JPH06304572A - Treatment of ammonium fluoride containing aqueous solution - Google Patents

Treatment of ammonium fluoride containing aqueous solution

Info

Publication number
JPH06304572A
JPH06304572A JP11785093A JP11785093A JPH06304572A JP H06304572 A JPH06304572 A JP H06304572A JP 11785093 A JP11785093 A JP 11785093A JP 11785093 A JP11785093 A JP 11785093A JP H06304572 A JPH06304572 A JP H06304572A
Authority
JP
Japan
Prior art keywords
nitrite
ammonium fluoride
ammonium
catalyst
fluoride containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11785093A
Other languages
Japanese (ja)
Other versions
JP3269176B2 (en
Inventor
Shuichi Sakamoto
秀一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11785093A priority Critical patent/JP3269176B2/en
Publication of JPH06304572A publication Critical patent/JPH06304572A/en
Application granted granted Critical
Publication of JP3269176B2 publication Critical patent/JP3269176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To efficiently decompose and remove ammonium ion by adding a nitrite in a heating condition and under the coexistence of a solvent into an ammonium fluoride containing aq. solution of a waste solution containing an etchant used in semiconductor production field. CONSTITUTION:The ammonium fluoride containing aq. solution is treated in the heating condition and under the coexistence of the solvent by using the nitrite. A catalyst carrying platinum, palladium, ruthenium, rhodium, silver, copper or the like on a carrier such as alumina, zirconia, titania, active carbon is used. Ammonium ion is decomposed and removed by passing the ammonium fluoride containing aq. solution through a column, in which the catalyst is packed together with the nitrite of alkali metal in the heating condition to induce reaction. Sodium nitrite, potassium nitrite or the like is used as the nitrite an the quantity to be used is selected in the range of 1-1.2 times ammonium ion in terms of mol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフッ化アンモニウム含有
水の処理方法の改良に関するものである。さらに詳しく
いえば、本発明は、フッ化アンモニウム含有水中のアン
モニウムイオンを、触媒を用いて分解、除去するに際
し、該触媒の活性を長時間維持して、アンモニウムイオ
ンを効率よく分解、除去する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for treating ammonium fluoride-containing water. More specifically, the present invention relates to a method for efficiently decomposing and removing ammonium ions in ammonium fluoride-containing water by decomposing and removing them using a catalyst while maintaining the activity of the catalyst for a long time. It is about.

【0002】[0002]

【従来の技術】近年、半導体製造分野やその関連分野、
あるいは各種金属材料、単結晶材料、光学系材料などの
表面処理分野などにおいては、多量のエッチング剤が使
用されており、そして、このエッチング剤としては、主
にフッ化水素や、フッ化水素とフッ化アンモニウムを主
成分とするエッチング剤が用いられている。フッ化水素
を主成分とするエッチング剤は、通常フッ素をHFとし
て0.9重量%程度を含む薬剤であって大量に用いられ
ており、一方、フッ化水素及びフッ化アンモニウムを主
成分として含むエッチング剤(バッファードフッ酸)
は、その使用量は少ないものの、フッ素をHFとして通
常7重量%程度含有していることから、これらのエッチ
ング剤は廃水系統へ移行した際、高濃度フッ素含有廃液
となる。一方、エッチング途中やエッチング終了時に
は、これらのエッチング剤で処理された材料を大量の洗
浄水で洗浄するため、その洗浄工程からは、大量の低濃
度のフッ素含有廃液が排出される。従来、これらの高濃
度フッ素含有廃液及び低濃度フッ素含有廃液は混合され
て一括処理されている。一般にフッ化アンモニウム含有
廃液の処理においては、フッ素イオンは、水酸化カルシ
ウムなどのカルシウム化合物を添加してフッ化カルシウ
ムとして回収除去されており、一方アンモニウムイオン
は、生物学的硝化脱窒素法、アンモニアストリッピング
法、塩素酸化法、接触法などにより除去されている。ア
ンモニウムイオンの除去方法の中で、生物学的方法は、
硝化細菌によりアンモニウムイオンを亜硝酸又は硝酸性
窒素に酸化したのち、脱窒細菌により窒素ガスに還元す
る方法である。この方法は安価であるものの、微生物反
応であるため、フッ素イオン濃度が50ppm以上である
と活性が低下し、かつその他の変動要因に対しても不安
定である上、広い設置面積が必要であるなどの欠点を有
している。また、アンモニアストリッピング法は、アル
カリ性下に大量の空気と接触させて、アンモニアを大気
中に放散させる方法である。しかしながら、この方法は
アルカリコストが高く、かつ放散させたアンモニアを再
度吸着濃縮する必要があり、経済的でない。一方、塩素
酸化法は塩素添加により、アンモニウムイオンをクロラ
ミン経由で窒素ガスに酸化する方法である。この方法は
塩素添加量がアンモニアの10倍程度必要であり、高ア
ンモニウムイオン濃度の処理には不向である。接触法
は、設置面積が小さい、運転管理が容易である、汚泥や
残留塩素といった後処理を必要とする物質が生成しな
い、等の優れた特徴を有する処理方法であり、注目され
ている。しかしながら、フッ素共存下に触媒によるアン
モニアの分解処理を行うと、フッ化水素酸を生成し、処
理中に処理水のpHが大巾に低下し、その結果触媒担体の
溶解、崩壊が発生する。このため従来、フッ素共存下の
アンモニアの触媒を用いた分解方法では、先ず被処理水
中のフッ素イオンを消石灰などのカルシウム塩により難
溶化し、固液分離した後に、アンモニアを触媒分解する
方法が検討されていた。しかし、このカルシウム塩によ
る処理方法では、得られる処理水中に多量のカルシウム
イオンが含まれる結果となり、次に接触法でアンモニア
除去しようとしても、運転時間によってはカルシウム塩
がスケール化し、触媒活性が低下するという問題があっ
た。
2. Description of the Related Art In recent years, semiconductor manufacturing fields and related fields,
Alternatively, a large amount of etching agents are used in the field of surface treatment of various metal materials, single crystal materials, optical system materials, etc., and as the etching agents, hydrogen fluoride and hydrogen fluoride are mainly used. An etching agent whose main component is ammonium fluoride is used. An etching agent containing hydrogen fluoride as a main component is usually used in a large amount because it contains fluorine as HF in an amount of about 0.9% by weight, while it contains hydrogen fluoride and ammonium fluoride as main components. Etching agent (buffered hydrofluoric acid)
Although it is used in a small amount, since it normally contains about 7% by weight of fluorine as HF, these etching agents become a high-concentration fluorine-containing waste liquid when transferred to the wastewater system. On the other hand, during or after the etching, since the materials treated with these etching agents are washed with a large amount of washing water, a large amount of low-concentration fluorine-containing waste liquid is discharged from the washing step. Conventionally, these high-concentration fluorine-containing waste liquids and low-concentration fluorine-containing waste liquids are mixed and collectively processed. Generally, in the treatment of ammonium fluoride-containing waste liquid, fluorine ions are recovered and removed as calcium fluoride by adding a calcium compound such as calcium hydroxide, while ammonium ions are treated by biological nitrification denitrification method, ammonia It is removed by stripping method, chlorine oxidation method, contact method, etc. Among the methods for removing ammonium ions, the biological methods are
This is a method in which ammonium ions are oxidized to nitrous acid or nitrate nitrogen by nitrifying bacteria and then reduced to nitrogen gas by denitrifying bacteria. Although this method is inexpensive, it is a microbial reaction, so if the fluorine ion concentration is 50 ppm or more, the activity decreases and it is unstable with respect to other fluctuation factors, and a large installation area is required. It has drawbacks such as Further, the ammonia stripping method is a method in which a large amount of air is brought into contact with an alkaline solution to diffuse ammonia into the atmosphere. However, this method is not economical because it requires a high alkali cost and needs to adsorb and concentrate the diffused ammonia again. On the other hand, the chlorine oxidation method is a method of oxidizing ammonium ions into nitrogen gas via chloramine by adding chlorine. This method requires about 10 times the amount of chlorine to be added to ammonia, and is not suitable for treatment with high ammonium ion concentration. The contact method is attracting attention because it is a treatment method having excellent characteristics such as a small installation area, easy operation management, and generation of substances requiring post-treatment such as sludge and residual chlorine. However, when the decomposition treatment of ammonia with a catalyst is carried out in the presence of fluorine, hydrofluoric acid is produced and the pH of the treated water is drastically lowered during the treatment, resulting in dissolution and disintegration of the catalyst carrier. Therefore, conventionally, in the decomposition method using a catalyst of ammonia in the coexistence of fluorine, first a method of making fluorine ions in water to be treated insoluble by a calcium salt such as slaked lime, solid-liquid separation, and then catalytically decomposing ammonia is examined. It had been. However, this treatment method using calcium salts results in a large amount of calcium ions being contained in the obtained treated water, and even if ammonia is subsequently removed by the contact method, the calcium salts will scale depending on the operating time and the catalytic activity will decrease. There was a problem of doing.

【0003】[0003]

【発明が解決しようとする課題】本発明は、フッ化アン
モニウム含有水中のアンモニウムイオンを触媒を用いて
分解、除去するに際し、フッ化水素酸に起因する該触媒
の溶解、崩壊を防止して、触媒活性を長時間維持し、効
率よく該アンモニウムイオンを分解、除去するフッ化ア
ンモニウム含有水の処理方法を提供することを目的とし
てなされたものである。
DISCLOSURE OF THE INVENTION The present invention, when decomposing and removing ammonium ions in ammonium fluoride-containing water using a catalyst, prevents dissolution and disintegration of the catalyst due to hydrofluoric acid, The object of the present invention is to provide a method for treating ammonium fluoride-containing water which maintains catalytic activity for a long time and efficiently decomposes and removes the ammonium ion.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、亜硝酸塩が加
熱条件下かつ触媒の共存下に、フッ化アンモニウム含有
水中のアンモニウムイオンを、フッ化水素酸を生成する
ことなく効率よく分解しうることを見い出し、この知見
に基づいて本発明を完成するに至った。すなわち、本発
明は、フッ化アンモニウム含有水に、加熱条件下かつ触
媒共存下に亜硝酸塩を添加してアンモニウムイオンを分
解することを特徴とするフッ化アンモニウム含有水の処
理方法を提供するものである。以下、本発明を詳細に説
明する。本発明方法においては、フッ化アンモニウム含
有水を加熱条件下かつ触媒の共存下に、亜硝酸塩を用い
て処理する。該触媒としては、例えばアルミナ、ジルコ
ニア、チタニア、シリカ、活性炭、ゼオライトなどの担
体に、白金、パラジウム、ルテニウム、ロジウム、銀、
銅などを担持したものが好ましく用いられる。これらの
触媒はカラムに充填し、加熱下にフッ化アンモニウム含
有水を、アルカリ金属の亜硝酸塩と共に通液して反応を
行うのが有利である。この場合、SVは通常1〜10hr
-1、好ましくは5hr-1前後で、かつ上向流通液が望まし
い。また、亜硝酸塩としては、例えば亜硝酸ナトリウム
や亜硝酸カリウムなどが好ましく用いられる。この亜硝
酸塩の使用量は、通常アンモニウムイオンに対して0.
5〜2モル倍、好ましくは1〜1.2モル倍の範囲で選
ばれる。反応温度は、通常50〜300℃、好ましくは
70〜200℃の範囲で選ばれる。このようにして、亜
硝酸塩を用いてフッ化アンモニウム含有水を処理するこ
とにより、反応式 nNH4F+M(NO2)n→nN2+nMF+2nH2O (ただし、Mは金属元素、nは自然数である)で示され
るように、フッ化水素酸が生成することなく、アンモニ
ウムイオンは窒素ガスまで分解される。したがって、触
媒の溶解、崩壊が起こらず、触媒活性が長時間維持され
る。これに対し、過酸化水素を用いて処理した場合、フ
ッ化水素酸が生成し、触媒の溶解、崩壊が起こり、触媒
活性が短時間で低下する。このようにしてアンモニウム
イオンが分解、除去されたフッ化アンモニウム含有水中
のフッ素イオンは、従来公知の方法、例えば水酸化カル
シウムによる凝集沈殿方法、水和酸化セリウムなどのフ
ッ素吸着剤やOH型弱塩基性アニオン交換樹脂による吸
着方法、炭酸カルシウム結晶充填層に通水する方法など
によって除去される。本発明の処理方法は、フッ化アン
モニウム含有排水以外に、フッ化水素とフッ化アンモニ
ウムを含有する排水にも適用することができる。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that nitrite is an ammonium ion in ammonium fluoride-containing water under heating conditions and in the presence of a catalyst. It was found that the above can be efficiently decomposed without producing hydrofluoric acid, and the present invention has been completed based on this finding. That is, the present invention provides a method for treating ammonium fluoride-containing water, which comprises adding ammonium nitrite to ammonium fluoride-containing water under heating and in the presence of a catalyst to decompose ammonium ions. is there. Hereinafter, the present invention will be described in detail. In the method of the present invention, ammonium fluoride-containing water is treated with nitrite under heating conditions and in the presence of a catalyst. Examples of the catalyst include platinum, palladium, ruthenium, rhodium, silver, on a carrier such as alumina, zirconia, titania, silica, activated carbon or zeolite.
Those supporting copper or the like are preferably used. These catalysts are packed in a column, and it is advantageous to carry out the reaction by passing ammonium fluoride-containing water under heating together with an alkali metal nitrite. In this case, SV is usually 1-10 hours
-1 , preferably about 5 hr -1 , and an upward flowing liquid is desirable. Further, as the nitrite, for example, sodium nitrite, potassium nitrite and the like are preferably used. The amount of nitrite used is usually 0.1 with respect to ammonium ion.
It is selected in the range of 5 to 2 mole times, preferably 1 to 1.2 mole times. The reaction temperature is usually selected in the range of 50 to 300 ° C, preferably 70 to 200 ° C. Thus, by treating the ammonium fluoride-containing water with the nitrite, the reaction formula nNH 4 F + M (NO 2 ) n → nN 2 + nMF + 2nH 2 O (where M is a metal element and n is a natural number) ), Ammonium ion is decomposed to nitrogen gas without producing hydrofluoric acid. Therefore, the catalyst is not dissolved or decomposed, and the catalyst activity is maintained for a long time. On the other hand, when treated with hydrogen peroxide, hydrofluoric acid is produced, the catalyst is dissolved and decomposed, and the catalytic activity is reduced in a short time. Fluorine ions in the ammonium fluoride-containing water from which ammonium ions have been decomposed and removed in this manner are conventionally known methods, for example, a flocculation-precipitation method using calcium hydroxide, a fluorine adsorbent such as cerium oxide hydrate, and an OH-type weak base. It is removed by an adsorption method using a cationic anion exchange resin, a method of passing water through a calcium carbonate crystal packed bed, or the like. The treatment method of the present invention can be applied to wastewater containing hydrogen fluoride and ammonium fluoride, as well as wastewater containing ammonium fluoride.

【0005】[0005]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらの例によってなんら限定される
ものではない。 比較例1 pH5.9のNH4F水溶液(Nとして1000ppm含有)
に対し、H22を3,600ppmの割合で添加し、これを
0.5wt%Pt担持チタニア球35.0gを充填したカラ
ムに、流量3.0ミリリットル/分(SV4.5hr-1)、
温度140℃の条件で通液し、620時間にわたって連
続処理し、処理水中のアンモニウムイオン濃度を測定し
てアンモニウムイオンの除去効果を調べた。また、試験
後触媒を抜き出し重量を測定し、溶解の有無を確認し
た。初期の触媒活性を100とした場合の活性の経時変
化を図1にグラフで示す(実線)。この図から分かるよ
うに、経時により触媒活性は著しく低下した。また、試
験後の触媒重量は24.9gに減少していた。なお、処
理水のpHは2.5〜2.9であった。 実施例1 pH5.9のNH4F水溶液(Nとして1000ppm含有)
に対しNaNO2を1,000ppm(Nとして)の割合で
添加し、比較例1と同様にして実施した。触媒活性の経
時変化を図1にグラフで示す(点線)。この図から分か
るように、比較例1と異なり620時間経過後も初期の
触媒活性を維持することができた。また、試験後の触媒
重量は34.7gであり、ほとんど溶解していなかっ
た。なお、この処理水のpHは5.8〜5.9で、これに消
石灰を添加し、pHを12に調整後固液分離して得られた
処理水中のフッ素イオン濃度は約15ppmであった。
EXAMPLES The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto. Comparative Example 1 NH 4 F aqueous solution having a pH of 5.9 (containing 1000 ppm as N)
On the other hand, H 2 O 2 was added at a rate of 3,600 ppm, and the column was filled with 35.0 g of titania spheres carrying 0.5 wt% Pt, and the flow rate was 3.0 ml / min (SV4.5 hr −1 ). ,
The solution was passed under the condition of a temperature of 140 ° C., continuously treated for 620 hours, and the ammonium ion concentration in the treated water was measured to examine the ammonium ion removal effect. After the test, the catalyst was taken out and the weight was measured to confirm the presence or absence of dissolution. The time-dependent change in activity when the initial catalyst activity was set to 100 is shown in a graph in FIG. 1 (solid line). As can be seen from this figure, the catalyst activity decreased significantly with the passage of time. Further, the catalyst weight after the test was reduced to 24.9 g. The treated water had a pH of 2.5 to 2.9. Example 1 NH 4 F aqueous solution having a pH of 5.9 (containing 1000 ppm as N)
To the addition of NaNO 2 at a ratio of 1,000 ppm (as N), it was performed in the same manner as in Comparative Example 1. The change with time of the catalytic activity is shown graphically in FIG. 1 (dotted line). As can be seen from this figure, unlike Comparative Example 1, the initial catalyst activity could be maintained even after 620 hours had elapsed. Further, the catalyst weight after the test was 34.7 g, and it was hardly dissolved. The treated water had a pH of 5.8 to 5.9, and slaked lime was added to the treated water to adjust the pH to 12, followed by solid-liquid separation to obtain a fluoride ion concentration of about 15 ppm in the treated water. .

【0006】[0006]

【発明の効果】本発明によると、フッ化アンモニウム含
有水中のアンモニウムイオンを触媒を用いて分解、除去
するに際し、フッ化水素酸の存在に起因する該触媒の溶
解、崩壊を防止して、触媒活性を長時間保持し、アンモ
ニウムイオンを効率よく分解、除去することができる。
EFFECTS OF THE INVENTION According to the present invention, when ammonium ions in ammonium fluoride-containing water are decomposed and removed using a catalyst, the catalyst is prevented from being dissolved or decomposed due to the presence of hydrofluoric acid. The activity can be retained for a long time, and ammonium ions can be efficiently decomposed and removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はフッ化アンモニウム含有水にそれぞれ過
酸化水素及び亜硝酸ナトリウムを添加してアンモニウム
イオンを分解処理する場合の触媒活性の経時変化を示す
グラフである。
FIG. 1 is a graph showing changes with time in catalytic activity when hydrogen peroxide and sodium nitrite are added to water containing ammonium fluoride to decompose ammonium ions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フッ化アンモニウム含有水に、加熱条件下
かつ触媒共存下に亜硝酸塩を添加してアンモニウムイオ
ンを分解することを特徴とするフッ化アンモニウム含有
水の処理方法。
1. A method for treating ammonium fluoride-containing water, which comprises adding ammonium nitrite to ammonium fluoride-containing water under heating conditions and in the presence of a catalyst to decompose ammonium ions.
JP11785093A 1993-04-21 1993-04-21 Method of treating ammonium fluoride-containing water Expired - Fee Related JP3269176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11785093A JP3269176B2 (en) 1993-04-21 1993-04-21 Method of treating ammonium fluoride-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11785093A JP3269176B2 (en) 1993-04-21 1993-04-21 Method of treating ammonium fluoride-containing water

Publications (2)

Publication Number Publication Date
JPH06304572A true JPH06304572A (en) 1994-11-01
JP3269176B2 JP3269176B2 (en) 2002-03-25

Family

ID=14721832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11785093A Expired - Fee Related JP3269176B2 (en) 1993-04-21 1993-04-21 Method of treating ammonium fluoride-containing water

Country Status (1)

Country Link
JP (1) JP3269176B2 (en)

Also Published As

Publication number Publication date
JP3269176B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
KR920009114B1 (en) Process of effluent treatment
EP0849227B1 (en) Electrolytic treatment method for water-containing nitrogen compounds
US20040005262A1 (en) Process for reducing NOx in waste gas streams using chlorine dioxide
JPH078971A (en) Treatment of ammonium fluoride-containing water
JP3269176B2 (en) Method of treating ammonium fluoride-containing water
JPH09276881A (en) Treatment of nitrogen compound-containing water
JP2010149050A (en) Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst
JP3401844B2 (en) Ammonia-containing water treatment method
JP3083463B2 (en) Regeneration method of catalyst for wet oxidation treatment
JP3238741B2 (en) Method of treating ammonium fluoride-containing water
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
JP3565637B2 (en) Treatment of wastewater containing ammonia
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JP3630352B2 (en) Method for treating urea-containing water
JP3614186B2 (en) Ammonia nitrogen-containing water treatment method
JP2000271575A (en) Method for treating water containing nitrate nitrogen
JP3263968B2 (en) Treatment of wastewater containing nitrate
JP3906666B2 (en) Method and apparatus for treating nitrogen compound-containing water
JPH09285793A (en) Removing method for nitrate nitrogen in water and removing system
JP2002172384A (en) Method for treating waste water containing ammonia and hydrogen peroxide
JPH04131188A (en) Treatment of waste water
JP3693354B2 (en) Treatment method of wastewater containing nitrate
JPH1128480A (en) Treatment of ammonia-containing water
JPH07265870A (en) Treatment of dithionate ion-containing water
JP3148498B2 (en) Treatment of wastewater containing ammonia

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080118

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees