JPH06304702A - Method for continuously casting hollow cast billet - Google Patents

Method for continuously casting hollow cast billet

Info

Publication number
JPH06304702A
JPH06304702A JP10159493A JP10159493A JPH06304702A JP H06304702 A JPH06304702 A JP H06304702A JP 10159493 A JP10159493 A JP 10159493A JP 10159493 A JP10159493 A JP 10159493A JP H06304702 A JPH06304702 A JP H06304702A
Authority
JP
Japan
Prior art keywords
core
cast billet
slab
casting
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10159493A
Other languages
Japanese (ja)
Inventor
Hiroshi Harada
寛 原田
Akifumi Seze
昌文 瀬々
Eiichi Takeuchi
栄一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10159493A priority Critical patent/JPH06304702A/en
Publication of JPH06304702A publication Critical patent/JPH06304702A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce a hollow cast billet without defect on the inner surface by setting casting condition so as to satisfy a prescribed expression, at the time of continuously casting the hollow cast billet by using a water cooling type columnar core for forming the inner surface of the cast billet. CONSTITUTION:At the time of continuously casting the hollow cast billet by using the water cooling type columnar core for forming the inner surface of the cast billet, the casting condition is set so that solidification constant K1 of core, distance L1 from the meniscus to the lowermost end of core, solidification constant K2 of the mold forming the outer surface of the cast billet, distance L2 from solidification starting position to the lowermost end of the core, casting velocity V and the thickness D of the cast billet satisfy the expression K1X(L1/V)<0.5>+K2X(L2/V)<0.5>>=0.5D. By this method, the problem of development of bleed and breakout on the inner surface of cast billet is solved, and the hollow cast billet having no problem can stably be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水冷機能を有する柱状の
中子を用いて中空鋳片を連続鋳造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting a hollow slab using a columnar core having a water cooling function.

【0002】[0002]

【従来の技術】鋳片内面を形成するための水冷式柱状中
子を用いて中空鋳片を製造する方法として特開平3−2
68843号公報に開示されているように、上半分は周
囲の加熱コイルにより誘導加熱され、下半分は周囲の水
冷銅鋳型を介して冷却される耐火物製の鋳型を用いて凝
固開始位置を溶湯の湯面レベルよりも下方に制御しつつ
鋳片外面を形成し、一方耐火物製鋳型の中心線上にセッ
トした水冷機能を有する柱状中子により鋳片内面を形成
し、中空鋳片を連続鋳造にて製造する方法がある。ま
た、鋳片外面を通常の鋳型を用いて形成する厚肉中空鋳
片の製造方法もいくつか開示されている。しかしなが
ら、このように水冷機能を有する柱状中子を用いて中空
鋳片を製造する場合、中子がある領域では鋳片内面は冷
却をうけるが、中子をすぎるとほぼ鋳片内面は断熱状態
となる。そのため、鋳片内面でのブリードやブレークア
ウト等の問題が多発していた。また、中子以降で鋳片内
面をスプレー冷却し抜熱能を向上する方法も開示されて
いるが、ブレークアウトが生じた場合水蒸気爆発がおき
るため、安全性上好ましくない。
2. Description of the Related Art As a method for producing a hollow slab using a water-cooled columnar core for forming the inner surface of the slab, JP-A-3-2
As disclosed in Japanese Patent No. 68843, the upper half is induction-heated by a surrounding heating coil, and the lower half is a refractory mold cooled through a surrounding water-cooled copper mold. The outer surface of the slab is formed while controlling it below the level of the molten metal surface, while the inner surface of the slab is formed by a columnar core with a water-cooling function that is set on the center line of the refractory mold, and hollow slabs are continuously cast. There is a method of manufacturing. Further, some methods for producing a thick hollow cast piece in which the outer surface of the cast piece is formed by using an ordinary mold are also disclosed. However, when a hollow slab is manufactured using a columnar core having a water-cooling function as described above, the inner surface of the slab is cooled in the region where the core is present, but when the core is exceeded, the inner surface of the slab is in a heat-insulated state. Becomes Therefore, there have been many problems such as bleeding and breakout on the inner surface of the slab. Although a method of spray cooling the inner surface of the slab after the core to improve the heat removal ability is also disclosed, steam explosion occurs when a breakout occurs, which is not preferable in terms of safety.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来の中空
鋳片の連続鋳造において生じる鋳片内面のブリードやブ
レークアウト発生の問題を解決し、スプレー冷却時のブ
レークアウトに伴う水蒸気爆発の危険性をなくして、問
題のない中空鋳片の連続鋳造を行なう方法を提供するこ
とを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems of bleeding and breakout on the inner surface of the slab that occur in the conventional continuous casting of hollow slabs, and the risk of steam explosion accompanying breakout during spray cooling. It is an object of the present invention to provide a method for performing continuous casting of hollow slabs, which has no problem and has no problem.

【0004】[0004]

【課題を解決するための手段】そこで本発明は、鋳片内
面を形成するための水冷式柱状中子を用いて中空鋳片を
連続鋳造する際に、中子の凝固定数K1 及びメニスカス
から中子の最下端までの距離L1 と、鋳片外面を形成す
る鋳型の凝固定数K2 及び凝固開始位置から中子の最下
端までの距離L2 、並びに鋳造速度V、鋳片肉厚Dが、
後述する(1)式を満足するように鋳造条件を設定する
ことを特徴とするものである。
Therefore, according to the present invention, when a hollow slab is continuously cast using a water-cooled columnar core for forming the inner surface of the slab, the solidification constant K 1 of the core and the meniscus are used. The distance L 1 to the lowermost end of the core, the solidification constant K 2 of the mold forming the outer surface of the slab and the distance L 2 from the solidification start position to the lowermost end of the core, the casting speed V, the slab thickness D But,
It is characterized in that the casting conditions are set so as to satisfy the formula (1) described later.

【0005】[0005]

【作用】本発明では、水冷機能を有する柱状の中子を用
いて中空鋳片を鋳造する。この方法で重要なパラメータ
である中子の長さ、鋳造速度、鋳片肉厚の鋳造に及ぼす
影響を調査した。
In the present invention, a hollow slab is cast using a columnar core having a water cooling function. The effects of core length, casting speed, and slab thickness, which are important parameters in this method, on casting were investigated.

【0006】実験に用いた装置の概要を図1に示す(装
置構成の詳細は、特開平3−268843号公報を参
照)。この方法では上半分は周囲の加熱コイル33によ
り誘導加熱され、下半分は周囲の水冷銅鋳型18を介し
て冷却される耐火物製の鋳型19を用い凝固開始位置を
溶湯の湯面レベルよりも下方に制御しつつ鋳片外面を形
成し、一方耐火物製鋳型19の中心線上にセットした水
冷機能を有する柱状中子24により鋳片内面を形成し、
中空鋳片を連続鋳造する。この方法において、中子長
さ、鋳片肉厚、鋳造速度、鋳片外面を形成する鋳型構造
を変化させて実験を行った。また、実験中鋳型内にサル
ファーを添加してサルファープリントにより凝固パラメ
ータK1 及びK2 を測定した。その結果、図2に示すよ
うに中子の凝固定数K1 及びメニスカスから中子の最下
端までの距離L1 と、鋳片外面を形成する鋳型の凝固定
数K2 及び凝固開始位置から中子の最下端までの距離L
2 、並びに鋳造速度V、鋳片肉厚Dが、 K1 ×(L1 /V)0.5 +K2 ×(L2 /V)0.5 ≧0.5D (1) なる関係を満足するように鋳造条件を設定することで、
ブレークアウトの発生頻度はきわめて小さくなることが
わかった。一方、上記関係を満足しない場合には肉厚の
不均一や偏芯、鋳片内面のブリード発生等の欠陥が見ら
れたが、上式を満足するように鋳造条件を設定した場合
にはこのような欠陥は見られなかった。
An outline of the apparatus used for the experiment is shown in FIG. 1 (for details of the apparatus configuration, see Japanese Patent Laid-Open No. 3-268843). In this method, the upper half is induction-heated by the surrounding heating coil 33, and the lower half is made of a refractory mold 19 that is cooled via the surrounding water-cooled copper mold 18, and the solidification start position is set to be higher than the molten metal level. The outer surface of the slab is formed while controlling downward, while the inner surface of the slab is formed by the columnar core 24 having a water cooling function set on the center line of the refractory mold 19.
Hollow slab is continuously cast. In this method, an experiment was conducted by changing the core length, the thickness of the cast piece, the casting speed, and the mold structure forming the outer surface of the cast piece. Further, during the experiment, sulfur was added to the mold and the coagulation parameters K 1 and K 2 were measured by sulfur printing. As a result, as shown in FIG. 2, the solidification constant K 1 of the core and the distance L 1 from the meniscus to the lowermost end of the core, the solidification constant K 2 of the mold forming the outer surface of the slab, and the solidification start position to the core Distance to the bottom of
2 , the casting speed V, and the cast piece thickness D satisfy the following conditions: K 1 × (L 1 / V) 0.5 + K 2 × (L 2 / V) 0.5 ≧ 0.5D (1) By setting
It was found that the frequency of breakouts was extremely low. On the other hand, when the above relationship was not satisfied, defects such as uneven thickness, eccentricity, and bleeding on the inner surface of the slab were observed. No such defects were found.

【0007】[0007]

【実施例】本発明者らは、表1に示す条件で実験を行
い、鋳造の安定性と鋳片内面欠陥をの状況を調査した。
溶鋼は18−8ステンレス鋼と低炭Al−Siキルド鋼
の2種類を用いた。なお、例1〜5は本発明であり、例
6〜10は比較のために行った実験の結果である。ま
た、例5、10は鋳片外面を通常の水冷される銅鋳型を
用いて鋳造した結果であり、例1〜4と6〜9は耐火物
製鋳型を用いて実験した結果である。
EXAMPLES The present inventors conducted experiments under the conditions shown in Table 1 and investigated the conditions of casting stability and slab internal surface defects.
Two types of molten steel, 18-8 stainless steel and low carbon Al-Si killed steel, were used. In addition, Examples 1 to 5 are the present invention, and Examples 6 to 10 are the results of experiments conducted for comparison. Further, Examples 5 and 10 are the results of casting the outer surface of the cast slab using a normal water-cooled copper mold, and Examples 1 to 4 and 6 to 9 are the results of experiments using a refractory mold.

【0008】これから、本発明の方法によりブレークア
ウトの発生頻度はきわめて小さくなり、また、比較例で
みられた形状の不均一や偏芯並びに鋳片内面のブリード
発生等の欠陥も本発明の方法では見られなかった。
From the above, the frequency of breakouts is extremely reduced by the method of the present invention, and defects such as uneven shape, eccentricity, and bleeding on the inner surface of the slab, which are observed in the comparative example, are also present. I didn't see it.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【発明の効果】以上から、鋳片内面を水冷する柱状の中
子を用いて中空鋳片を連続鋳造する方法において、中子
の凝固定数K1 及びメニスカスから中子の最下端までの
距離L1 と、鋳片外面を形成する鋳型の凝固定数K2
び凝固開始位置から中子の最下端までの距離L2 、並び
に鋳造速度V、鋳片肉厚Dが、前記(1)式を満足する
ように鋳造条件を設定することで内面欠陥のない中空鋳
片を安定して製造することが可能となった。
As described above, in the method of continuously casting a hollow slab using a columnar core for cooling the inner surface of the slab with water, the solidification constant K 1 of the core and the distance L from the meniscus to the lowermost end of the core. 1 , the solidification constant K 2 of the mold forming the outer surface of the slab, the distance L 2 from the solidification start position to the lowermost end of the core, the casting speed V, and the slab thickness D satisfy the above equation (1). By setting the casting conditions as described above, it becomes possible to stably manufacture a hollow cast slab having no inner surface defect.

【図面の簡単な説明】[Brief description of drawings]

【図1】実験に用いた装置の概要を示したものである。FIG. 1 shows an outline of an apparatus used in an experiment.

【図2】本発明の凝固定数、中子長さ、鋳片肉厚の関係
を示したものである。
FIG. 2 shows the relationship among the solidification constant, core length, and cast piece thickness of the present invention.

【符号の説明】[Explanation of symbols]

11 湯溜り 15 非冷却鋳型 18 冷却鋳型 24 柱状中子 27 導水管 33 誘導加熱装置 34 誘導加熱コイル 41 浸漬ノズル M 溶鋼 P 中空鋳片 a,b 凝固殻 11 Hot Water Pool 15 Uncooled Mold 18 Cooled Mold 24 Columnar Core 27 Water Transfer Tube 33 Induction Heating Device 34 Induction Heating Coil 41 Immersion Nozzle M Molten Steel P Hollow Slab a, b Solidified Shell

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋳片内面を形成するための水冷式柱状中
子を用いて中空鋳片を連続鋳造する際に、中子の凝固定
数K1 、メニスカスから中子の最下端までの距離L
1 と、鋳片外面を形成する鋳型の凝固定数K2 、凝固開
始位置から中子の最下端までの距離L2 、並びに鋳造速
度V、鋳片肉厚Dが、 K1 ×(L1 /V)0.5 +K2 ×(L2 /V)0.5 ≧0.5D (1) なる関係を満足するように鋳造条件を設定することを特
徴とする中空鋳片の連続鋳造方法。
1. When continuously casting a hollow slab using a water-cooled columnar core for forming the inner surface of the slab, the solidification constant K 1 of the core and the distance L from the meniscus to the lowermost end of the core.
1 , the solidification constant K 2 of the mold forming the outer surface of the slab, the distance L 2 from the solidification start position to the lowermost end of the core, the casting speed V, and the slab thickness D are K 1 × (L 1 / V) 0.5 + K 2 × (L 2 / V) 0.5 ≧ 0.5D (1) A continuous casting method for hollow cast slabs, characterized in that the casting conditions are set so as to satisfy the relationship.
JP10159493A 1993-04-27 1993-04-27 Method for continuously casting hollow cast billet Withdrawn JPH06304702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10159493A JPH06304702A (en) 1993-04-27 1993-04-27 Method for continuously casting hollow cast billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10159493A JPH06304702A (en) 1993-04-27 1993-04-27 Method for continuously casting hollow cast billet

Publications (1)

Publication Number Publication Date
JPH06304702A true JPH06304702A (en) 1994-11-01

Family

ID=14304713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10159493A Withdrawn JPH06304702A (en) 1993-04-27 1993-04-27 Method for continuously casting hollow cast billet

Country Status (1)

Country Link
JP (1) JPH06304702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200876A (en) * 2010-03-24 2011-10-13 Toyota Motor Corp Method and apparatus for continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200876A (en) * 2010-03-24 2011-10-13 Toyota Motor Corp Method and apparatus for continuous casting

Similar Documents

Publication Publication Date Title
RU2296034C2 (en) Method for treating melt metals by means of moving electric arc
CN112743053B (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
RU1819188C (en) Method and apparatus for cooling steel ingots at continuous casting
JPH06304702A (en) Method for continuously casting hollow cast billet
JPH0577011A (en) Cooling method in continuous casting and mold
CN114749616A (en) Ingot mould for large-scale high-length-diameter ratio steel ingot and blank forming method
JPS632535A (en) Production of steel ingot for forging
CN112743052A (en) Slab crystallizer for solving casting blank narrow surface cracks and control method
JPH04178247A (en) Continuous casting method of steel by casting mold having electromagnetic field
JP2555768B2 (en) Continuous metal casting apparatus and casting method
JPH0515949A (en) Apparatus and method for continuously casting metal
RU2136783C1 (en) Corrosion protector and method for casting thereof
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JPS61245949A (en) Continuous casting method
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JP3256793B2 (en) Method and apparatus for preventing component mixing and reducing shrinkage holes in continuous casting of dissimilar steels
JP3546137B2 (en) Steel continuous casting method
JPS58103940A (en) Continuous casting method for cast ingot
SU954155A1 (en) Method of continuous horisontal casting of iron tube blanks
JPS63171249A (en) Continuous casting method for cast metal strip
SU1046003A1 (en) Method of continuous steel casting
JP2024004032A (en) Continuous casting method
JP2003236646A (en) Method for continuously casting thin cast slab having excellent surface characteristic and partitioning weir
JPH09277001A (en) Method for continuously casting stainless steel cast slab
JPH01127147A (en) Method for casting molten metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704