JPH06304579A - Treatment of hexavalent chromium containing waste liquid - Google Patents

Treatment of hexavalent chromium containing waste liquid

Info

Publication number
JPH06304579A
JPH06304579A JP28974493A JP28974493A JPH06304579A JP H06304579 A JPH06304579 A JP H06304579A JP 28974493 A JP28974493 A JP 28974493A JP 28974493 A JP28974493 A JP 28974493A JP H06304579 A JPH06304579 A JP H06304579A
Authority
JP
Japan
Prior art keywords
hexavalent chromium
orp
liquid
ferrous salt
ferrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28974493A
Other languages
Japanese (ja)
Inventor
Kazuo Sakurai
一生 桜井
Yoshikazu Ono
美和 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP28974493A priority Critical patent/JPH06304579A/en
Publication of JPH06304579A publication Critical patent/JPH06304579A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To obtain treated water of high quality with high treatment efficiency by using aq. ferrous salt solution by easily and surely controlling the injection of chemicals when hexavalent chromium contg. waste water is continuously reduced and detoxicated. CONSTITUTION:After acid or alkali is added to hexavalent chromium waste water L to adjust the pH to a prescribed value of 6-12 in a pH conditioning tank 1, the aq. ferrous salt solution is added to the pH-adjusted liquid fed to a reduction treatment tank 2 separated from the pH conditioning tank 1 so that the ORP of the liquid may be kept at +100 to -100mV, and also alkali whose quantity corresponds to the aq. ferrous salt solution is added to the liquid to keep the pH of the liquid in the reduction treatment tank 2 within + or -0.5 from the pH of the liquid adjusted in the pH conditioning tank 1. When the DO of the liquid in the reduction treatment tank 2 is less than 7mg/l, the addition of the aq. ferrous salt solution is immediately stopped. Therefore, since the liquid can be reduced in a pH range of 6-12, the used quantity of acid or alkali is reduced and also the load for providing equipment is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、6価クロム含有廃水を
連続して還元無害化処理する6価クロム含有廃水の処理
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating hexavalent chromium-containing wastewater, in which hexavalent chromium-containing wastewater is continuously reduced and rendered harmless.

【0002】[0002]

【従来の技術】従来から6価クロムを含有する廃水から
6価クロムを除去する処理方法としては、6価クロムを
3価クロムに還元し、不溶性化合物として沈殿除去する
方法が広く行われている。このような従来の処理方法に
おいては、亜硫酸塩還元法が一般的である。この理由と
しては、pH2〜2.5での還元当量の亜硫酸塩注入制
御が可能なこと、生成する汚泥量が少ないこと、亜硫酸
塩が液体で入手でき操作性が良いことなどが挙げられ
る。
2. Description of the Related Art Conventionally, as a treatment method for removing hexavalent chromium from wastewater containing hexavalent chromium, a method in which hexavalent chromium is reduced to trivalent chromium and precipitated as an insoluble compound is removed. . Among such conventional treatment methods, the sulfite reduction method is generally used. The reason for this is that it is possible to control the injection of the reducing equivalent of sulfite at pH 2 to 2.5, the amount of sludge produced is small, and the sulfite is available as a liquid and has good operability.

【0003】一方、硫酸第一鉄等の第一鉄塩水溶液を使
用する還元方法もある。この第一鉄塩水溶液を使用する
還元方法は、汚泥発生量が多いという欠点を有するが、
第一鉄塩水溶液は安価であり、酸性側とアルカリ性側と
のいずれのpHでも還元が可能であるという特徴を有し
ている。しかし、この第一鉄塩水溶液を使用する還元方
法の最大の欠点は、薬注制御方法の信頼性が低いことに
あった。即ち、還元剤の添加量が適正に維持されない
と、6価クロムの残存や還元剤過剰添加の問題が起こる
ため、この残存6価クロムや過剰還元剤の濃度を検出す
ることで還元剤添加量を制御する必要が起こるが、6価
クロム含有廃水を対象としてこれらの濃度を直接測定で
きる検出器が皆無に等しく、この代替として間接的な検
出器が使用されていた背景がある。更に詳細に述べれ
ば、一般的な排水の化学分析に適用されている吸光光度
法を原理とする検出器の適用も試みられたが、6価クロ
ム含有廃水のように汚泥濃度が高く着色しているような
廃水への適用は困難であった。
On the other hand, there is also a reduction method using an aqueous solution of ferrous salt such as ferrous sulfate. The reduction method using this ferrous salt aqueous solution has a drawback that a large amount of sludge is generated,
The ferrous salt aqueous solution is inexpensive and has the characteristic that it can be reduced at any pH of the acidic side and the alkaline side. However, the biggest drawback of the reduction method using this ferrous iron salt aqueous solution was the low reliability of the chemical injection control method. That is, if the amount of reducing agent added is not properly maintained, the problem of residual hexavalent chromium and excessive addition of reducing agent will occur. Therefore, the amount of reducing agent added can be detected by detecting the concentration of the remaining hexavalent chromium and excess reducing agent. However, there is almost no detector that can directly measure these concentrations in hexavalent chromium-containing wastewater, and there is a background that an indirect detector is used as an alternative. More specifically, the application of a detector based on the absorptiometric method, which is applied to general chemical analysis of wastewater, was also tried, but it was colored with high sludge concentration like hexavalent chromium-containing wastewater. It was difficult to apply it to wastewater.

【0004】このため、酸化還元電位(以下、ORPと
言う)計を利用した薬注制御が従来より汎用されてきた
が、これでも多くの問題が残されていた。即ち、弱酸
性,中性及びアルカリ性のいずれの還元条件でも還元反
応に伴うORPの明確な変化は得られず、pH1以下の
強酸性の還元条件でのみ還元処理前後のORPの変化が
少なからず得られることから、ORP計による薬注制御
は専らpH1以下の強酸性下でのみ実施されてきた。し
かしながら、このような条件下ではpH調製に多量の酸
を必要とし、またORPは或る基準電極の電位に対する
溶液内の酸化物質と還元物質の相対電極電位を示すもの
であることから溶液の組成により大きく異なり、6価ク
ロムの3価クロムへの還元処理を示すORP絶対値は得
難い。従って、実際の廃水を還元処理しながら、その時
のORPと還元処理廃水中の残存6価クロム量と過剰の
第一鉄イオン量とを化学分析法にて確認し、最適値を設
定する必要があった。しかし、6価クロムを含有する廃
水処理装置は、種々の製造プロセスからの排水を統合処
理することが多いため、時として各製造プロセスの運転
状況によっては、排水の組成が大きく変化し、先に設定
したORP値では完全に6価クロムを還元処理できない
こともあった。このように、第一鉄塩水溶液を使用する
還元方法においてORP制御による薬注処理は多くの問
題があった。
For this reason, chemical injection control using an oxidation-reduction potential (hereinafter referred to as ORP) meter has been widely used, but many problems still remain. That is, no clear change in ORP due to the reduction reaction was obtained under any of weakly acidic, neutral and alkaline reducing conditions, and a considerable change in ORP before and after the reduction treatment was obtained only under strongly acidic reducing conditions of pH 1 or less. Therefore, the chemical injection control by the ORP meter has been carried out only under strongly acidic conditions of pH 1 or less. However, under such conditions, a large amount of acid is required for pH adjustment, and ORP indicates the relative electrode potentials of an oxidizing substance and a reducing substance in a solution with respect to the potential of a certain reference electrode. However, it is difficult to obtain an ORP absolute value indicating the reduction treatment of hexavalent chromium to trivalent chromium. Therefore, while reducing the actual wastewater, it is necessary to confirm the ORP at that time, the amount of residual hexavalent chromium in the reduction-treated wastewater and the amount of excess ferrous iron by the chemical analysis method, and set the optimum value. there were. However, since wastewater treatment equipment containing hexavalent chromium often performs integrated treatment of wastewater from various manufacturing processes, sometimes the composition of the wastewater changes greatly depending on the operating conditions of each manufacturing process. In some cases, the hexavalent chromium could not be completely reduced with the set ORP value. As described above, in the reduction method using the aqueous ferrous salt solution, the chemical injection treatment by ORP control has many problems.

【0005】この問題を解決すべく、本出願人らは先に
6価クロム含有廃水に第一鉄塩水溶液を添加して6価ク
ロムを3価クロムに還元処理する方法において、6価ク
ロム含有廃水のpHを4以上に調製して、溶存酸素(以
下、DOと言う)計を利用してDOが2mg/l以下に
なるように第一鉄塩水溶液を添加することを特徴とする
方法を提案した(特開平3−254889号参照)。し
かしながら、このDOを検知して第一鉄塩水溶液の添加
量を制御する方法は、第一鉄イオンと溶存酸素との化学
反応が律速のため応答時間が約2分と長く、しかもDO
が2mg/l以下になるように第一鉄塩水溶液を添加し
た場合には第一鉄イオンが過剰に添加されたことになる
結果、余剰の第一鉄イオンが徐々に空気中や廃水中の酸
素と反応して第二鉄イオンとなって廃水が赤く変色する
という問題があった。即ち、DOの測定下限値は0mg
/lであり、DOが2mg/l以下になるように第一鉄
塩水溶液を添加した場合に、実質的なDO制御範囲は0
〜2mg/lとなるので、DOが0mg/lとなった時
点では第一鉄塩水溶液の添加量が過剰であるか否かの判
断が付きかねるという問題であった。
In order to solve this problem, the present applicants first added a solution of ferrous salt to wastewater containing hexavalent chromium to reduce hexavalent chromium to trivalent chromium, and then, The pH of the wastewater is adjusted to 4 or more, and a dissolved oxygen (hereinafter referred to as DO) meter is used to add a ferrous salt aqueous solution so that the DO becomes 2 mg / l or less. Proposed (see Japanese Patent Laid-Open No. 3-254889). However, the method of detecting the DO and controlling the addition amount of the ferrous salt aqueous solution has a long response time of about 2 minutes because the chemical reaction between the ferrous ion and the dissolved oxygen is rate-determining, and the DO
When the aqueous solution of ferrous salt is added so that the concentration becomes 2 mg / l or less, it means that the ferrous ion is excessively added, and as a result, the surplus ferrous ion is gradually added to the air or waste water. There was a problem that the wastewater turned red by reacting with oxygen to form ferric ions. That is, the lower limit of measurement of DO is 0 mg
/ L, and when the ferrous iron salt aqueous solution is added so that the DO becomes 2 mg / l or less, the substantial DO control range is 0.
Since it becomes ~ 2 mg / l, there is a problem that it is impossible to judge whether the addition amount of the ferrous iron salt aqueous solution is excessive at the time when DO becomes 0 mg / l.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記した如
き従来技術の問題点を解決し、第一鉄塩水溶液を用いる
6価クロム含有廃水の処理方法において、薬注制御を容
易且つ確実に行うことにより、高い処理効率で高水質の
処理水を得ることができる6価クロム含有廃水の処理方
法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the prior art as described above, and in a method for treating wastewater containing hexavalent chromium using an aqueous ferrous salt solution, chemical injection control can be performed easily and reliably. An object of the present invention is to provide a method for treating hexavalent chromium-containing wastewater, which can obtain treated water of high water quality with high treatment efficiency.

【0007】[0007]

【課題を解決するための手段】本発明者らは第一鉄塩水
溶液を使用する還元方法においてORP計を利用した薬
注制御を行う場合、6価クロム含有廃水の還元反応条件
をpH1以下の強酸性とする必要性と、中性及びアルカ
リ性域でのORP計を利用した薬注制御方法について調
査した結果、6価クロム含有廃水を第一鉄塩水溶液を使
用して還元する場合にはORPは主として6価クロムと
pHとの関数であり、pHがほぼ一定下であればORP
が6価クロム濃度変化の指標となり得るとの知見を得
た。即ち、従来技術において還元反応条件をpH1以下
の強酸性とする必要性は、強酸性域では水素イオンが多
量に存在するので、第一鉄塩水溶液添加に伴う水素イオ
ン濃度の変化は無視でき、6価クロムの濃度変化のみを
ORP変化と見なすことができるためであるのに対し、
中性やアルカリ性域でのORP計を利用した薬注制御方
法が困難であった理由は、第一鉄塩水溶液自体のpHが
約3の酸性であるので中性やアルカリ性域の6価クロム
含有廃水に第一鉄塩水溶液を添加していくと6価クロム
含有廃水のpHが酸性側へ移行し、ORPに外乱を与え
るためであることを究明した。この究明事実に基づい
て、本発明者らは中性やアルカリ性域でのORP計を利
用した薬注制御方法を実用化するため、第一鉄塩水溶液
添加に伴うpH変動抑制策として、第一鉄塩水溶液が添
加され6価クロム含有廃水のpHが変化した時点でアル
カリを添加するという操作を繰り返し行う制御方法を採
ったが、pHの変動が大きくて6価クロム濃度変化の指
標として信頼できるORPは得られなかった。そこで、
第一鉄塩水溶液の添加量に応じてアルカリを予め設定さ
れた量だけを同時に添加することで、第一鉄塩水溶液の
添加に伴う6価クロム含有廃水のpH変化を抑制したと
ころ、6価クロム濃度変化の指標として信頼できるOR
Pが得られた。
[Means for Solving the Problems] When carrying out chemical injection control using an ORP meter in a reduction method using an aqueous ferrous salt solution, the present inventors set the reduction reaction condition of hexavalent chromium-containing wastewater to pH 1 or less. As a result of investigating the necessity of making it strongly acidic and the chemical injection control method using an ORP meter in the neutral and alkaline regions, ORP was found to be used when reducing wastewater containing hexavalent chromium using an aqueous solution of ferrous salt. Is mainly a function of hexavalent chromium and pH, and if the pH is almost constant, ORP
It has been found that can be an index of changes in hexavalent chromium concentration. That is, in the prior art, it is necessary to make the reduction reaction condition strongly acidic with a pH of 1 or less. Since a large amount of hydrogen ions exist in the strongly acidic region, the change in hydrogen ion concentration due to the addition of the ferrous salt aqueous solution can be ignored, This is because only the change in the concentration of hexavalent chromium can be regarded as the change in ORP.
The reason why the chemical injection control method using the ORP meter in the neutral or alkaline region was difficult was that the pH of the ferrous iron salt aqueous solution itself was about 3 and therefore the content of hexavalent chromium in the neutral or alkaline region was included. It was clarified that the pH of the wastewater containing hexavalent chromium shifts to the acidic side when the aqueous solution of ferrous salt is added to the wastewater, which disturbs the ORP. Based on this fact, the inventors of the present invention have a first method as a pH fluctuation suppression measure accompanying addition of an aqueous ferrous salt solution in order to put into practice a chemical injection control method using an ORP meter in a neutral or alkaline range. We adopted a control method that repeats the operation of adding an alkali when the pH of the wastewater containing hexavalent chromium changes due to the addition of an aqueous solution of iron salt, but it is a reliable index for the change in the concentration of hexavalent chromium because of the large fluctuations in pH. No ORP was obtained. Therefore,
By suppressing the pH change of the hexavalent chromium-containing wastewater accompanying the addition of the ferrous salt aqueous solution by simultaneously adding only a preset amount of alkali according to the addition amount of the ferrous salt aqueous solution, Reliable OR as an index of chromium concentration change
P was obtained.

【0008】一方、DO計による薬注制御は、先に本出
願人らが提示したpH条件の4以上であれば原理的には
pHの影響は受けないものであるが、pHの制御方法が
適切でなくpHの変動が大きい場合への影響は調査され
ていなかった。しかも先に本出願人らが提示したDOが
2mg/l以下での薬注制御は前述したように実用的で
ないことから、6価クロムがその排出基準まで還元され
たと判断できるDO値を再度調査した結果、DOは7m
g/l以上であれば良いが、7mg/l未満でも3mg
/lまでの範囲が好ましいことが判った。またpHが4
以上であるpH12の6価クロム含有廃水に第一鉄塩水
溶液を添加した場合、第一鉄塩水溶液自体のpHが約3
の酸性であるので最終的にpHは約3となり、その過程
でのDOの変化は認められなかった。この原因は、還元
剤と溶存酵素との酸化還元反応がpH4以上で起こるこ
とからすれば、還元剤の添加に伴いpHがこの領域を外
れたためと推定される。
On the other hand, the chemical injection control by the DO meter is not affected by the pH in principle if it is 4 or more of the pH conditions presented by the present applicants, but the pH control method is The effect on unsuitable and large pH fluctuations has not been investigated. Moreover, since the chemical injection control with DO of 2 mg / l or less, which was previously proposed by the present applicants, is not practical as described above, the DO value which can be judged that hexavalent chromium is reduced to the emission standard is investigated again. As a result, DO is 7m
It should be g / l or more, but less than 7 mg / l is 3 mg
It has been found that a range up to / l is preferred. The pH is 4
When the ferrous salt aqueous solution is added to the hexavalent chromium-containing wastewater having the above pH of 12, the pH of the ferrous salt aqueous solution itself is about 3
Since it was acidic, the pH finally reached about 3, and no change in DO was observed during that process. The reason for this is presumed to be that the redox reaction between the reducing agent and the dissolved enzyme occurs at a pH of 4 or higher, and that the pH deviates from this region with the addition of the reducing agent.

【0009】以上の調査結果を図2に示す。この図2
は、6価クロム含有廃水としてpHが12で6価クロム
濃度が0.5g/lのものに、pH調製剤として100
g/l濃度のH2SO4又は100g/l濃度のNaOH
を、また第一鉄塩水溶液として100g/l濃度のFe
Cl2を使用した場合の第一鉄塩水溶液の添加量に対す
るORP(○で示す)とDO(●で示す)の変化を示す
ものであり、(A)は比較として第一鉄塩水溶液の添加
に伴う6価クロム含有廃水のpH調製を行わなかった場
合を、(B)以降はそれぞれpHを12,10,8,
6,4,3,2,1,0.1と第一鉄塩水溶液の添加に
伴う6価クロム含有廃水のpH変化をpH調製剤で抑制
してそのpHを保持したものである。(A)では第一鉄
塩水溶液の添加に伴いpHが3まで低下し、ORPの変
化も上昇傾向であり、本実験条件における6価クロム存
在量に対する理論還元当量点附近でのORP,DOの変
化は認められなかった。これに対し(B)〜(E)のp
H6〜12においては理論還元当量点附近に明確にOR
P,DOの変化が認められた。更に、(F)〜(J)の
pHを4以下とした場合は理論還元当量点附近でのOR
P,DOの変化は不明瞭であった。因みに、pHを8に
保持した(D)の条件においてDOが6mg/lの場合
の残存6価クロムは0.5mg/l以下であり、第一鉄
イオンは1mg/l以下であった。以上と同様な実験を
第一鉄塩水溶液として、FeSO4を使用した場合と、
100g/l濃度のFeCl2と100g/l濃度のF
eSO4とをほぼ当量で両者併用した場合においてもほ
ぼ同じ結果が得られた。
The results of the above investigation are shown in FIG. This Figure 2
Is a hexavalent chromium-containing wastewater having a pH of 12 and a hexavalent chromium concentration of 0.5 g / l, and 100 as a pH adjusting agent.
H 2 SO 4 at a concentration of g / l or NaOH at a concentration of 100 g / l
As a ferrous salt aqueous solution and Fe at a concentration of 100 g / l.
It shows changes in ORP (shown by ◯) and DO (shown by ●) with respect to the amount of addition of the ferrous salt aqueous solution when Cl 2 is used, and (A) shows addition of the ferrous salt aqueous solution for comparison. When the pH of the wastewater containing hexavalent chromium was not adjusted, the pH values after (B) were 12, 10, 8 and
6,4,3,2,1,0.1 and the pH change of the hexavalent chromium-containing wastewater due to the addition of the aqueous ferrous salt solution is suppressed by a pH adjuster to maintain the pH. In (A), the pH decreased to 3 with the addition of the aqueous ferrous salt solution, and the change in ORP also tended to increase, and the ORP and DO values near the theoretical reduction equivalent point relative to the amount of hexavalent chromium present in the experimental conditions were increased. No change was observed. On the other hand, p of (B) to (E)
In H6 ~ 12, clear OR near the theoretical reduction equivalent point
Changes in P and DO were observed. Further, when the pH of (F) to (J) is set to 4 or less, the OR near the theoretical reduction equivalent point is obtained.
The changes in P and DO were unclear. Incidentally, when DO was 6 mg / l under the condition of (D) in which the pH was kept at 8, the residual hexavalent chromium was 0.5 mg / l or less, and the ferrous ion was 1 mg / l or less. An experiment similar to the above was performed using FeSO 4 as the ferrous salt aqueous solution,
FeCl 2 at a concentration of 100 g / l and F at a concentration of 100 g / l
The same result was obtained when eSO 4 and both were used in an approximately equivalent amount.

【0010】このように第一鉄塩水溶液の添加量に応じ
てpH調製剤を添加して、そのpH変動を抑制すればO
RPによる6価クロムの還元反応の監視が可能であり、
またDOによる監視も可能であり、しかも還元反応条件
がpH6〜12の範囲で良いことから、従来技術におけ
るpH1以下とするための多量の酸が不要となること、
更に還元処理後の排水を公共水域に排水するためには水
質規制によりその排水のpHを6〜9とする必要がある
が従来技術におけるpH1以下の液のように中和処理す
るためのアルカリが不要となること、従来技術における
中和槽を必要としないこと等の利点が得られることが究
明できた。
As described above, if a pH adjusting agent is added according to the amount of the ferrous salt aqueous solution added to suppress the pH fluctuation, O
It is possible to monitor the reduction reaction of hexavalent chromium by RP,
Further, monitoring by DO is also possible, and since the reduction reaction condition may be in the range of pH 6 to 12, it is not necessary to use a large amount of acid for adjusting the pH to 1 or less in the prior art.
Further, in order to discharge the wastewater after the reduction treatment to the public water area, it is necessary to adjust the pH of the wastewater to 6 to 9 according to the water quality regulation, but an alkali for neutralization treatment such as a liquid having a pH of 1 or less in the prior art is used. It has been clarified that there are advantages such as being unnecessary and not requiring the neutralization tank in the prior art.

【0011】以上の究明結果より、6価クロム含有廃水
を第一鉄塩水溶液を使用して還元するに際して、第一鉄
塩水溶液添加に伴う6価クロム含有廃水のpHの変動を
抑制した条件下で、適正な第一鉄塩水溶液の添加量制御
をORP計やDO計の検知器を使用して行うことができ
ることが判明したので、ORP計とDO計との両者の検
知器を併用すれば一方の検知器が故障しても対応に時間
を要することがないばかりか、6価クロム含有廃水の組
成が大きく変化した場合に一方の検知器のみを使用した
場合に存在する制御の信頼性の不安も解消できると考え
て更に検討を進めた。
From the above investigation results, when reducing the hexavalent chromium-containing wastewater using the ferrous salt aqueous solution, the pH fluctuation of the hexavalent chromium-containing wastewater due to the addition of the ferrous salt aqueous solution was suppressed under the conditions. Then, it was found that the proper addition amount control of the ferrous iron salt aqueous solution can be performed by using the detectors of the ORP meter and the DO meter. Therefore, if both the detectors of the ORP meter and the DO meter are used together. It takes no time to respond even if one of the detectors fails, and the control reliability that exists when only one detector is used when the composition of wastewater containing hexavalent chromium changes significantly We thought that we could alleviate anxiety and proceeded with further study.

【0012】ORP計制御の特徴は、溶液内の酸化物質
と還元物質の化学ポテンシャルを電気化学的に検出する
ため応答が速いことにあるが、酸化物質や還元物質の区
別ができないために6価クロム以外の酸化物質や第一鉄
イオン以外の還元物質が存在する場合に各々のイオンの
電位の混成したORPを示す。従って、6価クロム還元
処理終了に対応した絶対的な電位が異なるため、実際の
6価クロム含有廃水を還元処理しながらその時のORP
と還元処理廃水中の残存6価クロムと過剰の第一鉄イオ
ンとを化学分析法にて確認し、最適値を設定する必要が
あるという欠点がある。一方、DO計制御の特徴は、溶
液内の溶存酵素のみを選択的に検知するため共存イオン
の影響は受けず、しかもその測定値が絶対値であるため
信頼性が高いことにあるが、測定値を得るまでの応答時
間が長い等の欠点がある。
A characteristic of ORP meter control is that the chemical potentials of the oxidizing substance and the reducing substance in the solution are detected electrochemically, so that the response is fast, but since the oxidizing substance and the reducing substance cannot be distinguished, they are hexavalent. The ORP in which the potentials of the respective ions are mixed when an oxidizing substance other than chromium and a reducing substance other than ferrous ions are present is shown. Therefore, since the absolute potential corresponding to the end of the hexavalent chromium reduction treatment differs, the ORP at that time while reducing the actual hexavalent chromium-containing wastewater
There is a drawback that it is necessary to confirm the residual hexavalent chromium and excess ferrous iron in the reduction treatment wastewater by a chemical analysis method and set an optimum value. On the other hand, the feature of DO meter control is that it is not affected by coexisting ions because it selectively detects only the dissolved enzyme in the solution, and the measured value is an absolute value, so it is highly reliable. There are drawbacks such as a long response time to obtain a value.

【0013】そこで、本発明者らはORP計とDO計と
の両者の検知器を併用することで、両者の欠点を補い且
つ長所を利用することを狙って、 (a)ORPとDOとの両者を適性値に維持するように、
第一鉄塩水溶液を添加する制御方式(例えば、ORP:
−100mV〜+100mVで且つDO:3〜7mg/
lの範囲) (b)ORPによる薬注制御を行い、DOが設定範囲を外
れた場合に第一鉄塩水溶液の添加を停止する制御方式 (c)DOによる薬注制御を行い、ORPが設定範囲を外
れた場合に第一鉄塩水溶液の添加を停止する制御方式 の3方式を検討した処、(b)の制御方式が最も安定した
制御が可能であり、良好な処理廃水が得られることを究
明した。
Therefore, the inventors of the present invention aim to make up for the disadvantages of both the ORP meter and the DO meter by using the detectors of the ORP meter and the DO meter together, and to utilize their advantages. To keep both at the proper value,
A control method of adding a ferrous salt aqueous solution (for example, ORP:
-100 mV to +100 mV and DO: 3 to 7 mg /
(range of l) (b) Controlling method by ORP and stopping the addition of ferrous iron salt aqueous solution when DO is out of the set range (c) Controlling chemical by DO and setting by ORP When the three control methods of stopping the addition of the ferrous iron salt aqueous solution when the value is out of the range are examined, the control method of (b) is the most stable control possible and good treatment wastewater can be obtained. Investigated.

【0014】なお、上記(b)の制御方式を採用して6価
クロム含有廃水を第一鉄塩水溶液を使用して還元処理す
るに際して、前述した如くこの系のpHが重要となる。
即ち、第一鉄塩水溶液のpHは約3と酸性のため、第一
鉄塩水溶液の添加量に応じて還元処理時の廃水のpHが
低下するので、これを避けるため単に酸又はアルカリを
添加してのpH制御ではpH変動が大きく実用的ではな
かった。そこで、本発明者らは、この外乱を抑制する方
策として、第一鉄塩水溶液のpHが見掛け上、中性又は
アルカリ性となるような両者の混合比率を調査し、その
pHを維持する混合比率を還元剤添加量制御装置に入力
しておき、流量調整弁で測定される第一鉄塩水溶液の添
加量に対し、前記比率のアルカリ添加量を流量調整弁を
介して添加する方策を採ったところ、高い処理効率で高
水質の処理水を得ることができることを究明して本発明
を完成したのである。この他、第一鉄塩水溶液に直接ア
ルカリを添加して第一鉄塩水溶液のpHを直接的に変え
ることも試みたが、水酸化鉄の沈殿を生じ、送液が難し
くなることから実施には至らなかった。
When the control system (b) is adopted to reduce the hexavalent chromium-containing wastewater using the ferrous salt aqueous solution, the pH of this system is important as described above.
That is, since the pH of the ferrous salt aqueous solution is about 3 and acidic, the pH of the wastewater during the reduction treatment decreases depending on the amount of the ferrous salt aqueous solution added. To avoid this, simply add an acid or alkali. However, such pH control is not practical because of large pH fluctuations. Therefore, as a measure for suppressing this disturbance, the present inventors investigated the mixing ratio of the two such that the pH of the aqueous ferrous salt solution is apparently neutral or alkaline, and mixing ratio for maintaining the pH. Has been input to the reducing agent addition amount control device, and the amount of alkali addition of the above ratio to the addition amount of the ferrous salt aqueous solution measured by the flow rate adjusting valve is added via the flow rate adjusting valve. The present inventors have completed the present invention by clarifying that treated water of high quality can be obtained with high treatment efficiency. In addition, we also tried to directly change the pH of the ferrous salt aqueous solution by directly adding an alkali to the ferrous salt aqueous solution, but since the precipitation of iron hydroxide occurs and it becomes difficult to transfer the solution, it was implemented. Didn't arrive.

【0015】以下、図面を参照して本発明に係る6価ク
ロム含有廃水の処理方法について詳細に説明する。図1
は本発明に係る6価クロム含有廃水の処理方法を実施す
るのに好適な装置例の概略説明図であって、6価クロム
含有廃水Lは連続的にpH調製槽1内に送液される。こ
のpH調製槽1にはpH計1a(例えば、電気化学計測
(株)製、電極:6462、変換器:HD−36D)と撹
拌機1dとが設置されており、このpH計1aからの出
力を受けるpH制御装置7によって制御されて、pH調
製槽1内の廃水のpHを6〜12の範囲に維持するよう
に酸供給タンク3から流量調整弁6a又はアルカリ供給
タンク5から流量調整弁6bを介してpH調製槽1内に
酸又はアルカリが添加される。
The method for treating hexavalent chromium-containing wastewater according to the present invention will be described in detail below with reference to the drawings. Figure 1
FIG. 3 is a schematic explanatory view of an apparatus example suitable for carrying out the method for treating hexavalent chromium-containing wastewater according to the present invention, in which the hexavalent chromium-containing wastewater L is continuously fed into the pH adjusting tank 1. . The pH adjusting tank 1 has a pH meter 1a (for example, electrochemical measurement
(Manufactured by Co., Ltd., electrode: 6462, converter: HD-36D) and a stirrer 1d are installed and controlled by a pH controller 7 that receives an output from the pH meter 1a, and inside the pH adjusting tank 1. Acid or alkali is added into the pH adjusting tank 1 from the acid supply tank 3 through the flow rate adjusting valve 6a or the alkali supply tank 5 through the flow rate adjusting valve 6b so as to maintain the pH of the wastewater of 6 to 12 .

【0016】このpH調製槽1内でpH調製された6価
クロム含有廃水Lは続いて連続的に還元処理槽2内に送
液される。この還元処理槽2にはpH計2a(例えば、
電気化学計測(株)製、電極:6462、変換器:HD−
36D),ORP計2b(例えば、電気化学計測(株)
製、電極:6491、変換器:HD−38D),DO計
2c(例えば、電気化学計測(株)製、電極:7491、
変換器:OD−36D)及び撹拌機2dが設置されてい
て還元処理槽2内の6価クロム含有廃水LのpH,OR
P及びDOが連続的に測定されてその出力がpH/OR
P/DO制御装置8に伝達され、このpH/ORP/D
O制御装置8によって制御されて還元処理槽2内の6価
クロム含有廃水LのORPを+100〜−100mVの
範囲を維持するように還元剤供給タンク4から流量調整
弁6dを介して還元処理槽2内に還元剤が添加される。
この際、還元剤のpHが見掛け上中性又はアルカリ性と
なるように、還元剤の添加と同時に予め調査した第一鉄
塩水溶液の添加量に見合った量のアルカリがpH/OR
P/DO制御装置8によって制御されて、アルカリ供給
タンク5から流量調整弁6eを介して供給される。更
に、還元処理槽2内の液のpHがpH調製槽1内でpH
調製された液のpHより酸性側であれば、還元剤のpH
が見掛け上アルカリ性となるように予め調査した第一鉄
塩水溶液の添加量に見合った量以上にpH/ORP/D
O制御装置8によって制御されて前述のアルカリ供給タ
ンク5から流量調整弁6eを介してアルカリが添加さ
れ、逆に還元処理槽2内の液のpHがpH調製槽1内で
pH調製された液のpHよりアルカリ側であれば、pH
調製槽1内でpH調製された液のpHと同じpHとなる
ようにpH/ORP/DO制御装置8によって制御され
て酸供給タンク3から流量調整弁6cを介して酸が供給
される。更に、ORPが+100〜−100mVの範囲
にあっても、DOがその下限値である7mg/lより小
さくなるとpH/ORP/DO制御装置8によって制御
されて直ちに還元剤供給タンク4からの流量調整弁6d
が閉鎖されて第一鉄塩水溶液の添加が停止され、過剰の
第一鉄塩水溶液の添加が防止できる。以上の操作によ
り、6価クロム含有廃水Lは還元処理槽2内においてp
H調製されつつ6価クロムが還元処理され、金属イオン
は水酸化物を生成するので、この後はシックナーや遠心
分離器等の固液分離装置を介して溶液は排水され、固形
分は適当に処理されれば良い。
The hexavalent chromium-containing wastewater L whose pH has been adjusted in this pH adjusting tank 1 is subsequently continuously fed into the reducing treatment tank 2. The reduction tank 2 has a pH meter 2a (for example,
Electrochemical measurement Co., Ltd., electrode: 6462, converter: HD-
36D), ORP meter 2b (for example, Electrochemical Measurement Co., Ltd.)
Made, electrode: 6491, converter: HD-38D), DO meter 2c (for example, manufactured by Electrochemical Measurement Co., Ltd., electrode: 7491,
Converter: OD-36D) and a stirrer 2d are installed and the pH and OR of the hexavalent chromium-containing wastewater L in the reduction treatment tank 2
P and DO are continuously measured and the output is pH / OR
This pH / ORP / D is transmitted to the P / DO control device 8.
The reduction treatment tank is controlled from the reducing agent supply tank 4 via the flow rate adjusting valve 6d so that the ORP of the hexavalent chromium-containing wastewater L in the reduction treatment tank 2 is controlled in the range of +100 to -100 mV by being controlled by the O control device 8. A reducing agent is added to the inside of 2.
At this time, in order to make the pH of the reducing agent apparently neutral or alkaline, at the same time as the addition of the reducing agent, an amount of alkali commensurate with the amount of the ferrous salt aqueous solution previously investigated is adjusted to pH / OR.
It is controlled by the P / DO control device 8 and supplied from the alkali supply tank 5 via the flow rate adjusting valve 6e. Furthermore, the pH of the liquid in the reduction treatment tank 2 is the same as that in the pH adjusting tank 1.
If it is on the acidic side of the pH of the prepared liquid, the pH of the reducing agent
PH / ORP / D more than the amount commensurate with the addition amount of the ferrous salt aqueous solution, which was previously investigated so as to become apparently alkaline.
A liquid in which alkali is added from the above-mentioned alkali supply tank 5 through the flow rate adjusting valve 6e under the control of the O control device 8, and conversely, the pH of the liquid in the reduction treatment tank 2 is adjusted in the pH adjusting tank 1. If it is more alkaline than the pH of
The acid is supplied from the acid supply tank 3 via the flow rate adjusting valve 6c under the control of the pH / ORP / DO control device 8 so that the pH is the same as the pH of the liquid adjusted in the preparation tank 1. Further, even if the ORP is in the range of +100 to -100 mV, when the DO becomes smaller than the lower limit value of 7 mg / l, it is controlled by the pH / ORP / DO control device 8 to immediately adjust the flow rate from the reducing agent supply tank 4. Valve 6d
Is closed and the addition of the ferrous salt solution is stopped, and the addition of an excessive ferrous salt solution can be prevented. By the above operation, the hexavalent chromium-containing wastewater L is p
As hexavalent chromium is reduced while H is prepared and metal ions form hydroxides, the solution is drained through a solid-liquid separator such as a thickener or a centrifuge, and the solid content is appropriately adjusted. It should be processed.

【0017】[0017]

【作用】次に、操業条件について説明する。還元処理時
の廃水のpHは6〜12であることが必要である。これ
は、廃水のpHが6未満では第一鉄塩水溶液添加に伴う
pH変動を抑えても還元処理に伴うORPの変化が得ら
れないからであり、12を超えると公共水域への排水規
制である6〜9にするのが面倒で且つ経済性に劣るから
である。なお、設定pHは前記の範囲内であればよい
が、前述したようにORPはpHの影響を受けるためそ
の変動は極力抑制することが好ましく、本発明者らの調
査によればpH6〜12の範囲の設定値において±0.
5の範囲に調製すればORPの変動が少なくORP制御
は可能であるばかりか、3価クロム,第一鉄塩水溶液,
第二鉄塩水溶液,その他の共存重金属イオンを、還元反
応と同時に水酸化物として沈殿させることが可能であっ
た。更に、還元処理槽2に凝集剤(ポリマー)等を添加
すれば、この水酸化物の沈殿化は促進される。以上に述
べたように、還元処理時のpHの設定範囲は6〜9に調
製することで従来技術における還元処理後の廃水の中和
処理が不要となる。
Next, the operating conditions will be described. The pH of the wastewater at the time of reduction treatment needs to be 6-12. This is because if the pH of the wastewater is less than 6, the ORP change due to the reduction treatment cannot be obtained even if the pH fluctuation due to the addition of the ferrous salt aqueous solution is suppressed, and if it exceeds 12, the wastewater regulation to the public water area is restricted. This is because it is troublesome to set a value of 6 to 9 and is inferior in economic efficiency. The set pH may be in the above range, but as described above, the ORP is influenced by the pH, and therefore it is preferable to suppress the fluctuation as much as possible. ± 0 at the set value of the range.
If it is adjusted to the range of 5, the ORP fluctuation is small and the ORP control is possible, as well as trivalent chromium, ferrous iron salt aqueous solution,
It was possible to precipitate the aqueous ferric salt solution and other coexisting heavy metal ions as hydroxide simultaneously with the reduction reaction. Further, if a flocculant (polymer) or the like is added to the reduction treatment tank 2, precipitation of this hydroxide is promoted. As described above, by adjusting the pH setting range during the reduction treatment to 6 to 9, the neutralization treatment of the waste water after the reduction treatment in the prior art becomes unnecessary.

【0018】またDOの設定範囲は下限値が7mg/l
である。これは、還元剤添加前の6価クロム含有廃水の
DOが本発明者らの所属する工場では約8〜10mg/
lであり、本発明者らの調査ではDOが7mg/lにな
った時点では既に6価クロムの還元反応が終了していた
ことによる。ORPの設定範囲は+100〜−100m
Vである。これは、6価クロム含有廃水を約pH7の条
件で還元処理して6価クロムが殆ど残存しない状態にな
った廃水の理論的ORP値でもあり、本発明者らの所属
するステンレス製造工場における6価クロム含有廃水に
つき実際に調査した結果でもある。但し、このORP値
は廃液組成による若干異なるため、廃液組成の変化が予
想される場合には予め残存6価クロムと第一鉄イオン濃
度を調査して、以上の設定値の最適値を確認しておくこ
とが好ましい。
The lower limit of the DO setting range is 7 mg / l.
Is. This means that the DO of the wastewater containing hexavalent chromium before the addition of the reducing agent is about 8 to 10 mg / in the factory to which the present inventors belong.
It is because the reduction reaction of hexavalent chromium had already been completed at the time when DO reached 7 mg / l in the investigation by the present inventors. ORP setting range is +100 to -100m
V. This is also the theoretical ORP value of the wastewater in which the hexavalent chromium-containing wastewater is reduced under the condition of about pH 7 and almost no hexavalent chromium remains, and it is 6 in the stainless steel manufacturing plant to which the present inventors belong. It is also the result of an actual survey of waste water containing chromium. However, since this ORP value varies slightly depending on the waste liquid composition, if changes in the waste liquid composition are expected, the residual hexavalent chromium and ferrous iron ion concentrations should be investigated in advance to confirm the optimum values for the above set values. It is preferable to keep.

【0019】本発明方法で用いる第一鉄塩の種類には特
に限定はないが、例えば硫酸第一鉄が最も一般的であ
り、他に塩化第一鉄,硫酸第一鉄アンモニウム,硝酸第
一鉄,水酸化第一鉄等も使用できる。またこれらの純粋
水溶液に限らず、これらの第一鉄塩を含有する一般廃
液、例えば製鉄工業等の酸洗廃液,非鉄金属の整錬廃水
等も使用できる。pH調整剤としてはカセイソーダ,消
石灰,ソーダ灰等のアルカリや硫酸,塩酸等の酸を用い
ることができ、凝集剤としては各種有機ポリマーを用い
ることができる。
The type of ferrous salt used in the method of the present invention is not particularly limited, but, for example, ferrous sulfate is the most common, and ferrous chloride, ferrous ammonium sulfate, and ferrous nitrate are the most common. Iron, ferrous hydroxide, etc. can also be used. Further, not only these pure aqueous solutions but also general waste liquids containing these ferrous salts, for example, pickling waste liquids in the iron manufacturing industry, smelting waste water of non-ferrous metals, etc. can be used. As the pH adjusting agent, alkalis such as caustic soda, slaked lime and soda ash, and acids such as sulfuric acid and hydrochloric acid can be used, and as the aggregating agent, various organic polymers can be used.

【0020】[0020]

【実施例】以下に実験例及び比較例を挙げて本発明方法
をより具体的に説明する。説明の便宜上、先ず比較例に
ついて説明する。6価クロム含有廃水として、ステンレ
ス鋼帯の焼鈍酸洗工程における塩浴槽出側の鋼帯水洗工
程の廃水(pH:12,6価クロム濃度1000mg/
l)を使用した。
EXAMPLES The method of the present invention will be described more specifically below with reference to experimental examples and comparative examples. For convenience of description, a comparative example will be described first. As the hexavalent chromium-containing wastewater, the wastewater of the steel strip rinsing step on the outlet side of the salt bath in the annealing pickling step of the stainless steel strip (pH: 12, hexavalent chromium concentration 1000 mg /
1) was used.

【0021】比較例1 図1に示す装置に上記廃水15m3/Hを連続的に送液
した。なお、pH調製槽1及び還元処理槽2の容量は5
3であり、上記廃水の滞留時間は20分であった。p
H調製槽1でこの廃水に硫酸を添加してpHを1に調製
した。次に、このpH調製した廃液を還元処理槽2に連
続的に送液した。ここで、還元処理槽2のORPをOR
P計2bにて測定しつつ、還元処理槽2のORPが40
0mVを維持するようにpH/DO/ORP制御装置8
を作動させて、100g/l濃度の硫酸第一鉄水溶液を
還元剤として供給させた。この還元処理を24時間連続
的に処理した結果、pHは0.5〜1.5の範囲に、OR
Pは+380〜420mVの範囲であった。この間、1
時間毎に廃水サンプリングを行い化学分析を行った結
果、6価クロム濃度は0.5mg/l以下であり、第一
鉄イオン濃度は100±50mg/lであり、廃水は青
いものであった。
Comparative Example 1 Waste water of 15 m 3 / H was continuously fed to the apparatus shown in FIG. The volume of the pH adjusting tank 1 and the reducing tank 2 is 5
m 3 and the retention time of the waste water was 20 minutes. p
In the H preparation tank 1, sulfuric acid was added to this wastewater to adjust the pH to 1. Then, the pH-adjusted waste liquid was continuously fed to the reduction treatment tank 2. Here, the ORP of the reduction treatment tank 2 is ORed
The ORP of the reduction treatment tank 2 is 40 while measuring with the P meter 2b.
PH / DO / ORP controller 8 to maintain 0 mV
Was operated to supply an aqueous ferrous sulfate solution having a concentration of 100 g / l as a reducing agent. As a result of continuously treating this reduction treatment for 24 hours, the pH was adjusted to the range of 0.5 to 1.5
P was in the range of +380 to 420 mV. During this time, 1
As a result of performing a chemical analysis by sampling wastewater every hour, the hexavalent chromium concentration was 0.5 mg / l or less, the ferrous ion concentration was 100 ± 50 mg / l, and the wastewater was blue.

【0022】実施例1 図1に示す装置に上記廃水15m3/Hを連続的に送液
した。先ずpH調製槽1にてこの廃液のpHを約7に調
製した。次にこのpH調製された廃液を還元処理槽2に
連続的に送液した。ここで、pH/DO/ORP制御装
置8における還元処理槽2内の液の制御値を、pHにつ
いては7,DOについては7mg/l,ORPについて
は+100〜−100mV(目標値0mV)に設定し
た。還元剤としては100g/l濃度の硫酸第一鉄水溶
液を使用し、この硫酸第一鉄水溶液の添加量1mol当
り100g/l濃度の苛性ソーダを同時に0.07mo
lの比率で添加し、該廃水のpHを約7に維持しつつ還
元処理を行った。この還元処理を24時間連続的に処理
した結果、pHは6.5〜7.5の範囲に、またORPは
+100〜−100mVの範囲であった。そして、DO
が7mg/lより小さくなると直ちに硫酸第一鉄水溶液
と苛性ソーダの添加を停止し、DOが7mg/lを超え
ると再び硫酸第一鉄水溶液と苛性ソーダの添加を開始し
た。この間、1時間毎にサンプリングした廃水の化学分
析の結果は、6価クロムの濃度は0.5mg/l以下,
第一鉄イオンの濃度は1mg/l以下であり、極めて高
水質であった。なお、pH調製槽1及び還元処理槽の容
量は5m3であり、その滞留時間は20分であった。
Example 1 15 m 3 / H of the waste water was continuously fed to the apparatus shown in FIG. First, the pH of the waste liquid was adjusted to about 7 in the pH adjusting tank 1. Next, the pH-adjusted waste liquid was continuously fed to the reduction treatment tank 2. Here, the control value of the liquid in the reduction treatment tank 2 in the pH / DO / ORP control device 8 is set to 7 for pH, 7 mg / l for DO, and +100 to -100 mV (target value 0 mV) for ORP. did. As the reducing agent, an aqueous solution of ferrous sulfate having a concentration of 100 g / l was used, and caustic soda having a concentration of 100 g / l was simultaneously added to 0.07 mo per 1 mol of the aqueous solution of ferrous sulfate added.
It was added at a ratio of 1 and reduction treatment was carried out while maintaining the pH of the wastewater at about 7. As a result of continuously treating this reduction treatment for 24 hours, pH was in the range of 6.5 to 7.5, and ORP was in the range of +100 to -100 mV. And DO
When the value of DO was less than 7 mg / l, the addition of the ferrous sulfate aqueous solution and caustic soda was stopped immediately, and when the DO exceeded 7 mg / l, the addition of the ferrous sulfate aqueous solution and caustic soda was restarted. During this period, the result of chemical analysis of the wastewater sampled every hour shows that the concentration of hexavalent chromium is 0.5 mg / l or less,
The ferrous ion concentration was 1 mg / l or less, and the water quality was extremely high. The volumes of the pH adjusting tank 1 and the reduction treatment tank were 5 m 3 , and the retention time thereof was 20 minutes.

【0023】[0023]

【発明の効果】以上に詳述した如く本発明に係るクロム
含有廃水の処理方法は、第一鉄塩水溶液の薬注制御をp
H6〜12においてDO,ORPの出力をもって適正に
行うことにより、 還元処理を容易且つ確実に薬注制御することができ
る。 過剰の還元剤の添加が抑制され、この節減が図れる。 還元時にpHを過度に低くする必要がないため、硫酸
等の酸の使用量の低減を図ることができると共に、還元
処理後の液の中和に必要な苛性ソーダ等のアルカリの使
用量の低減が図れる。 還元と共に中和及び凝集も同時に行うことが可能であ
るため、設備の軽減が図れる。 等の効果を得ることができ、6価クロム含有廃水の処理
を容易且つ確実に行って、高水質の処理水を得ることが
可能となり、その工業的価値の非常に大きなものであ
る。
As described above in detail, the method for treating chromium-containing wastewater according to the present invention is designed to control the chemical injection of the ferrous salt solution.
By properly performing the output of DO and ORP in H6 to 12, the reduction process can be easily and reliably controlled for chemical injection. This can be achieved by suppressing the addition of excess reducing agent. Since it is not necessary to reduce the pH excessively during the reduction, it is possible to reduce the amount of acids such as sulfuric acid used and also the amount of alkali such as caustic soda necessary for neutralizing the liquid after the reduction treatment. Can be achieved. Neutralization and coagulation can be performed simultaneously with the reduction, so that the equipment can be reduced. It is possible to obtain hexavalent chromium-containing wastewater easily and surely to obtain treated water of high water quality, and the industrial value thereof is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る6価クロム含有廃水の処理方法を
実施するのに好適な装置例の概略系統図である。
FIG. 1 is a schematic system diagram of an example of an apparatus suitable for carrying out the method for treating hexavalent chromium-containing wastewater according to the present invention.

【図2】pHが12で6価クロム濃度が0.5g/lの
6価クロム含有廃水に、pH調製剤として100g/l
濃度のH2SO4又は100g/l濃度のNaOHを、第
一鉄塩水溶液として100g/l濃度のFeCl2を使
用した場合の第一鉄塩水溶液の添加量に対するORP
(○で示す)とDO(●で示す)の変化を示すものであ
る。
[Fig. 2] 100 g / l as a pH adjusting agent in hexavalent chromium-containing wastewater having a pH of 12 and a hexavalent chromium concentration of 0.5 g / l
Concentration of H 2 SO 4 or 100 g / l concentration of NaOH and ORP with respect to the addition amount of the ferrous salt solution when 100 g / l concentration of FeCl 2 is used as the ferrous salt solution
It shows changes in (denoted by ◯) and DO (denoted by ●).

【符号の説明】[Explanation of symbols]

L 6価クロム含有廃水 1 pH調製槽 1a pH計 1d 撹拌機 2 還元処理槽 2a pH計 2b ORP計 2c DO計 2d 撹拌機 3 酸供給タンク 4 還元剤供給タンク 5 アルカリ供給タンク 6a,6b,6c,6d,6e 流量調整弁 7 pH制御装置 8 pH/ORP/DO制御装置 L 6-valent chromium-containing wastewater 1 pH adjusting tank 1a pH meter 1d Stirrer 2 Reduction tank 2a pH meter 2b ORP meter 2c DO meter 2d Stirrer 3 Acid supply tank 4 Reductant supply tank 5 Alkali supply tank 6a, 6b, 6c , 6d, 6e Flow control valve 7 pH controller 8 pH / ORP / DO controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 6価クロム含有廃水を連続して還元無害
化処理するに際し、pH調製槽で6価クロム含有廃水に
酸又はアルカリを添加してpHを6〜12の所定値に調
製した後、該pH調製槽と分離された還元処理槽へ送液
したpH調製した液のORPが+100〜−100mV
を維持するように第一鉄塩水溶液を添加すると共に該第
一鉄塩水溶液に見合った量のアルカリを添加して該還元
処理槽内の液のpHを前記pH調製槽にて調製した液の
pHに対し±0.5以内に維持させ、該還元処理槽内の
液のDOが7mg/lより小さくなると直ちに第一鉄塩
水溶液の添加を停止することを特徴とする6価クロム含
有廃水の処理方法。
1. When continuously treating the hexavalent chromium-containing wastewater for reduction and detoxification, after adjusting the pH to a predetermined value of 6 to 12 by adding an acid or an alkali to the hexavalent chromium-containing wastewater in a pH adjusting tank. The ORP of the pH-adjusted liquid sent to the reduction treatment tank separated from the pH adjustment tank is +100 to -100 mV.
The pH of the liquid in the reduction treatment tank is adjusted by adding an aqueous solution of ferrous salt so as to maintain the pH of the solution in the reduction treatment tank by adding an amount of alkali corresponding to the aqueous solution of ferrous salt. Hexavalent chromium-containing wastewater characterized by maintaining the pH within ± 0.5 and immediately stopping the addition of the ferrous iron salt aqueous solution when the DO of the liquid in the reduction treatment tank becomes less than 7 mg / l. Processing method.
JP28974493A 1993-02-26 1993-10-27 Treatment of hexavalent chromium containing waste liquid Withdrawn JPH06304579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28974493A JPH06304579A (en) 1993-02-26 1993-10-27 Treatment of hexavalent chromium containing waste liquid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6288693 1993-02-26
JP5-62886 1993-02-26
JP28974493A JPH06304579A (en) 1993-02-26 1993-10-27 Treatment of hexavalent chromium containing waste liquid

Publications (1)

Publication Number Publication Date
JPH06304579A true JPH06304579A (en) 1994-11-01

Family

ID=26403941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28974493A Withdrawn JPH06304579A (en) 1993-02-26 1993-10-27 Treatment of hexavalent chromium containing waste liquid

Country Status (1)

Country Link
JP (1) JPH06304579A (en)

Similar Documents

Publication Publication Date Title
US5380441A (en) Removal of chromium from solution using mechanically agitated iron particles
US5415848A (en) Method for removal of hexavalent chromium from a solution
JP3348636B2 (en) Water treatment equipment containing inorganic pollutants
JP4811899B2 (en) Method for determining required addition amount of chelating heavy metal treating agent and method for controlling chemical injection
JPH06304579A (en) Treatment of hexavalent chromium containing waste liquid
JPH06102195B2 (en) Method for controlling phosphorus concentration in wastewater
EP0442250B1 (en) Control method with redox-potential
JPH06304578A (en) Treatment of hexavalent chromium-containing waste liquid
JP2847864B2 (en) Chromium-containing wastewater treatment method
JPH0675707B2 (en) Method and apparatus for treating liquid containing cyanide compound
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP4103230B2 (en) Treatment method for wastewater containing hexavalent chromium
CN111995103A (en) Method for treating complex cyanide-containing wastewater generated by emergency environmental event
RU2517507C2 (en) Method of treating cyanide-containing pulp with "active" chlorine
US5256306A (en) Continuous treatment of chromium bearing waste water
JP2906521B2 (en) Chromium-containing wastewater treatment method
JP2023156524A (en) Treatment method and equipment for sludge containing hexavalent chromium
JP3129561B2 (en) Neutral salt electrolytic treatment method and apparatus for descaling of chromium iron alloy strip
JP4106976B2 (en) Chromium-containing wastewater treatment method
JP4135261B2 (en) Chromium-containing wastewater treatment equipment
JPH07124574A (en) Plating waste liquid treatment process
US20220204376A1 (en) Wastewater treatment method and wastewater treatment system
JP3256606B2 (en) High-density sludge treatment method and apparatus
CA2367651C (en) Control of lead nitrate addition in gold recovery
JPH1076278A (en) Apparatus for controlling addition of phosphorus removing agent

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130