiments of the present invention, the purpose of the present invention will be described.The present invention focuses on the fact that the cutting time is shortened when the inverted conical milling tool is used, The creation is done using an inverted conical tool. In the following description, in order to facilitate understanding of the present invention, the present invention will be described while adding a description of the case where a conventionally known flat tool, a conical surface tool, and a cutting tool for inverted conical milling are respectively used. .

【0009】先ず、平面工具を用いて創成した場合につ
いて説明する。媒介歯車理論(酒井・機械学会論文、昭
和30年第21巻102号、164ペ−ジ)ならびに二
度接触理論(酒井・牧・機械学会論文、昭和47年、第
38巻第311号、1895ペ−ジ)に基いた可展歯面
鼓形ウオ−ム・ギヤは、すでにその高性能性が立証され
ている。しかし、従来の可展歯面鼓形ウオ−ム・ギヤ
(酒井・牧・機械学会講演会論文、第740−15)
は、媒介歯車歯面として平面をとり、しかも、その平面
が媒介歯車軸と平行な場合であった。この2つの条件の
ため、設計上の自由度が制約され、特に低減速比のウオ
−ム・ギヤを設計する際、その不便さが著しいものとな
っていた。
First, the case of creation using a flat tool will be described. Intermediary Gear Theory (Sakai-Mechanical Society Papers, 1955, Volume 21, No. 102, 164 pages) and Double Contact Theory (Sakai-Maki Mechanical Society Papers, 1972, Volume 38, No. 311, 1895) The developable tooth flank worm gear based on (Page) has already proved its high performance. However, the conventional developable tooth-shaped drum-shaped worm gear (Sakai-Maki-Mechanical Society lecture paper, 740-15)
Was a case where a plane was taken as the tooth flank of the intermediate gear and the plane was parallel to the axis of the intermediate gear. Due to these two conditions, the degree of freedom in design is restricted, and the inconvenience is particularly significant when designing a worm gear with a reduced speed ratio.

【0010】また、加工上も平面をあらわす工具(平面
工具)を使用した場合、ウオ−ムねじの両歯面を同時に
創成することができないという不便さがあった。
Further, when a tool that expresses a flat surface (a flat surface tool) is used in terms of processing, it is inconvenient that both tooth flanks of the worm screw cannot be created at the same time.

【0011】以下に前記媒介歯車理論及び2度接触理論
を鼓形ウオ−ム・ギヤに適用した場合について説明す
る。図1において、I1をウオ−ム軸、I2をホイ−ル
軸、I3を媒介歯車軸とする。又空間固定の絶対座標を
右手直角座標系でO−xyzとし、x軸はI1軸方向、
z軸はI2軸方向、I1,I2軸の共通垂線O21はy軸
方向を向くようにとる。また、I3軸はO21と直角に
3点で交わり、I2軸に対し図示のごとく角αだけ傾斜
する(ここで、O1,O2はそれぞれI1,I2軸の共通垂
線O21とウオ−ム軸I1、ホイ−ル軸I2との交点であ
る)。
The case where the above-mentioned intermediate gear theory and the two-degree contact theory are applied to a drum-shaped worm gear will be described below. In FIG. 1, I 1 is a worm shaft, I 2 is a wheel shaft, and I 3 is an intermediate gear shaft. Also, the absolute coordinate fixed in space is O-xyz in the right-handed rectangular coordinate system, the x-axis is the I 1 -axis direction,
The z-axis is oriented in the I 2 -axis direction, and the common perpendicular line O 2 O 1 of the I 1 and I 2 axes is oriented in the y-axis direction. The I 3 axis intersects with O 2 O 1 at a right angle at an O 3 point and is inclined with respect to the I 2 axis by an angle α as shown in the drawing (where O 1 and O 2 are the I 1 and I 2 axes, respectively). It is the intersection of the common perpendicular line O 2 O 1 and the worm axis I 1 and the wheel axis I 2 .

【0012】今、ウオ−ム軸I1、ホイ−ル軸I2ならび
に媒介歯車軸I3の回転速度をω1,ω2,ω3、媒介歯車
3の軸方向への並進速度をω3 、回転比をi=ω1
ω2、j=ω1/ω3、h=ω3 /ω3(媒介歯車のねじ運
動の換算ピッチ)、O21=e、O31=e1、とすれ
ば、前記媒介歯車理論によれば、次の条件が満足され
る。
Now, the rotational speeds of the worm shaft I 1 , the wheel shaft I 2, and the intermediate gear shaft I 3 are ω 1 , ω 2 , ω 3 , and the translational speed of the intermediate gear I 3 in the axial direction is ω. 3 , the rotation ratio is i = ω 1 /
If ω 2 , j = ω 1 / ω 3 , h = ω 3 / ω 3 (converted pitch of screw motion of intermediary gear), O 2 O 1 = e, O 3 O 1 = e 1 , According to the gear theory, the following conditions are satisfied.

【0013】 e1=ecos2α (1) j=icosα−sinα (2) h=ω3 /ω3=esinα・cosα (3)E 1 = ecos 2 α (1) j = icos α-sin α (2) h = ω 3 / ω 3 = esin α · cos α (3)

【0014】逆に(1)〜(3)式を満足するI3軸に
任意形状の工具歯面を取り付け、I1軸に取り付けられ
たウオ−ムブランクとI2軸に取り付けられたウオ−ム
ホイ−ルブランクとを先に加工すれば、対をなすウオ−
ムとホイ−ルは、媒介歯車とウオ−ム間の接触線と同一
接触線(これを「第1接触線」という)をもって接する
ことになる。この創成法は間接創成法と呼称されてい
る。
Conversely, a tool tooth surface of arbitrary shape is attached to the I 3 axis satisfying the expressions (1) to (3), and a worm blank attached to the I 1 axis and a worm wheel attached to the I 2 axis. -If you process the le blank first, a pair of water-
The worm and the wheel are in contact with each other with the same contact line as the contact line between the intermediate gear and the worm (this is called the "first contact line"). This creation method is called an indirect creation method.

【0015】特にα=0の場合は、媒介歯車軸I3がホ
イ−ル軸I2と一致し、α=90゜の場合は、媒介歯車
軸I3がウオ−ム軸I1と一致するので何れも実質上媒介
歯車を考えなくてもよいことになる。従ってこの場合は
直接創成法と呼称されている。
Especially when α = 0, the intermediate gear shaft I 3 coincides with the wheel shaft I 2, and when α = 90 °, the intermediate gear shaft I 3 coincides with the worm shaft I 1 . Therefore, it is not necessary to consider the intermediate gear in any case. Therefore, in this case, it is called the direct creation method.

【0016】さらに、前記「二度接触理論」によれば、
式(1)、(2)、(3)の条件を満足する媒介歯車で
創成されたウオ−ムと同形又はその一部をとった工具で
ウオ−ムホイ−ルを直接創成した場合、これと対をなす
ウオ−ムとウオ−ムホイ−ルは、前述した第1接触線以
外に、2度目の接触線(これを「第2接触線」という)
でも同時に接触する。しかも接触がたった1度しか起き
ない点、(「限界法線点」という)では、相対曲率半径
が無限大(∞)になる。実際上は、この相対曲率半径
(∞)を期待できる線(「限界法線点曲線」という)を
ウオ−ムとウオ−ム・ホイ−ルの噛み合う範囲内に持ち
込むことが望ましい。そこで、このためには媒介歯車の
歯形形状を如何に決定するかの問題が生じるのである。
Further, according to the "double contact theory",
When a worm wheel is directly created by a tool having the same shape as or a part of the worm created by the intermediate gears satisfying the conditions of formulas (1), (2) and (3), In addition to the above-mentioned first contact line, the pair of worm and worm wheel has a second contact line (this is referred to as "second contact line").
But they come into contact at the same time. Moreover, at a point where the contact occurs only once (referred to as “limit normal point”), the relative radius of curvature becomes infinite (∞). In practice, it is desirable to bring a line (referred to as "critical normal point curve") in which this relative radius of curvature (∞) can be expected into the range where the worm and the worm wheel mesh. Therefore, for this purpose, there arises a problem of how to determine the tooth profile of the intermediate gear.

【0017】可展歯面鼓形ウオ−ム・ギヤでは、媒介歯
車歯面として媒介歯車軸より距離aのところに媒介歯車
軸I3と平行な平面A(平面工具)を採用した。このた
め、媒介歯車軸I3の並進運動を省略できる点が加工上
の利点となっている。又、性能上も、限界法線曲線を噛
み合い範囲内に持ち込むこともでき、高性能のウオ−ム
・ギヤが実現された。
In the developable tooth surface drum-shaped worm gear, a plane A (planar tool) parallel to the intermediate gear axis I 3 is adopted as the intermediate gear tooth surface at a distance a from the intermediate gear axis. Therefore, the fact that the translational motion of the intermediate gear shaft I 3 can be omitted is an advantage in processing. Also, in terms of performance, the limit normal curve can be brought into the meshing range, and a high-performance worm gear was realized.

【0018】次に円錐面工具による鼓形ウオ−ム・ギヤ
の創成法を説明する。円錐面工具による鼓形ウオ−ム・
ギヤの創成もまた、前記媒介歯車理論ならびに二度接触
理論に基いている。従って、各軸位置の関係は図1の位
置関係と同一関係にある。そして前記式(1)、
(2)、(3)も当然成立しなければならない。そし
て、これらの条件を基礎として、媒介歯車歯面として円
錐面(円錐面工具)を採用しているところに特徴が存在
している。
Next, a method of creating a drum-shaped worm gear with a conical tool will be described. Hourglass worm with conical tool
The creation of the gear is also based on the above-mentioned intermediate gear theory and the double contact theory. Therefore, the relationship between the axial positions is the same as the positional relationship shown in FIG. And the above formula (1),
Of course, (2) and (3) must also hold. Then, based on these conditions, there is a feature that a conical surface (conical surface tool) is adopted as the tooth surface of the intermediate gear.

【0019】図2は媒介歯車歯面として円錐面Bを採用
した場合の図である。又、図3は媒介歯車軸と媒介歯車
歯面との位置関係をより具体的に示したものである。
今、媒介歯車歯面である円錐面Bの半頂角をγ、円錐主
軸をO15とする(O1は円錐の頂点)。又、I3軸をz
3軸とし、O3点を原点とする媒介歯車軸に固定の右手直
角座標系O3−x333をとる。そこで円錐主軸O45
をy=bなる平面内で、x33平面に対し傾斜δとなる
ようにおく。すると、点O5はy33平面とO45との
交点となる。点O5は(O、b、−c)で与え、又、O4
5=aとする。
FIG. 2 is a diagram when a conical surface B is adopted as the tooth surface of the intermediate gear. Further, FIG. 3 more specifically shows the positional relationship between the intermediate gear shaft and the intermediate gear tooth surface.
Now, let us say that the half-vertical angle of the conical surface B that is the tooth surface of the intermediate gear is γ, and the main axis of the cone is O 1 O 5 (O 1 is the apex of the cone). Also, I 3 axis is z
3 as an axis, right rectangular coordinate system fixed O 3 points to mediate gear shaft having an origin O 3 take -x 3 y 3 z 3. Then the conical main axis O 4 O 5
In the plane of y = b so that it has an inclination δ with respect to the x 3 y 3 plane. Then, the point O 5 becomes the intersection of the y 3 z 3 plane and O 4 O 5 . The point O 5 is given by (O, b, -c), and O 4
Let O 5 = a.

【0020】以上に説明した図1記載の創成法は、平面
工具を使用する創成法ということができ、図2及び図3
記載の創成法は、円錐面工具を使用する創成法というこ
とができる。本発明の創成法は前記図3における円錐面
に代えて逆円錐面を使用するものである。
The above-described creation method shown in FIG. 1 can be said to be a creation method using a flat tool.
The creation method described can be referred to as a creation method using a conical surface tool. The creation method of the present invention uses an inverted conical surface instead of the conical surface in FIG.

【0021】これを図4で説明すると、図4(A)は円
錐面工具を示すものであり、円錐面工具では円錐面の半
頂角が0<γ<90°となっている。又、図4(B)は
平面工具を示すものであり、平面工具では半頂角がγ=
90°となっている。これに対して、図4(C)は逆円
錐面工具を示すものであり、逆円錐面工具では円錐面
(逆円錐面)の半頂角が90°<γ<180°となって
いる。即ち、本発明では半頂角が90°<γ<180°
となっているのが特徴の一つである。
This will be described with reference to FIG. 4. FIG. 4A shows a conical surface tool. In the conical surface tool, the half apex angle of the conical surface is 0 <γ <90 °. In addition, FIG. 4B shows a flat tool, and the half apex angle of the flat tool is γ =
It is 90 °. On the other hand, FIG. 4C shows an inverted conical surface tool, and in the inverted conical surface tool, the half apex angle of the conical surface (reverse conical surface) is 90 ° <γ <180 °. That is, in the present invention, the half apex angle is 90 ° <γ <180 °
Is one of the features.

【0022】次に本発明に係る逆円錐面工具による鼓形
ウオ−ム・ギヤの創成法について説明する。先ず、逆円
錐面工具による鼓形ウオ−ム・ギヤの創成もまた、前記
媒介歯車理論ならびに二度接触理論に基いている。従っ
て、各軸位置の関係は図1の位置関係と同一関係にあ
る。そして前記式(1)、(2)、(3)も当然成立し
なければならない。そして、これらの条件を基礎とし
て、媒介歯車歯面として逆円錐面(逆円錐面工具)を採
用しているところに特徴が存在している。
Next, a method of creating an hourglass-shaped worm gear using the inverted conical surface tool according to the present invention will be described. First of all, the creation of the hourglass-shaped worm gear with the inverted conical surface tool is also based on the above-mentioned intermediate gear theory and the double contact theory. Therefore, the relationship between the axial positions is the same as the positional relationship shown in FIG. And, the above equations (1), (2), and (3) must be naturally satisfied. Then, based on these conditions, there is a feature in that an inverted conical surface (inverse conical surface tool) is adopted as the tooth surface of the intermediate gear.

【0023】図5及び図6により本発明による鼓形ウオ
ーム・ギヤの軸位置関係と媒介歯車歯面と、媒介歯車軸
との関係を説明すると、以下のとおりである。即ち、前
記図2及び図3に示す円錐面工具の場合と同様に、媒介
歯車歯面である逆円錐面Cの半頂角をγ、円錐主軸をO
15とする(O1は円錐の頂点)。又I3軸をz3軸と
し、O3点を原点とする媒介歯車軸に固定の右手直角座
標系O3−x333をとる。そこで円錐主軸O45をy
=bなる平面内で、x33平面に対し傾斜δとなるよう
におく。すると、点O5はy33平面とO45との交点
となる。点O5は(O、b、−c)で与え、又O45
aとする。
The relationship between the axial position of the drum-shaped worm gear according to the present invention, the intermediate gear tooth surface, and the intermediate gear shaft will be described with reference to FIGS. 5 and 6. That is, as in the case of the conical surface tool shown in FIGS. 2 and 3, the half apex angle of the reverse conical surface C, which is the tooth surface of the intermediate gear, is γ, and the conical main axis is O.
1 O 5 (O 1 is the apex of the cone). Further, the I 3 axis is the z 3 axis, and a right-handed rectangular coordinate system O 3 −x 3 y 3 z 3 fixed to the intermediate gear axis with the O 3 point as the origin is taken. Therefore, the conical main axis O 4 O 5 is y
In the plane of = b, the inclination is δ with respect to the x 3 y 3 plane. Then, the point O 5 becomes the intersection of the y 3 z 3 plane and O 4 O 5 . Point O 5 is given by (O, b, -c), and O 4 O 5 =
a.

【0024】図7(A)、図7(B)は本発明の逆円錐
面工具とウオーム・ギヤとの相対位置関係を示す図であ
る。ここでは、c=0、α=0の場合を示している。す
なわち、c=0では、鼓形ウオ−ムの左右両歯面を創成
する2つの逆円錐面の逆円錐主軸が一致し、ウオ−ムの
左右両歯を同時に創成可能である。それと同時に、α=
0は、媒介歯車軸とホイ−ル軸が一致した直接創成法に
よる場合である。
FIGS. 7A and 7B are views showing the relative positional relationship between the inverted conical surface tool of the present invention and the worm gear. Here, the case where c = 0 and α = 0 is shown. That is, when c = 0, the opposite conical principal axes of the two conical surfaces forming the left and right tooth surfaces of the hourglass-shaped worm coincide, and the left and right teeth of the worm can be created simultaneously. At the same time, α =
0 is the case of the direct generation method in which the intermediate gear axis and the wheel axis coincide with each other.

【0025】次に、図8(A)及び図8(B)に、c=
0、α=0の場合の円錐面工具と逆円錐面工具の配置位
置を示す。この配置位置に示される、円錐面工具では図
8(A)のKで創成し、逆円錐面工具では図8(B)の
Kで創成しており、使用上の差異が明確である。
Next, in FIG. 8 (A) and FIG. 8 (B), c =
The arrangement positions of the conical surface tool and the inverted conical surface tool when 0 and α = 0 are shown. The conical surface tool shown in this arrangement position is created by K in FIG. 8 (A), and the inverted conical surface tool is created by K in FIG. 8 (B), and the difference in use is clear.

【0026】次に、図9によって円錐面工具と逆円錐面
工具の歯形の誤差を見ると、図9(A)に示される円錐
面工具の歯形と図9(B)に示す逆円錐面工具の歯形の
誤差が図9(C)に表されており、図9(C)に見られ
るように圧力角に大きい差異が生じていることが分か
る。このことは、逆円錐面工具によるねじ歯形を円錐工
具(砥石)で仕上げる場合、仕上代(研削代)が大きい
ことを示す。そこで、逆円錐工具を仕上工具(砥石)と
してそのまま使用すれば研削代が少なく、ねじ切時間、
研削時間共少ない鼓形ウォ−ムを得ることができる。
Next, looking at the error of the tooth profile between the conical surface tool and the inverted conical surface tool with reference to FIG. 9, the tooth profile of the conical surface tool shown in FIG. 9 (A) and the inverted conical surface tool shown in FIG. 9 (B). 9C shows the tooth profile error, and it can be seen that there is a large difference in pressure angle as seen in FIG. 9C. This indicates that the finishing allowance (grinding allowance) is large when the screw tooth profile formed by the inverted conical surface tool is finished by the conical tool (grinding stone). Therefore, if the inverted conical tool is used as it is as a finishing tool (grinding stone), the grinding allowance is small and the thread cutting time
It is possible to obtain a drum-shaped worm with less grinding time.

【0027】更に、今仮に、逆円錐面工具にすることに
より、従来公知の円錐面工具と比べて性能面で劣るもの
となったとすると、これは好ましいものとはいえない
が、図10(A)に示す円錐面工具による接触線の出方
と図10(B)に示す逆円錐面工具による接触線の出方
とに示すように、円錐面工具も逆円錐面工具も接触線の
出方が殆ど変わらず、更に表1に示すように接触線と滑
り方向のなす角度、相対曲率半径、同時接触線長さの面
でも殆ど差異がないので、本発明の逆円錐面工具は従来
公知の円錐面工具と比べて性能面で遜色のないものであ
る。
Further, assuming that the inverted conical surface tool is inferior in performance as compared with the conventionally known conical surface tool, this is not preferable, but FIG. ) Shows the contact line by the conical surface tool, and FIG. 10B shows the contact line by the reverse conical surface tool, the contact line both by the conical surface tool and the reverse conical surface tool. Is almost the same, and as shown in Table 1, there is almost no difference in terms of the angle formed by the contact line and the sliding direction, the relative curvature radius, and the length of the simultaneous contact line. Therefore, the inverted conical surface tool of the present invention is conventionally known. It is comparable in performance to the conical tool.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上に説明した本発明によると、以下の
ような効果を奏する。本発明によると、研削代が少なく
なるので、その分だけ創成に要する時間が短縮され、鼓
形ウオーム・ギヤの創成法として非常に有効なものであ
る。その場合、他の性能面で従来公知の円錐面工具によ
る創成法と劣ることがない。
According to the present invention described above, the following effects can be obtained. According to the present invention, since the grinding allowance is reduced, the time required for creation is shortened correspondingly, which is a very effective method for creating a drum-shaped worm gear. In that case, in terms of other performance, it is not inferior to the conventionally known creation method using a conical surface tool.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、平面工具の場合のウオ−ム・ギヤの軸
位置関係を示す図である。
FIG. 1 is a diagram showing an axial positional relationship of a worm gear in the case of a flat tool.

【図2】図2は、円錐面工具の場合の鼓形ウオ−ム・ギ
ヤの軸位置関係を示す図である。
FIG. 2 is a diagram showing an axial positional relationship of a drum-shaped worm gear in the case of a conical tool.

【図3】図3は、図2の媒介歯車歯面と、媒介歯車軸と
の関係を示す拡大図である。
FIG. 3 is an enlarged view showing the relationship between the intermediate gear tooth surface of FIG. 2 and the intermediate gear shaft.

【図4】図4は、工具による半頂角の違いを示す図であ
り、(A)は円錐面工具を示し、(B)は平面工具を示
し、(C)は逆円錐面工具を示すものである。
FIG. 4 is a view showing a difference in half-vertical angle depending on tools, (A) shows a conical surface tool, (B) shows a plane tool, and (C) shows an inverted conical surface tool. It is a thing.

【図5】図5は、逆円錐面工具の場合の鼓形ウオ−ム・
ギヤの軸位置関係を示す図である。
FIG. 5 is a drum-shaped worm for an inverted conical surface tool.
It is a figure which shows the axial positional relationship of a gear.

【図6】図6は、図5の媒介歯車歯面と、媒介歯車軸と
の関係を示す図である。
6 is a diagram showing a relationship between the intermediate gear tooth surface of FIG. 5 and an intermediate gear shaft.

【図7】図7は、α=0、c=0の特殊な場合の図であ
り、(A)は正面図、(B)は側面図である。
FIG. 7 is a diagram of a special case where α = 0 and c = 0, (A) is a front view, and (B) is a side view.

【図8】図8は、c=0、α=0の場合の配置位置を示
す図であり、(A)は円錐面工具の場合であり、(B)
は逆円錐面工具の場合である。
FIG. 8 is a diagram showing an arrangement position when c = 0 and α = 0, (A) is a case of a conical surface tool, and (B) is a diagram.
Is the case of an inverted conical surface tool.

【図9】図9は、円錐面工具と逆円錐面工具の歯形とそ
の誤差を示すものであり、(A)は円錐面工具の歯形を
示し、(B)は逆円錐面工具の歯形を示し、(C)は各
歯形の誤差を示す図である。
9A and 9B show tooth profiles of a conical surface tool and an inverted conical surface tool and their errors, FIG. 9A shows a tooth profile of a conical surface tool, and FIG. 9B shows a tooth profile of an inverted conical surface tool. It is a figure which shows the error of each tooth profile.

【図10】図10は、接触線の出方を示す図であり、
(A)は円錐面工具の場合の図であり、(B)は逆円錐
面工具の場合の図である。
FIG. 10 is a diagram showing how the contact line appears,
(A) is a figure in the case of a conical surface tool, (B) is a figure in the case of an inverted conical surface tool.

【図11】図11は、従来公知の円錐面工具を使用した
鼓形ウオーム・ギヤの創成法を説明する略図である。
FIG. 11 is a schematic diagram illustrating a method of creating a drum-shaped worm gear using a conventionally known conical surface tool.

【図12】図12は、従来公知のフライスによるによる
鼓形ウオーム・ギヤの切削加工を示す概略図である。
FIG. 12 is a schematic view showing a cutting process of a drum-shaped worm gear by a conventionally known milling machine.

【符号の説明】[Explanation of symbols]

1 ウオ−ム軸 I2 ホイ−ル軸 I3 媒介歯車軸 A 媒介歯車軸I3と平行な平面 ω1 ウオ−ム軸の回転速度 ω2 ホイ−ル軸の回転速度ω3 媒介歯車軸の軸方向並進速度 ω3 媒介歯車軸の回転速度 h 媒介歯車のねじ運動の換算ピッチ=ω3 /ω3 α 媒介歯車軸I3の傾角 B 円錐面 Rc (円錐面の底面の)半径 δ 円錐主軸O45のx33平面に平行な平面内で、x
33平面に対する傾き角 γ (円錐面の)半頂角 a 円錐面の頂点O4と底面中心O5との距離(O45) b 円錐底面中心O5とx33平面との距離 c 円錐底面中心O5とy3軸との距離 C 逆円錐面
I 1 worm shaft I 2 wheel shaft I 3 intermediate gear shaft A A plane parallel to intermediate gear shaft I 3 ω 1 rotation speed of worm shaft ω 2 rotation speed of wheel shaft ω 3 intermediate gear shaft Axial translation speed ω 3 Rotational speed of the intermediate gear shaft h Converted pitch of screw motion of intermediate gear = ω 3 / ω 3 α Inclined angle of intermediate gear shaft I 3 B Conical surface Rc Radius δ Conical surface In the plane parallel to the x 3 y 3 plane of the main axis O 4 O 5 , x
3 y 3 (a conical surface) inclination angle γ relative to the plane distance between the apex O 4 and the bottom surface center O 5 half apex angle a conical surface (O 4 O 5) and b conical bottom center O 5 and x 3 z 3 planes Distance c The distance between the center O 5 of the conical bottom surface and the y 3 axis C The reverse conical surface

【手続補正書】[Procedure amendment]

【提出日】平成6年7月8日[Submission date] July 8, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】これに対して、逆円錐形のフライスを用い
て鼓形ウオーム・ギヤを切削することも提案されてい
る。(特平2−232119号公報参照)これを図1
2で説明すると、モータ11の回転をプーリ12、ベル
ト13によってホルダー14に伝達する。ホルダー14
にはフライス切り用のバイト15が取り付けられてお
り、ホルダー14を回転させることによってバイト15
で鼓形ウオーム・ギヤ16を切削するものとなってい
る。
On the other hand, it has also been proposed to cut an hourglass-shaped worm gear using an inverted conical milling cutter. (See Japanese Patent Laid-open flat 2-232119) which Figure 1
2, the rotation of the motor 11 is transmitted to the holder 14 by the pulley 12 and the belt 13. Holder 14
The cutting tool 15 for milling is attached to the tool. By turning the holder 14, the cutting tool 15
It is designed to cut the hourglass-shaped worm gear 16.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】図2は媒介歯車歯面として円錐面Bを採用
した場合の図である。又、図3は媒介歯車軸と媒介歯車
歯面との位置関係をより具体的に示したものである。
今、媒介歯車歯面である円錐面Bの半頂角をγ、円錐主
軸をOとする(Oは円錐の頂点)。又、I
をz軸とし、O点を原点とする媒介歯車軸に固定の
右手直角座標系O−xをとる。そこで円錐
主軸Oをy =bなる平面内で、x平面に
対し傾斜δとなるようにおく。すると、点O
平面に平行でz=−cなる平面とOとの交点
となる。点Oは(、b、−c)で与え、又、O
=aとする。
FIG. 2 is a diagram when a conical surface B is adopted as the tooth surface of the intermediate gear. Further, FIG. 3 more specifically shows the positional relationship between the intermediate gear shaft and the intermediate gear tooth surface.
Now, let us say that the half-vertical angle of the conical surface B that is the tooth surface of the intermediate gear is γ, and the main axis of the cone is O 1 O 5 (O 1 is the apex of the cone). In addition, a right-handed rectangular coordinate system O 3 -x 3 y 3 z 3 fixed to the intermediate gear axis having the I 3 axis as the z 3 axis and the O 3 point as the origin is taken. Therefore, the conical main axis O 4 O 5 is set to have an inclination δ with respect to the x 3 y 3 plane in the plane where y 3 = b. Then, the point O 5 is x 3 y
It is an intersection of O 4 O 5 and a plane parallel to the 3 planes and having z 3 = −c . Point O 5 is given by ( 0 , b, -c), and O 4 O
Let 5 = a.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】図5及び図6により本発明による鼓形ウオ
ーム・ギヤの軸位置関係と媒介歯車歯面と、媒介歯車軸
との関係を説明すると、以下のとおりである。即ち、前
記図2及び図3に示す円錐面工具の場合と同様に、媒介
歯車歯面である逆円錐面Cの半頂角をγ、円錐主軸をO
とする(O 円錐の頂点)。又I軸をz
軸とし、O点を原点とする媒介歯車軸に固定の右手直
角座標系O−xをとる。そこで円錐主軸O
をy =bなる平面内で、x平面に対し傾
斜δとなるようにおく。すると、点O平面
に平行でz=−cなる平面とOとの交点とな
る。点Oは(、b、−c)で与え、又O=a
とする。
The relationship between the axial position of the drum-shaped worm gear according to the present invention, the intermediate gear tooth surface, and the intermediate gear shaft will be described with reference to FIGS. 5 and 6. That is, as in the case of the conical surface tool shown in FIGS. 2 and 3, the half apex angle of the reverse conical surface C, which is the tooth surface of the intermediate gear, is γ, and the conical main axis is O.
4 O 5 (O 4 is the apex of the inverted cone). I 3 axis is z 3
An axis, right rectangular coordinate system fixed O 3 points to mediate gear shaft having an origin O 3 take -x 3 y 3 z 3. So the conical main axis O
4 O 5 is set so as to have an inclination δ with respect to the x 3 y 3 plane in the plane of y 3 = b. Then, the point O 5 becomes the x 3 y 3 plane.
Is an intersection point of a plane parallel to z and a surface of z 3 = −c and O 4 O 5 . Point O 5 is given by ( 0 , b, −c), and O 4 O 5 = a
And

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】媒介歯車歯面としての鼓形ウオ−ム創成用
工具に半頂角γを90゜<γ<180°とした逆円錐面
の全部又は一部を採用し、該工具に鼓形ウオ−ムホイ−
ルと同様な関係運動を与えて鼓形ウオ−ムを創成し、か
つこの鼓形ウオ−ムと同形又はその一部を採用したホイ
−ル創成用工具によりウオ−ムホイ−ルを創成すること
を特徴とする媒介歯車理論による鼓形ウオ−ム・ギヤの
創成法。
1. A drum-shaped worm generating tool as a tooth flank of an intermediate gear, wherein all or a part of an inverted conical surface having a half-vertical angle γ of 90 ° <γ <180 ° is adopted and the tool is a drum. Shaped worm wheel
To create a drum-shaped worm by giving a relational movement similar to that of the drum-shaped worm, and to create a worm wheel with a wheel-forming tool having the same shape as or a part of the drum-shaped worm. A method of creating a drum-shaped worm gear based on the theory of a medium gear.
【請求項2】媒介歯車歯面としての鼓形ウオ−ム創成用
工具に半頂角γが90゜<γ<180゜なる2つの逆円
錐面の全部又は一部を採用し、かつ、2つの逆円錐面の
円錐主軸を一致させかつその底面を合致させ、ウオ−ム
歯車の両歯面を同時に創成可能にしたことを特徴とする
媒介歯車理論による鼓形ウオ−ム・ギヤの創成法。 【0001】
2. A drum-shaped worm creating tool as a tooth flank of a transmission gear employs all or part of two inverted conical surfaces having a half-vertical angle γ of 90 ° <γ <180 °, and 2 A method for creating a drum-shaped worm gear based on the theory of intermediate gears, characterized in that the conical principal axes of two inverted conical surfaces are made coincident with each other and the bottom surfaces thereof are made coincident so that both tooth surfaces of the worm gear can be simultaneously generated. . [0001]
JP10589993A 1993-04-09 1993-04-09 Hourglass Worm Gear Creation Method Expired - Fee Related JP3087238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10589993A JP3087238B2 (en) 1993-04-09 1993-04-09 Hourglass Worm Gear Creation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10589993A JP3087238B2 (en) 1993-04-09 1993-04-09 Hourglass Worm Gear Creation Method

Publications (2)

Publication Number Publication Date
JPH06304812A true JPH06304812A (en) 1994-11-01
JP3087238B2 JP3087238B2 (en) 2000-09-11

Family

ID=14419739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10589993A Expired - Fee Related JP3087238B2 (en) 1993-04-09 1993-04-09 Hourglass Worm Gear Creation Method

Country Status (1)

Country Link
JP (1) JP3087238B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439537B (en) * 2014-10-11 2016-09-28 江苏华夏重工有限公司 A kind of worm screw organisation of working of weight saving

Also Published As

Publication number Publication date
JP3087238B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
Radzevich Gear cutting tools: fundamentals of design and computation
RU2518818C2 (en) Method for continuous manufacturing of flat gear wheels
JP2013063506A (en) Semi-completing skiving method and device having corresponding skiving tool for executing semi-completing skiving method
US4998385A (en) Method of modified gear cutting of a globoid worm gear
EP1688202A1 (en) Grinding wheel for relief machining for resharpenable pinion-type cutter
JPS6219970B2 (en)
CN111715947A (en) Method for forming linear contact gradually-reduced tooth arc tooth bevel gear pair
CN106735612B (en) A method of improving gear honing processing
US8205518B2 (en) Pinion meshing with a given face gear in accordance with altered design parameters
Zhang et al. Tooth surface geometry optimization of spiral bevel and hypoid gears generated by duplex helical method with circular profile blade
JPH06304812A (en) Hourglass shape worm gear generating method
JPH05172191A (en) Sliding gear
JPH01301015A (en) Precision working method of tooth surface of gear and tool proper to said method
CN109317764B (en) Multi-tooth part machining method and multi-tooth part cutting tool
JPH0151291B2 (en)
JPH0890338A (en) Tooth trace correcting method of helical gear
JP2001252823A (en) Gear cutting method for hourglass-shape worm
JPH0828659A (en) Line contact crossed helical gear
US2410544A (en) Method of and apparatus for forming gear teeth
Tan Face Gearing With a Conical Involute Pinion: Part 1—the conical involute gear: definition, geometry and generation
JPH10337614A (en) Chamfering method for tip of toothed gear and tool for chamfering tip
JP3717052B2 (en) How to hob a curved tooth-gear gear
US1867782A (en) Method of and machine for generating worm gears
JPS6222729B2 (en)
TWI672454B (en) Design method of point contact curved tooth cosine gear transmission mechanism with preset fourth-order transmission error

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees